首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamine is the first major organic product of assimilation of 13NH4+ by tobacco (Nicotiana tabacum L. cv. Xanthi) cells cultured on nitrate, urea, or ammonium succinate as the sole source of nitrogen, and of 13NO3 by tobacco cells cultured on nitrate. The percentage of organic 13N in glutamate, and subsequently, alanine, increases with increasing periods of assimilation. 13NO3, used for the first time in a study of assimilation of nitrogen, was purified by new preparative techniques. During pulse-chase experiments, there is a decrease in the percentage of 13N in glutamine, and a concomitant increase in the percentage of 13N in glutamate and alanine. Methionine sulfoximine inhibits the incorporation of 13N from 13NH4+ into glutamine more extensively than it inhibits the incorporation of 13N into glutamate, with cells grown on any of the three sources of nitrogen. Azaserine inhibits glutamate synthesis extensively when 13NH4+ is fed to cells cultured on nitrate. These results indicate that the major route for assimilation of 13NH4+ is the glutamine synthetase-glutamate synthase pathway, and that glutamate dehydrogenase also plays a role, but a minor one. Methionine sulfoximine inhibits the incorporation of 13N from 13NO3 into glutamate more strongly than it inhibits the incorporation of 13N into glutamine, suggesting that the assimilation of 13NH4+ derived from 13NO3 may be mediated solely by the glutamine synthetase-glutamate synthase pathway.  相似文献   

2.
Both the changes in the activities of nitrogenase, glutamine synthetase and glutamate dehydrogenase and in the extracellular and intracellular NH4 + concentrations were investigated during the transition from an NH4 + free medium to one containing NH4 + ions for a continuous culture of Azotobacter vinelandii. If added in amounts causing 80–100% repression of nitrogenase, ammonium acetate, lactate and phosphate are absorbed completely, whereas chloride, sulfate and citrate are only taken up to about 80%. After about 1–2 hrs the NH4 + remaining in the medium is absorbed too, indicating the induction or activation of a new NH4 + transport system. One of the new permeases allows the uptake of citrate in the presence of sucrose. Addition of inorganic NH4 + salts leads to acidification of the culture. Anaerobiosis suppresses NH4 + transport. A rise in the extracellular NH4 + level leads to a reversible rise in the glutamine synthetase activity, which is not prevented by chloramphenicol, and to a reversible decrease in nitrogenase activity. During these measurements glutamate dehydrogenase activity remains close to zero. The intracellular NH4 + level of about 0.6 mM does not change when extracellular NH4 + is taken up and repression of nitrogenase starts.  相似文献   

3.
The pattern of assimilation of NH4+ by Alnus glutinosa, a N2-fixing, nonleguminous angiosperm, was examined. Detached nodules, roots, and nodulated roots of intact plants were exposed to 13NH4+ for up to 15 minutes. Glutamine was the most highly labeled compound at all times; the only other compound labeled significantly was glutamate. Similar results were obtained after incubating soybean (L. merr) nodules and roots with 13NH4+. These observations and the results of pulse-labeling and inhibitor studies with nodules of Alnus were distinctly different from those predicted for the assimilation of NH4+ via glutamine synthetase and glutamate synthase and suggest that glutamate dehydrogenase may play a major role in the assimilation of exogenously supplied NH4+.  相似文献   

4.
The results of the experiments discussed here present changes in the chemical composition of xylem sap of tomato seedlings cultivated in hydroponics on media containing 5 mmol HCO3 and an N-source given as NO3 , NH4 + or these two forms in different proportions. The occurrence of free NH4 + in the xylem sap of NH4 +-seedlings and in NO3 -seedlings indicates that the process of N-assimilation was not only confined to roots. The application of HCO3 to the medium effected a decrease in the concentration of NH4 + in the xylem sap of NH4 +-seedlings, having no effect on changes in the concentration of NO3 or NH4 + in NO3 -seedlings. Malate, citrate, fumarate, and succinate were identified in the xylem sap. The concentration of carboxylates in NO3 -seedlings exceeded by about 50% that recorded in NH4 +-seedlings. The highest concentration of malate constituting from 80% to 93.5% of this fraction, was determined in this group of compounds. The enrichment of the medium with HCO3 ions induced an increase in the content of carboxylates, chiefly of malate. In these experimental conditions an increase in the malate concentration in the xylem sap of NO3 and NH4 +-seedlings reached relative values of 100% and 36%, respectively. The total concentration of amides and amino acids was about 2.6 times higher in the xylem sap of NH4 +-seedlings than in NO3 -seedlings. Amide glutamine was the main component of this fraction in xylem sap and its total concentration was about 3.3 times higher in NH4 +-seedlings than that determined in NO3 -seedlings. Glutamine, glutamate, aspargine, and aspartate constituted from 69% to 77% of this fraction. The concentration of the remaining amino acids varied from 0.6% to 7%. The enrichment of the medium with HCO3  ions also effected an increase in the concentration of amides and amino acids in the xylem sap by about 17% and 56% in the case of NO3 and NH4 +-seedlings, respectively, in comparison with the respective controls (without HCO3 ). Abbreviations: DAG – days after germination; DIC – dissolved inorganic carbon; GOGAT – glutamine:2-oxoglutarate aminotransferase; GS – glutamine synthetase; PAR – photosynthetically active radiation; PEPc – phosphoenolpyruvate carboxylase  相似文献   

5.
Changes in intracellular Ca2+ concentration ([Ca2+]i) produced by ryanodine receptor (RyR) agonist, caffeine (caf), and ionotropic agonists: N-methyl-d-aspartate (NMDA) receptor (NMDAR) agonist, NMDA and P2X7 receptor (P2X7R) agonist, 3′-O-(4-benzoyl)benzoyl adenosine 5′-triphosphate (BzATP) were measured in cultured mouse cortical astrocytes loaded with the fluorescent calcium indicator Fluo3-AM in a confocal laser scanning microscope. In mouse astrocytes cultured in standard medium (SM), treatment with caf increased [Ca2+]i, with a peak response occurring about 10 min after stimulus application. Peak responses to NMDA or BzATP were observed about <1 min and 4.5 min post stimulus, respectively. Co-treatment with NMDA or BzATP did not alter the peak response to caf in astrocytes cultured in SM, the absence of the effects being most likely due to asynchrony between the response to caf, NMDA and BzATP. Incubation of astrocytes with neuron-condition medium (NCM) for 24 h totally abolished the caf-evoked [Ca2+]i increase. In NCM-treated astrocytes, peak of [Ca2+]i rise evoked by NMDA was delayed to about 3.5 min, and that induced by BzATP occurred about three minutes earlier than in SM. The results show that neurons secrete factors that negatively modulate RyR-mediated Ca2+-induced Ca2+ release (CICR) in astrocytes and alter the time course of Ca2+ responses to ionotropic stimuli.  相似文献   

6.
Experiments were carried out on rats to evaluate the possible regulatory roles of renal glutaminase activity, mitochondrial permeability to glutamine, phosphoenolpyruvate carboxykinase activity and systemic acid–base changes in the control of renal ammonia (NH3 plus NH4+) production. Acidosis was induced by drinking NH4Cl solution ad libitum. A pronounced metabolic acidosis without respiratory compensation [pH=7.25; HCO3=16.9mequiv./litre; pCO2=40.7mmHg (5.41kPa)] was evident for the first 2 days, but thereafter acid–base status returned towards normal. This improvement in acid–base status was accompanied by the attainment of maximal rates of ammonia excretion (onset phase) after about 2 days. A steady rate of ammonia excretion was then maintained (plateau phase) until the rats were supplied with tap water in place of the NH4Cl solution, whereupon pCO2 and HCO3 became elevated [55.4mmHg (7.37kPa) and 35.5mequiv./litre] and renal ammonia excretion returned to control values within 1 day (recovery phase). Renal arteriovenous differences for glutamine always paralleled rates of ammonia excretion. Phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase activities and the rate of glutamine metabolism (NH3 production and O2 consumption) by isolated kidney mitochondria all increased during the onset phase. The increases in glutaminase and in mitochondrial metabolism continued into the plateau phase, whereas the increase in the carboxykinase reached a plateau at the same time as did ammonia excretion. During the recovery phase a rapid decrease in carboxykinase activity accompanied the decrease in ammonia excretion, whereas glutaminase and mitochondrial glutamine metabolism in vitro remained elevated. The metabolism of glutamine by kidney-cortex slices (ammonia, glutamate and glucose production) paralleled the metabolism of glutamine in vivo during recovery, i.e. it returned to control values. The results indicate that the adaptations in mitochondrial glutamine metabolism must be regulated by extra-mitochondrial factors, since glutamine metabolism in vivo and in slices returns to control values during recovery, whereas the mitochondrial metabolism of glutamine remains elevated.  相似文献   

7.
Ammonia production and assimilation1 were examined in photorespiratory mutants of Arabidopsis thaliana L. lacking ferredoxin-dependent glutamate synthase (Fd-GluS) activity. Although photosynthesis was rapidly inhibited in these mutants in normal air, NH4+ continued to accumulate. The accumulation of NH4+ was also seen after an initial lag of 30 minutes in 2% O2, 350 microliters per liter of CO2 and after 90 minutes in 2% O2, 900 microliters per liter of CO2. The accumulation of NH4+ in normal air and low O2 was also associated with an increase in the total pool of amino acid-N and glutamine, and a decrease in the pools of glutamate, aspartate, alanine, and serine. Upon return to dark conditions, or to 21% O2, 1% CO2 in the light, the NH4+ which had accumulated in the leaves was reassimilated into amino acids. The addition of methionine sulfoximine (MSO) resulted in higher accumulations of NH4+ in glutamate synthase mutants and prevented the reassimilation of NH4+ upon return to the dark. The addition of MSO also resulted in the accumulation of NH4+ in glutamate synthase mutants in the light and in 21% O2, 1% CO2. These results indicate that glutamine synthetase is essential for the reassimilation of photorespiratory NH4+ and for primary N assimilation in the leaves and strongly suggest that glutamate dehydrogenase plays only a minimal role in the assimilation of ammonia. Levels of NADH-dependent glutamate synthase (NADH-GluS) appear to be sufficient to account for the assimilation of NH4+ by a GS/NADH-GluS cycle.  相似文献   

8.
Nitrogen Metabolism of the Marine Microalga Chlorella autotrophica   总被引:6,自引:3,他引:3       下载免费PDF全文
The levels of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) in Chlorella autotrophica (clone 580) are strongly regulated by the nitrogen source and salt concentration of the medium. GS is present at high levels in NO3-grown cells, and at maximum levels in nitrogen-starved cells. However, the levels of GS in these cells are somewhat decreased by increasing salinity. Cells growing on NH4+ have high NADPH-GDH activity, the levels of which increase with increasing NH4+ supply, while GS decreases to a very low level under these conditions. Salinity intensifies the induction of NADPH-GDH activity in NH4+-grown cells. The levels of NADH-GDH are low in this alga, but present under all growth conditions. Methionine sulfoximine (MSX) has little effect on growth and nitrogen assimilation of the alga in the presence of NH4+.  相似文献   

9.
The addition of exogenous L-methionine-DL-sulphoximine (MSO) to N2-fixing cultures of the blue-green alga Anabaena cylindrica results in over half of the newly fixed NH3 being released into the medium. MSO also inhibits glutamine synthetase (GS) activity, has negligible effect on alanine dehydrogenase activity, and glutamate dehydrogenase activity under N2-fixing conditions is negligible. In the presence of MSO, intracellular pools of glutamate and glutamine decrease, those of aspartate and alanine + glycine show little change, and the NH3 pool increases. MSO alleviates the inhibitory effect of exogenous NH4+ on nitrogenase synthesis and heterocyst production. The results suggest that in N2-fixing cultures of A. cylindrica the primary NH3 assimilating pathway involves GS, and probably glutamate synthase (GOGAT), and that the repressor of nitrogenase synthesis and heterocyst production is not NH4+ but is GS, GOGAT, or a product of their reactions.  相似文献   

10.
Effect of ammonium on nitrate utilization by roots of dwarf bean   总被引:13,自引:4,他引:9       下载免费PDF全文
The effect of exogenous NH4+ on NO3 uptake and in vivo NO3 reductase activity (NRA) in roots of Phaseolus vulgaris L. cv Witte Krombek was studied before, during, and after the apparent induction of root NRA and NO3 uptake. Pretreatment with NH4Cl (0.15-50 millimolar) affected neither the time pattern nor the steady state rate of NO3 uptake.

When NH4+ was given at the start of NO3 nutrition, the time pattern of NO3 uptake was the same as in plants receiving no NH4+. After 6 hours, however, the NO3 uptake rate (NUR) and root NRA were inhibited by NH4+ to a maximum of 45% and 60%, respectively.

The response of the NUR of NO3-induced plants depended on the NH4Cl concentration. Below 1 millimolar NH4+, the NUR declined immediately and some restoration occurred in the second hour. In the third hour, the NUR became constant. In contrast, NH4+ at 2 millimolar and above caused a rapid and transient stimulation of NO3 uptake, followed again by a decrease in the first, a recovery in the second, and a steady state in the third hour. Maximal inhibition of steady state NUR was 50%. With NO3-induced plants, root NRA responded less and more slowly to NH4+ than did NUR.

Methionine sulfoximine and azaserine, inhibitors of glutamine synthetase and glutamate synthase, respectively, relieved the NH4+ inhibition of the NUR of NO3-induced plants. We conclude that repression of the NUR by NH4+ depends on NH4+ assimilation. The repression by NH4+ was least at the lowest and highest NH4+ levels tested (0.04 and 25 millimolar).

  相似文献   

11.
The swamp eel, Monopterus albus, can survive in high concentrations of ammonia (>75 mmol l−1) and accumulate ammonia to high concentrations in its brain (∼4.5 µmol g−1). Na+/K+-ATPase (Nka) is an essential transporter in brain cells, and since NH4 + can substitute for K+ to activate Nka, we hypothesized that the brain of M. albus expressed multiple forms of Nka α-subunits, some of which might have high K+ specificity. Thus, this study aimed to clone and sequence the nka α-subunits from the brain of M. albus, and to determine the effects of ammonia exposure on their mRNA expression and overall protein abundance. The effectiveness of NH4 + to activate brain Nka from M. albus and Mus musculus was also examined by comparing their Na+/K+-ATPase and Na+/NH4 +-ATPase activities over a range of K+/NH4 + concentrations. The full length cDNA coding sequences of three nkaα (nkaα1, nkaα3a and nkaα3b) were identified in the brain of M. albus, but nkaα2 expression was undetectable. Exposure to 50 mmol l−1 NH4Cl for 1 day or 6 days resulted in significant decreases in the mRNA expression of nkaα1, nkaα3a and nkaα3b. The overall Nka protein abundance also decreased significantly after 6 days of ammonia exposure. For M. albus, brain Na+/NH4 +-ATPase activities were significantly lower than the Na+/K+-ATPase activities assayed at various NH4 +/K+ concentrations. Furthermore, the effectiveness of NH4 + to activate Nka from the brain of M. albus was significantly lower than that from the brain of M. musculus, which is ammonia-sensitive. Hence, the (1) lack of nkaα2 expression, (2) high K+ specificity of K+ binding sites of Nkaα1, Nkaα3a and Nkaα3b, and (3) down-regulation of mRNA expression of all three nkaα isoforms and the overall Nka protein abundance in response to ammonia exposure might be some of the contributing factors to the high brain ammonia tolerance in M. albus.  相似文献   

12.
Macroalgae has bloomed in the brackish lake of Shenzhen Bay, China continuously from 2010 to 2014. Gracilaria tenuistipitata was identified as the causative macroalgal species. The aim of this study was to explore the outbreak mechanism of G. tenuistipitata, by studying the effects of salinity and nitrogen sources on growth, and the different nitrogen sources uptake characteristic. Our experimental design was based on environmental conditions observed in the bloom areas, and these main factors were simulated in the laboratory. Results showed that salinity 12 to 20 ‰ was suitable for G. tenuistipitata growth. When the nitrogen sources'' (NH4 +, NO3 ) concentrations reached 40 µM or above, the growth rate of G. tenuistipitata was significantly higher. Algal biomass was higher (approximately 1.4 times) when cultured with NH4 + than that with NO3 addition. Coincidentally, macroalgal bloom formed during times of moderate salinity (∼12 ‰) and high nitrogen conditions. The NH4 + and NO3 uptake characteristic was studied to understand the potential mechanism of G. tenuistipitata bloom. NH4 + uptake was best described by a linear, rate-unsaturated response, with the slope decreasing with time intervals. In contrast, NO3 uptake followed a rate-saturating mechanism best described by the Michaelis-Menten model, with kinetic parameters Vmax = 37.2 µM g−1 DM h−1 and Ks = 61.5 µM. Further, based on the isotope 15N tracer method, we found that 15N from NH4 + accumulated faster and reached an atom% twice than that of 15N from NO3 , suggesting when both NH4 + and NO3 were available, NH4 + was assimilated more rapidly. The results of the present study indicate that in the estuarine environment, the combination of moderate salinity with high ammonium may stimulate bloom formation.  相似文献   

13.
Mutations of the pore-region residue T442 in Shaker channels result in large effects on channel kinetics. We studied mutations at this position in the backgrounds of NH2-terminal–truncated Shaker H4 and a Shaker -NGK2 chimeric channel having high conductance (Lopez, G.A., Y.N. Jan, and L.Y. Jan. 1994. Nature (Lond.). 367: 179–182). While mutations of T442 to C, D, H, V, or Y resulted in undetectable expression in Xenopus oocytes, S and G mutants yielded functional channels having deactivation time constants and channel open times two to three orders of magnitude longer than those of the parental channel. Activation time courses at depolarized potentials were unaffected by the mutations, as were first-latency distributions in the T442S chimeric channel. The mutant channels show two subconductance levels, 37 and 70% of full conductance. From single-channel analysis, we concluded that channels always pass through the larger subconductance state on the way to and from the open state. The smaller subconductance state is traversed in ∼40% of activation time courses. These states apparently represent kinetic intermediates in channel gating having voltage-dependent transitions with apparent charge movements of ∼1.6 e0. The fully open T442S chimeric channel has the conductance sequence Rb+ > NH4 + > K+. The opposite conductance sequence, K+ > NH4 + > Rb+, is observed in each of the subconductance states, with the smaller subconductance state discriminating most strongly against Rb+.  相似文献   

14.
Ammonium assimilation was followed in N-starved mycelia from the ectomycorrhizal Ascomycete Cenococcum graniforme. The evaluation of free amino acid pool levels after the addition of 5 millimolar NH4+ indicated that the absorbed ammonium was assimilated rapidly. Post-feeding nitrogen content of amino acids was very different from the initial values. After 8 hours of NH4+ feeding, glutamine accounted for the largest percentage of free amino acid nitrogen (43%). The addition of 5 millimolar methionine sulfoximine (MSX) to NH4+-fed mycelia caused an inhibition of glutamine accumulation with a corresponding increase in glutamate and alanine levels.

Using 15N as a tracer, it was found that the greatest initial labeling was into glutamine and glutamate followed by aspartate, alanine, and ornithine. On inhibiting glutamine synthetase using MSX, 15N enrichment of glutamate, alanine, aspartate, and ornithine continued although labeling of glutamine was quite low. Moreover, the incorporation of 15N label in insoluble nitrogenous compounds was lower in the presence of MSX. From the composition of free amino acid pools, the 15N labeling pattern and effects of MSX, NH4+ assimilation in C. graniforme mycelia appears to proceed via glutamate dehydrogenase pathway. This study also demonstrates that glutamine synthesis is an important reaction of ammonia utilization.

  相似文献   

15.
Nitrogen-14 and nitrogen-15 nuclear magnetic resonance (NMR) spectra were recorded for freshly dissected buds of Picea glauca and for buds grown for 3, 6 and 9 weeks on shoot-forming medium. Resonances for Glu (and other αNH2 groups), Pro, Ala, and the side chain groups in Gln, Arg, Orn, and γ-aminobutyric acid could be detected in in vivo15N NMR spectra. Peaks for α-amino groups, Pro, NO3 and NH4+ could also be identified in 14N NMR spectra. Perfusion experiments performed for up to 20 hours in the NMR spectrometer showed that 15N-labeled NH4+ and NO3 are first incorporated into the amide group of Gln and then in the αNH2 pool. Subsequently, it also emerges in Ala and Arg. These data suggest that the glutamine synthetase/ glutamate synthase pathway functions under these conditions. The assimilation of NH4+ is much faster than that of NO3. Consequently after 10 days of growth more than 70% of the newly synthesized internal free amino acid pool derives its nitrogen from NH4+ rather than NO3. If NH4+ is omitted from the medium, no NO3 is taken up during 9 weeks and the buds support limited growth by utilizing their endogenous amino acid pools. It is concluded that NH4+ and NO3 are both required for the induction of nitrate- and nitrite reductase.  相似文献   

16.
Effectors of fatty acid synthesis in hepatoma tissue culture cells   总被引:1,自引:0,他引:1  
An investigation was undertaken to better understand the process of fatty acid synthesis in hepatoma tissue culture (HTC) cells. By comparing the findings to the normal liver some of the differences between normal and cancer tissue were defined. Incubation of the HTC cells in a buffered salt-defatted albumin medium showed that fatty acid synthesis was dependent upon the addition of substrate. The order of stimulation was glucose + pyruvate ~- glucose + alanine ~- glucose + lactate ~- pyruvate > glucose > alanine ? no additions. Fatty acid synthesis in HTC cells was decreased by oleate. In these respects HTC cells are similar to the liver; however, in contrast to the normal liver, N6, O2-dibutyryl cyclic adenosine 3′,5′-monophosphate (dibutyryl-cAMP) did not inhibit glycolysis or fatty acid synthesis. The cytoplasmic redox potential, as reflected by the lactate to pyruvate ratio, was found to be elevated compared to normal liver but unchanged by the addition of dibutyryl cAMP. Since higher rates of fatty acid synthesis are associated with lower lactate-to-pyruvate ratios in normal liver, it was expected that by decreasing the lactate-to-pyruvate ratio in HTC cells the rate of fatty acid synthesis would increase. One way to lower the lactate to pyruvate ratio is to increase the activity of the malate-aspartate shuttle. Stimulators of the hepatic malate-aspartate shuttle in normal liver (ammonium ion, glutamine, and lysine) had mixed effects on the redox state and fatty acid synthesis in HTC cells. Both ammonium ion and glutamine decreased the redox potential and increased the rate of fatty acid synthesis. Lysine was without effect on either process. Since NH4Cl and glutamine stimulate the movement of reducing equivalents into the mitochondria and decrease the redox potential, then the stimulation of fatty acid synthesis by NH4Cl and glutamine may be due to an increase in the movement of reducing equivalents into the mitochondria. However, if the shuttle were rate determining for fatty acid synthesis the rate from added lactate would be the same as from glucose alone but would be lower than from pyruvate which does not require the movement of reducing equivalents. This was not the case. Lactate and pyruvate gave comparable rates which were higher than glucose alone. Other possible sites of stimulation were investigated. The possibility that NH4+ and glutamine stimulated fatty acid synthesis by activating pyruvate dehydrogenase was excluded by finding that dichloroacetate, an activator of pyruvate dehydrogenase, did not stimulate fatty acid synthesis when glucose was added. Stimulation by NH4+ and glutamine at steps beyond pyruvate dehydrogenase was ruled out by the observation that NH4+ caused no stimulation from added pyruvate. NH4+ and glutamine did not alter the pentose phosphate pathway as determined by 14CO2 production from [1-14C]- or [6-14C]glucose. Ammonium ion and glutamine increased glucose consumption and increased lactate and pyruvate accumulation. The increased glycolysis in HTC cells appears to be the explanation for the stimulation of fatty acid synthesis by NH4+ and glutamine, even though glycolysis is much more rapid than fatty acid synthesis in these cells. The following observations support this conclusion. First, the percentage increase in glycolysis caused by NH4+ or glutamine is closely matched by the percentage increase in fatty acid synthesis. Second, the malate-aspartate shuttle, the pentose phosphate pathway, and the steps past pyruvate are not limiting in the absence of NH4+ or glutamine.  相似文献   

17.
Short-term changes in pyridine nucleotides and other key metabolites were measured during the onset of NO3 or NH4+ assimilation in the dark by the N-limited green alga Selenastrum minutum. When NH4+ was added to N-limited cells, the NADH/NAD ratio rose immediately and the NADPH/NADP ratio followed more slowly. An immediate decrease in glutamate and 2-oxoglutarate indicates an increased flux through the glutamine synthase/glutamate oxoglutarate aminotransferase. Pyruvate kinase and phosphoenolpyruvate carboxylase are rapidly activated to supply carbon skeletons to the tricarboxylic acid cycle for amino acid synthesis. In contrast, NO3 addition caused an immediate decrease in the NADPH/NADP ratio that was accompanied by an increase in 6-phosphogluconate and decrease in the glucose-6-phosphate/6-phosphogluconate ratio. These changes show increased glucose-6-phosphate dehydrogenase activity, indicating that the oxidative pentose phosphate pathway supplies some reductant for NO3 assimilation in the dark. A lag of 30 to 60 seconds in the increase of the NADH/NAD ratio during NO3 assimilation correlates with a slow activation of pyruvate kinase and phosphoenolpyruvate carboxylase. Together, these results indicate that during NH4+ assimilation, the demand for ATP and carbon skeletons to synthesize amino acid signals activation of respiratory carbon flow. In contrast, during NO3 assimilation, the initial demand on carbon respiration is for reductant and there is a lag before tricarboxylic acid cycle carbon flow is activated in response to the carbon demands of amino acid synthesis.  相似文献   

18.
The major radioactive products of the fixation of [13N]N2 by Azolla caroliniana Willd.-Anabaena azollae Stras. were ammonium, glutamine, and glutamate, plus a small amount of alanine. Ammonium accounted for 70 and 32% of the total radioactivity recovered after fixation for 1 and 10 minutes, respectively. The presence of a substantial pool of [13N]N2-derived 13NH4+ after longer incubation periods was attributed to the spatial separation between the site of N2-fixation (Anabaena) and a second, major site of assimilation (Azolla). Initially, glutamine was the most highly radioactive organic product formed from [13N]N2, but after 10 minutes of fixation glutamate had 1.5 times more radiolabel than glutamine. These kinetics of radiolabeling, along with the effects of inhibitors of glutamine synthetase and glutamate synthase on assimilation of exogenous and [13N]N2-derived 13NH4+, indicate that ammonium assimilation occurred by the glutamate synthase cycle and that glutamate dehydrogenase played little or no role in the synthesis of glutamate by Azolla-Anabaena.  相似文献   

19.
SLC4A11 has been proposed to be an electrogenic membrane transporter, permeable to Na+, H+ (OH), bicarbonate, borate, and NH4+. Recent studies indicate, however, that neither bicarbonate or borate is a substrate. Here, we examined potential NH4+, Na+, and H+ contributions to electrogenic ion transport through SLC4A11 stably expressed in Na+/H+ exchanger-deficient PS120 fibroblasts. Inward currents observed during exposure to NH4Cl were determined by the [NH3]o, not [NH4+]o, and current amplitudes varied with the [H+] gradient. These currents were relatively unaffected by removal of Na+, K+, or Cl from the bath but could be reduced by inclusion of NH4Cl in the pipette solution. Bath pH changes alone did not generate significant currents through SLC4A11, except immediately following exposure to NH4Cl. Reversal potential shifts in response to changing [NH3]o and pHo suggested an NH3/H+-coupled transport mode for SLC4A11. Proton flux through SLC4A11 in the absence of ammonia was relatively small, suggesting that ammonia transport is of more physiological relevance. Methylammonia produced currents similar to NH3 but with reduced amplitude. Estimated stoichiometry of SLC4A11 transport was 1:2 (NH3/H+). NH3-dependent currents were insensitive to 10 μm ethyl-isopropyl amiloride or 100 μm 4,4′- diisothiocyanatostilbene-2,2′-disulfonic acid. We propose that SLC4A11 is an NH3/2H+ co-transporter exhibiting unique characteristics.  相似文献   

20.
Calcium is sequestered into vacuoles of oat (Avena sativa L.) root cells via a H+/Ca2+ antiporter, and vesicles derived from the vacuolar membrane (tonoplast) catalyze an uptake of calcium which is dependent on protons (pH gradient [ΔpH] dependent). The first step toward purification and identification of the H+/Ca2+ antiporter is to solubilize and reconstitute the transport activity in liposomes. The vacuolar H+/Ca2+ antiporter was solubilized with octylglucoside in the presence of soybean phospholipids and glycerol. After centrifugation, the soluble proteins were reconstituted into liposomes by detergent dilution. A ΔpH (acid inside) was generated in the proteoliposomes with an NH4Cl gradient (NH4+in » NH4+out) as determined by methylamine uptake. Fundamental properties of ΔpH dependent calcium uptake such as the Km for calcium (~15 micromolar) and the sensitivity to inhibitors such as N,N′-dicyclohexylcarbodiimide, ruthenium red, and lanthanum, were similar to those found in membrane vesicles, indicating that the H+/Ca2+ antiporter has been reconstituted in active form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号