首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Highlights? IKK can inhibit TNFα-induced apoptosis independently of NF-κB activation ? Inhibition of BAD constitutes the NF-κB-independent antiapoptotic axis of IKK ? IKK phosphorylates BAD at Ser26 and primes it for inactivation ? BAD inactivation coordinates with NF-κB activation to suppress TNFα-induced apoptosis  相似文献   

2.
Glaucoma is a group of neurodegenerative diseases characterized by the progressive loss of retinal ganglion cells (RGCs) and optic nerve fibers. Microglial activation has been shown to be deleterious to RGCs and may participate in the progression of glaucoma. Crocin, one of the major active ingredients in saffron, has been found to inhibit microglial activation. However, the mechanism remains unclear. The aim of this study was to investigate whether crocin can inhibit lipopolysaccharide (LPS)-induced microglial activation and to clarify the mechanisms involved. The influence of crocin on primary RGCs and LPS-stimulated BV2 microglial cells survival was determined by the MTT and lactate dehydrogenase assays, or by flow cytometry. BV2 cells were pretreated with various concentrations of crocin for 2 h followed by 1 μg/mL LPS stimulation. Microglial markers and pro-inflammatory mediators were assessed by real-time PCR, western blot and ELISA. Furthermore, CX3CR1 expression was detected and the underlying mechanism was examined. The concentrations of crocin ranged from 0.1 to 1 μM, and did not show any cytotoxicity in RGC and BV2 cells. After crocin pretreatment, the expression of microglial markers (CD11b and Iba-1) and pro-inflammatory mediators (iNOS, COX-2, IL-1β, and TNF-α) induced by LPS were significantly decreased in a dose-dependent manner. Additionally, CX3CR1 expression was remarkably increased by crocin via the suppression of NF-κB/Yin Yang 1 (YY1) signaling in BV2 cells. In conclusion, crocin effectively suppresses microglial activation and upregulates CX3CR1 expression by suppressing NF-κB/YY1 signaling.  相似文献   

3.
Hepatocellular carcinoma (HCC) is one of the major malignancies worldwide and is associated with poor prognosis due to the high incidences of metastasis and tumor recurrence. Our previous study showed that overexpression of p21-activated protein kinase 1 (PAK1) is frequently observed in HCC and is associated with a more aggressive tumor behavior, suggesting that PAK1 is a potential therapeutic target in HCC. In the current study, an allosteric small molecule PAK1 inhibitor, IPA-3, was evaluated for the potential in suppressing hepatocarcinogenesis. Consistent with other reports, inhibition of PAK1 activity was observed in several human HCC cell lines treated with various dosages of IPA-3. Using cell proliferation, colony formation and BrdU incorporation assays, we demonstrated that IPA-3 treatment significantly inhibited the growth of HCC cells. The mechanisms through which IPA-3 treatment suppresses HCC cell growth are enhancement of apoptosis and blockage of activation of NF-κB. Furthermore, our data suggested that IPA-3 not only inhibits the HCC cell growth, but also suppresses the metastatic potential of HCC cells. Nude mouse xenograft assay demonstrated that IPA-3 treatment significantly reduced the tumor growth rate and decreased tumor volume, indicating that IPA-3 can suppress the in vivo tumor growth of HCC cells. Taken together, our demonstration of the potential preclinical efficacy of IPA-3 in HCC provides the rationale for cancer therapy.  相似文献   

4.
Aberrant Nuclear Factor-κappaB (NF-κB) activation due to rapid IκBα turnover and high basal IκBα kinase (IKK) activity has been frequently observed in prostate cancer. Apigenin, a naturally occurring plant flavone, exhibits anti-proliferative, anti-inflammatory and anti-carcinogenic activities by inhibiting NF-κB pathway, through a mechanism not fully understood. We found that apigenin feeding in microgram doses (bioavailable in humans) inhibited prostate tumorigenesis in TRAMP mice by interfering with NF-κB signaling. Apigenin feeding to TRAMP mice (20 and 50 μg/mouse/day, 6 days/week for 20 weeks) exhibited significant decrease in tumor volumes of the prostate and completely abolished metastasis, which correlated with inhibition of NF-κB activation and binding to the DNA. Apigenin intake blocked phosphorylation and degradation of IκBα by inhibiting IKK activation, which in turn led to suppression of NF-κB activation. The expression of NF-κB-regulated gene products involved in proliferation (cyclin D1, and COX-2), anti-apoptosis (Bcl-2 and Bcl-xL), and angiogenesis (vascular endothelial growth factor) were also downregulated after apigenin feeding. These events correlated with the induction of apoptosis in tumor cells, as evident by increased cleaved caspase-3 labeling index in the dorsolateral prostate. Our results provide convincing evidence that apigenin inhibits IKK activation and restores the expression of IκBα, preventing it’s phosphorylation in a fashion similar to that elicited by IKK and proteasomal inhibitors through suppression of NF-κB signaling pathway.  相似文献   

5.
NF-κB plays an important role in cancer initiation and progression. CD44, a cell surface glycoprotein, is involved in many cellular processes including cell adhesion, migration and proliferation. However, whether and how the two molecules interact in breast cancer is not clear. In recent years, the up-regulation of CD44 has served as a marker for tumor initiating cells in breast cancer and other cancer types. Despite the important role of CD44 in cellular processes and cancer, the mechanism underlying CD44 up-regulation in cancers remains poorly understood. Previously, we have identified a novel cis-element, CR1, located upstream of the CD44 promoter. We demonstrated that NF-κB and AP-1 are key trans-acting factors that interact with CR1. Here, we further analyzed the role of NF-κB in regulating CD44 expression in triple negative breast cancer cells, MDA-MB-231 and SUM159. Inhibition of NF-κB by Bay-11-7082 resulted in a reduction in CD44 expression. CD44 repression via NF-κB inhibition consequently decreased proliferation and invasiveness of breast cancer cells. These findings provide not only new insight into the molecular mechanism underlying CD44 regulation but also potential therapeutic targets that may help eliminate chemo- and radiation-resistant cancer cells.  相似文献   

6.
All herpesviruses share a remarkable propensity to establish latent infection. Human Kaposi''s sarcoma-associated herpesvirus (KSHV) effectively enters latency after de novo infection, suggesting that KSHV has evolved with strategies to facilitate latent infection. NF-κB activation is imperative for latent infection of gammaherpesviruses. However, how NF-κB is activated during de novo herpesvirus infection is not fully understood. Here, we report that KSHV infection activates the inhibitor of κB kinase β (IKKβ) and the IKK-related kinase epsilon (IKKε) to enable host NF-κB activation and KSHV latent infection. Specifically, KSHV infection activated IKKβ and IKKε that were crucial for latent infection. Knockdown of IKKβ and IKKε caused aberrant lytic gene expression and impaired KSHV latent infection. Biochemical and genetic experiments identified RelA as a key player downstream of IKKβ and IKKε. Remarkably, IKKβ and IKKε were essential for phosphorylation of S536 and S468 of RelA, respectively. Phosphorylation of RelA S536 was required for phosphorylation of S468, which activated NF-κB and promoted KSHV latent infection. Expression of the phosphorylation-resistant RelA S536A increased KSHV lytic gene expression and impaired latent infection. Our findings uncover a scheme wherein NF-κB activation is coordinated by IKKβ and IKKε, which sequentially phosphorylate RelA in a site-specific manner to enable latent infection after KSHV de novo infection.  相似文献   

7.
8.
9.
10.
NF-κB plays central roles in regulation of diverse biological processes, including innate and adaptive immunity and inflammation. HSV-1 is the archetypal member of the alphaherpesviruses, with a large genome encoding over 80 viral proteins, many of which are involved in virus-host interactions and show immune modulatory capabilities. In this study, we demonstrated that the HSV-1 ICP0 protein, a viral E3 ubiquitin ligase, was shown to significantly suppress tumor necrosis factor alpha (TNF-α)-mediated NF-κB activation. ICP0 was demonstrated to bind to the NF-κB subunits p65 and p50 by coimmunoprecipitation analysis. ICP0 bound to the Rel homology domain (RHD) of p65. Fluorescence microscopy demonstrated that ICP0 abolished nuclear translocation of p65 upon TNF-α stimulation. Also, ICP0 degraded p50 via its E3 ubiquitin ligase activity. The RING finger (RF) domain mutant ICP0 (ICP0-RF) lost its ability to inhibit TNF-α-mediated NF-κB activation and p65 nuclear translocation and degrade p50. Notably, the RF domain of ICP0 was sufficient to interact with p50 and abolish NF-κB reporter gene activity. Here, it is for the first time shown that HSV-1 ICP0 interacts with p65 and p50, degrades p50 through the ubiquitin-proteasome pathway, and prevents NF-κB-dependent gene expression, which may contribute to immune evasion and pathogenesis of HSV-1.  相似文献   

11.
12.
13.
Bamboo shavings (Bambusae Caulis in Taeniam, BCT) are widely used as a traditional Chinese medicine to control hypertension and cardiovascular disease, and to alleviate fever, vomiting, and diarrhea. It has been demonstrated that BCT reduces ovalbumin-induced airway inflammation by regulating pro-inflammatory cytokines, and decreases tumor growth in tumor-bearing mice. However, the effects of BCT on the metastatic potential of malignant cancer cells and the detailed mechanism of its anti-metastatic activity have not been examined previously. In this study, we investigated whether an aqueous extract of BCT (AE-BCT) reduces the metastatic potential of HT1080 cells, and elucidated the underlying anti-metastatic mechanism. In addition, we examined whether AE-BCT administration inhibits pulmonary metastasis of intravenously injected B16F10 cells in C57BL/6J mice. AE-BCT (50–250 µg/ml) dose-dependently suppressed colony-forming activity under anchorage-dependent and -independent growth conditions. Pretreatment with AE-BCT efficiently inhibited cell migration, invasion, and adhesion. AE-BCT also dramatically suppressed PMA-induced MMP-9 activity and expression by blocking NF-κB activation and ERK phosphorylation. Production of intracellular ROS, a key regulator of NF-κB-induced MMP-9 activity, was almost completely blocked by pretreatment with AE-BCT. Furthermore, daily oral administration of AE-BCT at doses of 50 and 100 mg/kg efficiently inhibited lung metastasis of B16F10 cells injected into the tail veins of C57BL/6J mice with no systemic toxicity. These results demonstrate that AE-BCT significantly reduced the metastatic activity of highly malignant cancer cells by suppressing MMP-9 activity via inhibition of ROS-mediated NF-κB activation. These results indicate that AE-BCT may be a safe natural product for treatment of metastatic cancer.  相似文献   

14.
CXCL12 and its unique receptor CXCR4, is critical for the homing of a variety of cell lineages during both development and tissue repair. CXCL12 is particularly important for the recruitment of hemato/lymphopoietic cells to their target organs. In conjunction with the damage-associated alarmin molecule HMGB1, CXCL12 mediates immune effector and stem/progenitor cell migration towards damaged tissues for subsequent repair. Previously, we showed that cell migration to HMGB1 simultaneously requires both IKKβ and IKKα-dependent NF-κB activation. IKKβ-mediated activation maintains sufficient expression of HMGB1's receptor RAGE, while IKKα-dependent NF-κB activation ensures continuous production of CXCL12, which complexes with HMGB1 to engage CXCR4. Here using fibroblasts and primary mature macrophages, we show that IKKβ and IKKα are simultaneously essential for cell migration in response to CXCL12 alone. Non-canonical NF-κB pathway subunits RelB and p52 are also both essential for cell migration towards CXCL12, suggesting that IKKα is required to drive non-canonical NF-κB signaling. Flow cytometric analyses of CXCR4 expression show that IKKβ, but not IKKα, is required to maintain a critical threshold level of this CXCL12 receptor. Time-lapse video microscopy experiments in primary MEFs reveal that IKKα is required both for polarization of cells towards a CXCL12 gradient and to establish a basal level of velocity towards CXCL12. In addition, CXCL12 modestly up-regulates IKKα-dependent p52 nuclear translocation and IKKα-dependent expression of the CXCL12 gene. On the basis of our collective results we posit that IKKα is needed to maintain the basal expression of a critical protein co-factor required for cell migration to CXCL12.  相似文献   

15.
We have recently shown that IKK complex plays an important non-genomic role in platelet function, i.e., regulates SNARE machinery-dependent membrane fusion. In this connection, it is well known that MALT1, whose activity is modulated by proteasome, plays an important role in the regulation of IKK complex. Therefore, the present studies investigated the mechanism by which IKK signaling is regulated in the context of the platelet proteasome. It was found that platelets express a functional proteasome, and form CARMA/MALT1/Bcl10 (CBM) complex when activated. Using a pharmacological inhibitor, the proteasome was found to regulate platelet function (aggregation, integrin activation, secretion, phosphatidylserine exposure and changes in intracellular calcium). It was also found to regulate thrombogenesis and physiologic hemostasis. We also observed, upon platelet activation, that MALT1 is ubiquitinated, and this coincides with the activation of the IKK/NF-κB-signaling pathway. Finally, we observed that the proteasome inhibitor blocks CBM complex formation and the interaction of IKKγ and MALT1; abrogates SNARE formation, and the association of MALT1 with TAK1 and TAB2, which are upstream of the CBM complex. Thus, our data demonstrate that MALT1 ubiquitination is critical for the engagement of CBM and IKK complexes, thereby directing platelet signals to the NF-κB pathway.  相似文献   

16.
Interleukin-1β (IL-1β) plays a critical mediator in the pathogenesis of eye diseases. The implication of IL-1β in inflammatory responses has been shown to be mediated through up-regulation of inflammatory genes, including matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of IL-1β-induced MMP-9 expression in Statens Seruminstitut Rabbit Corneal Cells (SIRCs) are largely unclear. Here, we demonstrated that in SIRCs, IL-1β induced MMP-9 promoter activity and mRNA expression associated with an increase in the secretion of pro-MMP-9. IL-1β-induced pro-MMP-9 expression and MMP-9 mRNA levels were attenuated by pretreatment with the inhibitor of MEK1/2 (U0126), JNK1/2 (SP600125), NF-κB (Bay11-7082), or AP-1 (Tanshinone IIA) and transfection with siRNA of p42 or JNK2. Moreover, IL-1β markedly stimulated p42/p44 MAPK and JNK1/2 phosphorylation in SIRCs. In addition, IL-1β also enhanced p42/p44 MAPK translocation from the cytosol into the nucleus. On the other hand, IL-1β induced c-Jun and c-Fos mRNA expression, c-Jun phosphorylation, and AP-1 promoter activity. NF-κB translocation, IκBα degradation, and NF-κB promoter activity were also enhanced by IL-1β. Pretreatment with U0126 or SP600125 inhibited IL-1β-induced AP-1 and NF-κB promoter activity, but not NF-κB translocation from the cytosol into the nucleus. Finally, we established that IL-1β could stimulate SIRCs migration via p42/p44 MAPK-, JNK1/2-, AP-1-, and NF-κB-dependent MMP-9 induction. These results suggested that NF-κB and AP-1 activated by JNK1/2 and p42/p44 MAPK cascade are involved in IL-1β-induced MMP-9 expression in SIRCs.  相似文献   

17.

Background

High-tidal-volume mechanical ventilation used in patients with acute lung injury (ALI) can induce the release of inflammatory cytokines, as macrophage inflammatory protein-2 (MIP-2), recruitment of neutrophils, and disruption of alveolar epithelial and endothelial barriers. Induced pluripotent stem cells (iPSCs) have been shown to improve ALI in mice, but the mechanisms regulating the interactions between mechanical ventilation and iPSCs are not fully elucidated. Nuclear factor kappa B (NF-κB) and NF-κB repressing factor (NKRF) have been proposed to modulate the neutrophil activation involved in ALI. Thus, we hypothesized intravenous injection of iPSCs or iPSC-derived conditioned medium (iPSC-CM) would decrease high-tidal-volume ventilation-induced neutrophil infiltration, oxidative stress, and MIP-2 production through NF-κB/NKRF pathways.

Methods

Male C57BL/6 mice, aged between 6 and 8 weeks, weighing between 20 and 25 g, were exposed to high-tidal-volume (30 ml/kg) mechanical ventilation with room air for 1 to 4 h after 5×107 cells/kg mouse iPSCs or iPSC-CM administration. Nonventilated mice were used as control groups.

Results

High-tidal-volume mechanical ventilation induced the increases of integration of iPSCs into the injured lungs of mice, microvascular permeability, neutrophil infiltration, malondialdehyde, MIP-2 production, and NF-κB and NKRF activation. Lung injury indices including inflammation, lung edema, ultrastructure pathologic changes and functional gas exchange impairment induced by mechanical ventilation were attenuated with administration of iPSCs or iPSC-CM, which was mimicked by pharmacological inhibition of NF-κB activity with SN50 or NKRF expression with NKRF short interfering RNA.

Conclusions

Our data suggest that iPSC-based therapy attenuates high-tidal-volume mechanical ventilation-induced lung injury, at least partly, through inhibition of NF-κB/NKRF pathways. Notably, the conditioned medium of iPSCs revealed beneficial effects equal to those of iPSCs.  相似文献   

18.
Elevated expression of heat shock protein gp96 in hepatitis B virus (HBV)-infected patients is positively correlated with the progress of HBV-induced diseases, but little is known regarding the molecular mechanism of virus-induced gp96 expression and its impact on HBV infection. In this study, up-regulation of gp96 by HBV replication was confirmed both in vitro and in vivo. Among HBV components, HBV x protein (HBx) was found to increase gp96 promoter activity and enhance gp96 expression by using a luciferase reporter system, and western blot analysis. Further, we found that HBx-mediated regulation of gp96 expression requires a NF-κB cis-regulatory element on the gp96 promoter, and chromatin immunoprecipitation results demonstrated that HBx promotes the binding of NF-κB to the gp96 promoter. Significantly, both gain- and loss-of-function studies showed that gp96 enhances HBV production in HBV-transfected cells and a mouse model based on hydrodynamic transfection. Moreover, up-regulated gp96 expression was observed in HBV-infected patients, and gp96 levels were correlated with serum viral loads. Thus, our work demonstrates a positive feedback regulatory pathway involving gp96 and HBV, which may contribute to persistent HBV infection. Our data also indicate that modulation of gp96 function may represent a novel strategy for the intervention of HBV infection.  相似文献   

19.

Background

Hypoxia-mediated HIF-1α stabilization and NF-κB activation play a key role in carcinogenesis by fostering cancer cell survival, angiogenesis and tumor invasion. Gangliosides are integral components of biological membranes with an increasingly recognized role as signaling intermediates. In particular, ganglioside GD3 has been characterized as a proapoptotic lipid effector by promoting cell death signaling and suppression of survival pathways. Thus, our aim was to analyze the role of GD3 in hypoxia susceptibility of hepatocarcinoma cells and in vivo tumor growth.

Methodology/Principal Findings

We generated and characterized a human hepatocarcinoma cell line stably expressing GD3 synthase (Hep3B-GD3), which catalyzes the synthesis of GD3 from GM3. Despite increased GD3 levels (2–3 fold), no significant changes in cell morphology or growth were observed in Hep3B-GD3 cells compared to wild type Hep3B cells under normoxia. However, exposure of Hep3B-GD3 cells to hypoxia (2% O2) enhanced reactive oxygen species (ROS) generation, resulting in decreased cell survival, with similar findings observed in Hep3B cells exposed to increasing doses of exogenous GD3. In addition, hypoxia-induced c-Src phosphorylation at tyrosine residues, NF-κB activation and subsequent expression of Mn-SOD were observed in Hep3B cells but not in Hep3B-GD3 cells. Moreover, MnTBAP, an antioxidant with predominant SOD mimetic activity, reduced ROS generation, protecting Hep3B-GD3 cells from hypoxia-induced death. Finally, lower tumor growth, higher cell death and reduced Mn-SOD expression were observed in Hep3B-GD3 compared to Hep3B tumor xenografts.

Conclusion

These findings underscore a role for GD3 in hypoxia susceptibility by disabling the c-Src/NF-κB survival pathway resulting in lower Mn-SOD expression, which may be of relevance in hepatocellular carcinoma therapy.  相似文献   

20.
Alloferon is a 13-amino acid peptide isolated from the bacteria-challenged larvae of the blow fly Calliphora vicina. The pharmaceutical value of the peptide has been well demonstrated by its capacity to stimulate NK cytotoxic activity and interferon (IFN) synthesis in animal and human models, as well as to enhance antiviral and antitumor activities in mice. Antiviral and the immunomodulatory effectiveness of alloferon have also been supported clinically proved in patients suffering with herpes simplex virus (HSV) and human papilloma virus (HPV) infections. To elucidate molecular response to alloferon treatment, we initially screened a model cell line in which alloferon enhanced IFN synthesis upon viral infection. Among the cell lines tested, Namalva was chosen for further proteomic analysis. Fluorescence difference gel electrophoresis (DIGE) revealed that the levels of a series of antioxidant proteins decreased after alloferon treatment, while at least three glycolytic enzymes and four heat-shock proteins were increased in their expression levels. Based on the result of our proteomic analysis, we speculated that alloferon may activate the NF-kappaB signaling pathway. IkappaB kinase (IKK) assay, Western blot analysis on IkappaBalpha and its phosphorylated form at Ser 32, and an NF-kappaB reporter assay verified our proteomics-driven hypothesis. Thus, our results suggest that alloferon potentiates immune cells by activating the NF-kappaB signaling pathway through regulation of redox potential. Since NF-kappaB activation is involved in IFN synthesis, our results provide further clues as to how the alloferon peptide may stimulate IFN synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号