首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emitted biosonar clicks and auditory evoked potential (AEP) responses triggered by the clicks were synchronously recorded during echolocation in an Atlantic bottlenose dolphin (Tursiops truncatus) trained to wear suction-cup EEG electrodes and to detect targets by echolocation. Three targets with target strengths of -34, -28, and -22 dB were used at distances of 2 to 6.5 m for each target. The AEP responses were sorted according to the corresponding emitted click source levels in 5-dB bins and averaged within each bin to extract biosonar click-related AEPs from noise. The AEP amplitudes were measured peak-to-peak and plotted as a function of click source levels for each target type, distance, and target-present or target-absent condition. Hearing sensation levels of the biosonar clicks were evaluated by comparing the functions of the biosonar click-related AEP amplitude-versus-click source level to a function of external (in free field) click-related AEP amplitude-versus-click sound pressure level. The results indicated that the dolphin's hearing sensation levels to her own biosonar clicks were equal to that of external clicks with sound pressure levels 16 to 36 dB lower than the biosonar click source levels, varying with target type, distance, and condition. These data may be assumed to indicate that the bottlenose dolphin possesses effective protection mechanisms to isolate the self-produced intense biosonar beam from the animal's ears during echolocation.  相似文献   

2.
ABSTRACT

The dolphin continues to capture the imagination of investigators because of its ability to echolocate. Echolocation is essentially a special extension and adaptation of the dolphin's hearing system, coupled with the animal's ability to generate special sounds. Humans have demonstrated the ability to judge room size based on reverberation from a voice, and some of the visually challenged use self-generated sounds to detect large reflective objects. Echolocation represents a highly refined acoustic ability on a broad acoustic sensory continuum. Research on the auditory and echolocation performance of cetaceans has moved forward slowly due to limited animal resources and the general high cost of maintaining these animals in a laboratory environment.

This paper reviews some of the more relevant psychoacoustic data on cetaceans, and concentrates on the bottlenose dolphin Tursiops truncatus. The information presented is not at all exhaustive. Early work with dolphins focused mainly on the animal's ability to use its echolocation system. Once echolocation capability was demonstrated using a blindfolded dolphin, the quest to understand dolphin sonar moved from qualifying the dolphin's echolocation skill to quantifying its basic capabilities.

Psychophysics, and more precisely psychoacoustics, provides the tools to study dolphin echolocation. The procedures, theories and even the apparatuses from the traditional psychoacoustics laboratory are adapted to the dolphin experimental setting to measure and analyze the sensory phenomenon of dolphin echolocation. Basic auditory phenomena such as the audiogram, the effects of masking, critical ratio and critical band, and interaural time and intensity discrimination capabilities have been explored in the dolphin. Additionally, special experiments investigating the psychoacoustics of the echolocation system in particular have been conducted.  相似文献   

3.
4.
C-PODs are static passive acoustic monitoring devices used to detect odontocete vocalizations in the range of 20–160 kHz. However, falsely classified detections may be an issue, particularly with broadband species (i.e. many dolphin species) due to anthropogenic and other noise occurring at the same frequency. While porpoise detections are verified using species-specific acoustic parameters, the equivalent does not currently exist for verifying dolphin detections. Development of such parameters would increase the accuracy of dolphin detections and eliminate the need for additional monitoring techniques or devices, reducing the cost of monitoring programmes. Herein, we present parameters based on acoustic characteristics of bottlenose (n = 29), common (n = 19) and Risso’s (n = 99) dolphin click trains, sighted within 1 km of C-PODs during land-based surveys, for in-software verification. Overlap of click train parameters among dolphin species prevented robust species identification; therefore, parameters were devised for these dolphin species collectively using frequency, inter-click interval and click train duration. A data set of 4898 Detection Positive Hours was visually verified using these parameters. The temporal and spatial patterns in the visually verified data were similar to land-based observations, suggesting the parameters operate at an acceptable accuracy. However, 68% of high-, moderate- and low-quality KERNO detections were false-positive. Our results suggest that the accuracy of classifiers and quality class weightings are site-specific, and we highlight the importance of data exploration to make the most appropriate software choices based on the aims of a study.  相似文献   

5.
There is increasing concern that human-produced ocean noise is adversely affecting marine mammals, as several recent cetacean mass strandings may have been caused by animals'' interactions with naval ‘mid-frequency’ sonar. However, it has yet to be empirically demonstrated how sonar could induce these strandings or cause physiological effects. In controlled experimental studies, we show that mid-frequency sonar can induce temporary hearing loss in a bottlenose dolphin (Tursiops truncatus). Mild-behavioural alterations were also associated with the exposures. The auditory effects were induced only by repeated exposures to intense sonar pings with total sound exposure levels of 214 dB re: 1 μPa2 s. Data support an increasing energy model to predict temporary noise-induced hearing loss and indicate that odontocete noise exposure effects bear trends similar to terrestrial mammals. Thus, sonar can induce physiological and behavioural effects in at least one species of odontocete; however, exposures must be of prolonged, high sound exposures levels to generate these effects.  相似文献   

6.
ABSTRACT

Dolphins possess a highly sophisticated auditory system and a keen capability for echolocation. Signals are emitted in the form of high intensity, short duration, broadband exponentially decaying pulses. The frequency spectra of echolocation signals used by many dolphins are dependent on the output intensity of the signals and not on any fine tuning by the animals. When the output intensity is low, the center frequency of the click tends to be low. As the output intensity increases, the center frequency also tends to increase. The pulses propagate from the dolphin's melon in a relatively narrow beam, and echoes are received via the lower jaw, with a slightly wider beam. Echo- locating dolphins can detect targets at ranges of approximately 100 plus meters, depending on the size of the targets. Target discrimination experiments have shown that dolphins can discriminate the shape, size, material composition and internal structure of targets from the echoes. The broadband short duration properties of the signal allow the echoes to have high temporal resolution, so that within the structure of the echoes a considerable amount of information on the properties of the target can be conveyed. A brief comparison between the bat and dolphin sonar system will also be made. Bats typically emit much longer signals and a wider variety of different types of signals than dolphins. Signals used by some bats are suited to detecting Doppler shift, whereas the dolphin signal is designed to be tolerant of Doppler effects.  相似文献   

7.
ABSTRACT

Probably all odontocetes use echolocation for spatial orientation and detection of prey. We used a four hydrophone “Y” array to record the high frequency clicks from free-ranging White-beaked Dolphins Lagenorhynchus albirostris and captive Harbour Porpoises Phocoena phocoena. From the recordings we calculated distances to the animals and source levels of the clicks. The recordings from White-beaked Dolphins were made in Iceland and those from Harbour Porpoises at Fjord & Baelt, Kerteminde, Denmark during prey capture. We used stringent criteria to determine which clicks could be defined as being on the acoustic axis. Two dolphin and nine porpoise click series could be used to track individual animals, which presumably focused on the array hydrophones or a fish right in front of the array. The apparent source levels of clicks in the individual tracks increased with range. One individual White-beaked Dolphin and three Harbour Porpoises regulate their output signal level to nearly compensate for one-way transmission loss while approaching a target. The other dolphin regulated the output differently. For most of the recordings the sound level at the target remains nearly constant and the echo level at the animal increases as it closes on the target.  相似文献   

8.
The authors review the literature on bottlenose dolphin ecology, behavior and social organization, focusing on data collected on free-ranging animals. Most bottlenose dolphins studied to date have had definable home ranges, and behavioral, morphological and biochemical information indicates discrete stocks in some areas. Bottlenose dolphins appear to form relatively permanent social groups based on sex and age. Mother—calf bonds are long-lasting. Movement patterns are extremely variable from location to location but are relatively predictable at any given site. Food resources are one of the most important factors affecting movements. Bottlenose dolphin behavior is very flexible, and these dolphins are generally active day and night. Feeding peaks in the morning and afternoon have been observed at several sites. Social behavior is an important component of daily activities. Sharks are the most significant predator on bottlenose dolphins in most areas, but captive and wild studies show that dolphins and sharks frequently live in harmony as well. Human activities may be helpful, harmful or neutral to bottlenose dolphins, but interactions with humans are frequent for these coastal cetaceans.  相似文献   

9.
ABSTRACT

A bottlenose dolphin was tested on its ability to echoically discriminate horizontal angular differences between two arrays of vertical, air-filled, PVC rods. The blindfolded dolphin was required to station in a submerged, vertically-oriented hoop, 2 radial metres from the stimuli, and indicate whether an array with four rods (S+) was to the left or the right of an array with two rods (S-), by pressing a corresponding paddle. The angular separation between the rods within each array (θw) was maintained at 2 degrees but the angular separation between the two arrays (θb) was varied to produce angular differences (δθ = θbw)ranging from 0.25 degrees to 4 degrees. A modified method of constant stimuli was used to test for angular discrimination ability, and yielded a psychometric function having a 75% correct threshold of 1.6 degrees. This threshold fell between the passive listening minimum audible angle thresholds of 0.9 degrees for click signals and 2.1 degrees for a pure tone signal (Renaud & Popper 1975). Analyses of response times, number of clicks and inter-click intervals failed to detect any significant adaptive behaviour occurring as the task became more difficult. These results help to define angular resolution capabilities of dolphin sonar that may play an important role in representing spatial information in the dolphin's environment.  相似文献   

10.
Knowledge of one's own states of mind is one of the varieties of self-knowledge. Do any nonhuman animals have the capacity for this variety of self-knowledge? The question is open to empirical inquiry, which is most often conducted with primate subjects. Research with a bottlenose dolphin gives some evidence for the capacity in a nonprimate taxon. I describe the research and evaluate the metacognitive interpretation of the dolphin's behaviour. The research exhibits some of the difficulties attached to the task of eliciting behaviour that both attracts a higher-order interpretation while also resisting deflationary, lower-order interpretations. Lloyd Morgan's Canon, which prohibits inflationary interpretations of animal behaviour, has influenced many animal psychologists. There is one defensible version of the Canon, the version that warns specifically against unnecessary intentional ascent. The Canon on this interpretation seems at first to tell against a metacognitive interpretation of the data collected in the dolphin study. However, the model of metacognition that is in play in the dolphin studies is a functional model, one that does not implicate intentional ascent. I explore some interpretations of the dolphin's behaviour as metacognitive, in this sense. While this species of metacognitive interpretation breaks the connection with the more familiar theory of mind research using animal subjects, the interpretation also points in an interesting way towards issues concerning consciousness in dolphins.  相似文献   

11.
Phylogenetic placement of bottlenose dolphins from Zanzibar, East Africa and putative population differentiation between animals found off southern and northern Zanzibar were examined using variation in mtDNA control region sequences. Samples (n= 45) from animals bycaught in fishing gear and skin biopsies collected during boat surveys were compared to published sequences (n= 173) of Indo‐Pacific bottlenose dolphin, Tursiops aduncus, from southeast Australian waters, Chinese/Indonesian waters, and South African waters (which recently was proposed as a new species) and to published sequences of common bottlenose dolphin, Tursiops truncatus. Bayesian and maximum parsimony analyses indicated a close relationship between Zanzibar and South African haplotypes, which are differentiated from both Chinese/Indonesian and Australian T. aduncus haplotypes. Our results suggest that the dolphins found off Zanzibar should be classified as T. aduncus alongside the South African animals. Further, analyses of genetic differentiation showed significant separation between the T. aduncus found off northern and southern Zanzibar despite the relatively short distance (approximately 80 km) between these areas. Much less differentiation was found between southern Zanzibar and South Africa, suggesting a more recent common evolutionary history for these populations than for the northern and southern Zanzibar populations.  相似文献   

12.
During echolocation, toothed whales produce ultrasonic clicks at extremely rapid rates and listen for the returning echoes. The auditory brainstem response (ABR) duration was evaluated in terms of latency between single peaks: 5.5 ms (from peak I to VII), 3.4 ms (I–VI), and 1.4 ms (II–IV). In comparison to the killer whale and the bottlenose dolphin, the ABR of the harbour porpoise has shorter intervals between the peaks and consequently a shorter ABR duration. This indicates that the ABR duration and peak latencies are possibly related to the relative size of the auditory structures of the central nervous system and thus to the animal’s size. The ABR to a sinusoidal amplitude modulated stimulus at 125 kHz (sensitivity threshold 63 dB re 1 μPa rms) was evaluated to determine the modulation rate transfer function of a harbour porpoise. The ABR showed distinct envelope following responses up to a modulation rate of 1,900 Hz. The corresponding calculated equivalent rectangular duration of 263 μs indicates a good temporal resolution in the harbour porpoise auditory system similar to the one for the bottlenose dolphin. The results explain how the harbour porpoise can follow clicks and echoes during echolocation with very short inter click intervals.  相似文献   

13.
Detecting objects in their paths is a fundamental perceptional function of moving organisms. Potential risks and rewards, such as prey, predators, conspecifics or non-biological obstacles, must be detected so that an animal can modify its behaviour accordingly. However, to date few studies have considered how animals in the wild focus their attention. Dolphins and porpoises are known to actively use sonar or echolocation. A newly developed miniature data logger attached to a porpoise allows for individual recording of acoustical search efforts and inspection distance based on echolocation. In this study, we analysed the biosonar behaviour of eight free-ranging finless porpoises (Neophocaena phocaenoides) and demonstrated that these animals inspect the area ahead of them before swimming silently into it. The porpoises inspected distances up to 77 m, whereas their swimming distance without using sonar was less than 20 m. The inspection distance was long enough to ensure a wide safety margin before facing real risks or rewards. Once a potential prey item was detected, porpoises adjusted their inspection distance from the remote target throughout their approach.  相似文献   

14.
Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations.  相似文献   

15.
Fabienne D  Helen B 《Zoo biology》2012,31(2):137-150
Environmental enrichment is often used to improve well-being and reduce stereotyped behaviors in animals under human care. However, the use of objects to enrich animal environments should not be considered to be effective until its success has been scientifically demonstrated. This study was conducted at Asterix Park in France in April 2009. The study investigated the use of 21 familiar objects with a group of six bottlenose dolphins (Tursiops truncatus). The dolphin trainers introduced four different objects into the dolphin pool every day on a rotating basis. Using a focal-object sampling method, we collected and analyzed data from twenty-one 15 min sessions. The results revealed a positive correlation between interest behaviors and interactive behaviors. Some dolphins had "favorite toys". However, only 50% of objects elicited manipulative behaviors. These findings demonstrate that dolphins do not treat all objects provided to them as "toys". Behavioral changes in the animals subsequent to the introduction of objects do not necessarily indicate an enrichment effect of the objects; rather, the motivation for the dolphins' behaviors toward the objects must be investigated. The animals' behavior must be considered in light of the social context and of the animals' individual behavioral profiles. The relevance of a constructivist approach to evaluating the effectiveness of enrichment programs is discussed.  相似文献   

16.
Indirect evidence for multiple sonar signal generators in odontocetes exists within the published literature. To explore the long-standing controversy over the site of sonar signal generation, direct evidence was collected from three trained bottlenose dolphins (Tursiops truncatus) by simultaneously observing nasal tissue motion, internal nasal cavity pressure, and external acoustic pressure. High-speed video endoscopy revealed tissue motion within both sets of phonic lips, while two hydrophones measured acoustic pressure during biosonar target recognition. Small catheters measured air-pressure changes at various locations within the nasal passages and in the basicranial spaces. Video and acoustic records demonstrate that acoustic pulses can be generated along the phonic fissure by vibrating the phonic labia within each set of phonic lips. The left and right phonic lips are capable of operating independently or simultaneously. Air pressure in both bony nasal passages rose and fell synchronously, even if the activity patterns of the two phonic lips were different. Whistle production and increasing sound pressure levels are generally accompanied by increasing intranarial air pressure. One acoustic “click” occurred coincident with one oscillatory cycle of the phonic labia. Changes in the click repetition rate and cycles of the phonic labia were simultaneous, indicating that these events are coupled. Structural similarity in the nasal apparatus across the Odontoceti suggests that all extant toothed whales generate sonar signals using the phonic lips and similar biomechanical processes.  相似文献   

17.
Although the EU Marine Strategy Framework Directive (MSFD) is largely based on the establishment of environmental targets and associated proxies to achieve Good Environmental Status (GES), a full suite of ecological indicators for all the ecosystem components is not currently available for ongoing assessment and regular update of GES targets. This is because effective indicators and management actions aimed at preserving/rebuilding marine biodiversity should be found from the knowledge of the spatial distribution of target species and extension of critical habitats as well as their overlapping with human activities, pressure and impacts. In this regard, the spatial distributions of the striped dolphin Stenella coeruleoalba and the common bottlenose dolphin Tursiops truncatus in the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea) were investigated by means of a generalized additive model (GAM) and a Random Forest (RF) based on sighting data collected during standardized vessel-based surveys carried out from 2009 to 2015. Eight predictive variables were considered, taking into account both the local physiographic features and human activities existing in the investigated area, suggesting an innovative approach to habitat modeling. In particular, the explanatory variables depth, distance from industrial areas and distance from the coast proved to significantly influence the distribution of both dolphin species. In addition, the distribution of S. coeruleoalba and T. truncatus were also significantly shaped by the distance from the navy exercise areas and the fishing areas, respectively. On the contrary, the slope and the distance from the main commercial routes never provided any significant influence. The reliability of GAM and RF models in predicting the spatial distribution of both dolphins was tested by applying the Youden Index method to the ROC curves. The RF model allowed the projection of the expected presence/absence pattern of S. coeruleoalba and T. truncatus to produce the preference habitat versus non habitat map. In particular, the RF model predicted that the striped dolphin is widely present in the central and deeper part of the Gulf of Taranto. In contrast, the common bottlenose dolphin seems to be mainly distributed along the coasts in both the eastern and western sector of the basin. A clear overlapping of the preference habitats estimated for S. coeruleoalba and T. truncatus is shown north of Punta Alice and in front of Policoro as well as offshore from Ugento in the eastern and western parts of the investigated area, respectively. Finally, the critical habitats of S. coeruleoalba and T. truncatus are the outcome of both the influence of environmental conditions and anthropogenic pressures presently occurring in the Gulf of Taranto, basically indicating the need for conservation measures, especially considering that the area is expected to be considered for hydrocarbon prospecting. These results contribute to setting up a baseline reference for future assessment of environmental marine disturbances using cetaceans, which are considered a key group in the MSFD, as an ecological indicator.  相似文献   

18.
Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health.  相似文献   

19.
The time course of recovery from temporary threshold shift (TTS) was measured in a bottlenose dolphin, Tursiops truncatus , using an evoked-potential procedure. The envelope-following response (EFR), which is a rhythmic train of auditory brainstem responses (ABR) to sinusoidally amplitude-modulated tones, was used as an indicator of the sound reception by the animal. Variation of the intensity of the stimulus allowed us to measure the animal's hearing via EFR thresholds. During each session, following an initial measure of threshold, the trained animal voluntary positioned itself within a hoop 1 m underwater while a 160 dB re 1 μPa noise of a 4–11 kHz bandwidth was presented for 30 min. After the noise exposure, thresholds were measured again at delays of 5, 10, 15, 25, 45, and 105 min. Measurements were made at test frequencies of 8, 11.2, 16, 22.5, and 32 kHz. The maximum TTS occurred 5 min after exposure and rapidly recovered with a rate of around 1.5 dB per doubling of time. TTS occurred at test frequencies from 8 to 16 kHz, with the maximum at 16 kHz. TTS was negligible at 22.5 kHz and absent at 32 kHz.  相似文献   

20.
We evaluated the performance of dolphin echolocation detectors (C‐PODs) in the New River, North Carolina, by ground‐truthing echolocation detections with digital acoustic recordings. We deployed C‐PODs at three sites for a total of 204 monitoring hours. We also performed detection range trials at two sites where water depths ranged from 1.0 to 4.5 m. We used Detection Positive Minutes (DPMs), minutes of C‐POD recordings that contained at least one echolocation click train, to indicate the presence of at least one dolphin. The C‐PODs performed well in detecting dolphin click trains, although all units performed conservatively by failing to detect some echolocation events and therefore underestimated the true occurrence of dolphins. C‐PODs reported only a small number of false detections, as indicated by low false positive rates ranging between 1% and 4% for individual units. Overall, C‐PODs performed with a high accuracy (72%–91%) and detected echolocation at a distance of at least 933 m. We conclude that C‐PODs hold considerable promise in future monitoring studies of this species, but recommend a careful study design especially in complex, coastal environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号