首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The forkhead-associated (FHA) domain is a 55-75 amino acid residue module found in >20 proteins from yeast to human. It has been suggested to participate in signal transduction pathways, perhaps via protein-protein interactions involving recognition of phosphopeptides. Neither the structure nor the ligand of FHA is known. Yeast Rad53, a checkpoint protein involved in DNA damage response, contains two FHA domains, FHA1 (residues 66-116) and FHA2 (residues 601-664), the second of which recognizes phosphorylated Rad9. We herein report the solution structure of an "FHA2-containing domain" of Rad53 (residues 573-730). The structure consists of a beta-sandwich containing two antiparallel beta-sheets and a short, C-terminal alpha-helix. Binding experiments suggested that the FHA2-containing domain specifically recognizes pTyr and a pTyr-containing peptide from Rad9, and that the binding site involves residues highly conserved across FHA domains. The results, along with other recent reports, suggest that FHA domains could have pTyr and pSer/Thr dual specificity.  相似文献   

2.
Saccharomyces cerevisiae Rad53 is a protein kinase central to the DNA damage and DNA replication checkpoint signaling pathways. In addition to its catalytic domain, Rad53 contains two forkhead homology-associated (FHA) domains (FHA1 and FHA2), which are phosphopeptide binding domains. The Rad53 FHA domains are proposed to mediate the interaction of Rad53 with both upstream and downstream branches of the DNA checkpoint signaling pathways. Here we show that concurrent mutation of Rad53 FHA1 and FHA2 causes DNA checkpoint defects approaching that of inactivation or loss of RAD53 itself. Both FHA1 and FHA2 are required for the robust activation of Rad53 by the RAD9-dependent DNA damage checkpoint pathway, while an intact FHA1 or FHA2 allows the activation of Rad53 in response to replication block. Mutation of Rad53 FHA1 causes the persistent activation of the RAD9-dependent DNA damage checkpoint pathway in response to replicational stress, suggesting that the RAD53-dependent stabilization of stalled replication forks functions through FHA1. Rad53 FHA1 is also required for the phosphorylation-dependent association of Rad53 with the chromatin assembly factor Asf1, although Asf1 itself is apparently not required for the prevention of DNA damage in response to replication block.  相似文献   

3.
Saccharomyces cerevisiae Rad53 is a protein kinase central to the DNA damage and DNA replication checkpoint signaling pathways. In addition to its catalytic domain, Rad53 contains two forkhead homology-associated (FHA) domains (FHA1 and FHA2), which are phosphopeptide binding domains. The Rad53 FHA domains are proposed to mediate the interaction of Rad53 with both upstream and downstream branches of the DNA checkpoint signaling pathways. Here we show that concurrent mutation of Rad53 FHA1 and FHA2 causes DNA checkpoint defects approaching that of inactivation or loss of RAD53 itself. Both FHA1 and FHA2 are required for the robust activation of Rad53 by the RAD9-dependent DNA damage checkpoint pathway, while an intact FHA1 or FHA2 allows the activation of Rad53 in response to replication block. Mutation of Rad53 FHA1 causes the persistent activation of the RAD9-dependent DNA damage checkpoint pathway in response to replicational stress, suggesting that the RAD53-dependent stabilization of stalled replication forks functions through FHA1. Rad53 FHA1 is also required for the phosphorylation-dependent association of Rad53 with the chromatin assembly factor Asf1, although Asf1 itself is apparently not required for the prevention of DNA damage in response to replication block.  相似文献   

4.
The Chk2 Ser/Thr kinase plays crucial, evolutionarily conserved roles in cellular responses to DNA damage. Identification of two pro-oncogenic mutations within the Chk2 FHA domain has highlighted its importance for Chk2 function in checkpoint activation. The X-ray structure of the Chk2 FHA domain in complex with an in vitro selected phosphopeptide motif reveals the determinants of binding specificity and shows that both mutations are remote from the peptide binding site. We show that the Chk2 FHA domain mediates ATM-dependent Chk2 phosphorylation and targeting of Chk2 to in vivo binding partners such as BRCA1 through either or both of two structurally distinct mechanisms. Although phospho-dependent binding is important for Chk2 activity, previously uncharacterized phospho-independent FHA domain interactions appear to be the primary target of oncogenic lesions.  相似文献   

5.
Forkhead-associated (FHA) domains are multifunctional phosphopeptide-binding modules and are the hallmark of the conserved family of Rad53-like checkpoint protein kinases. Rad53-like kinases, including the human tumor suppressor protein Chk2, play crucial roles in cell cycle arrest and activation of repair processes following DNA damage and replication blocks. Here we show that ectopic expression of the N-terminal FHA domain (FHA1) of the yeast Rad53 kinase causes a growth defect by arresting the cell cycle in G(1). This phenotype was highly specific for the Rad53-FHA1 domain and not observed with the similar Rad53-FHA2, Dun1-FHA, and Chk2-FHA domains, and it was abrogated by mutations that abolished binding to a phosphothreonine-containing peptide in vitro. Furthermore, replacement of the RAD53 gene with alleles containing amino acid substitutions in the FHA1 domain resulted in an increased DNA damage sensitivity in vivo. Taken together, these data demonstrate that the FHA1 domain contributes to the checkpoint function of Rad53, possibly by associating with a phosphorylated target protein in response to DNA damage in G(1).  相似文献   

6.
Forkhead-associated (FHA) domains are phosphothreonine-binding modules prevalent in proteins with important cell cycle and DNA damage response functions. The yeast checkpoint kinase Rad53 is unique in containing two FHA domains. We have generated novel recessive rad53 alleles with abolished FHA domain functions resulting from Ala substitution of the critical phosphothreonine-binding residues Arg70 and Arg605. In asynchronous cells, inactivation of the N-terminal FHA1 domain did not impair Rad53 activation and downstream functions, whereas inactivation of the C-terminal FHA2 domain led to reduced Rad53 activation and significantly increased DNA damage sensitivity. Simultaneous inactivation of both FHA domains abolished Rad53 activation and all downstream functions and dramatically increased the sensitivity to DNA damage and replication blocks similar to kinase-defective and rad53 null alleles, but did not compromise the essential viability function of Rad53. Interestingly, in G2/M synchronized cells, mutation of either FHA domain prevented Rad53 activation and impaired the cell cycle arrest checkpoint. Our data demonstrate that both FHA domains are required for normal Rad53 functions and indicate that the two FHA domains have differential but partially overlapping roles in Rad53 activation and downstream signaling.  相似文献   

7.
Human Chk2 is a newly identified tumor suppressor protein involved in signaling pathways in response to DNA damage. The protein consists of a forkhead-associated (FHA) domain and a kinase domain. Identification of binding partners of the Chk2FHA domain is important in understanding the roles of Chk2 in signaling. We report development of an approach involving the use of combinatorial libraries, pull-down assays, surface plasmon resonance (SPR), and nuclear magnetic resonance (NMR) methods to identify possible candidates for the binding sites of Chk2FHA. The approach has been used to identify Thr329 of p53 and Thr1852 of breast cancer type 1 susceptibility protein (BRCA1) as very likely biological binding sites of Chk2FHA. The results provide useful leads for further biological analyses of cell signaling involving the FHA domain of Chk2 protein.  相似文献   

8.
The forkhead-associated (FHA) domain is a protein module found in many proteins involved in cell signaling in response to DNA damage. It has been suggested to bind to pThr sites of its target protein. Recently we have determined the first structure of an FHA domain, FHA2 from the yeast protein Rad53, and demonstrated that FHA2 binds to a pTyr-containing peptide (826)EDI(pY)YLD(832) from Rad9, with a moderate affinity (K(d) ca. 100 microM). We now report the solution structure of the complex of FHA2 bound with this pTyr peptide. The structure shows that the phosphate group of pTyr interacts directly with three arginine residues (605, 617, and 620), and that the leucine residue at the +2 position from the pTyr interacts with a hydrophobic surface on FHA2. The sequence specificity of FHA2 was determined by screening a combinatorial pTyr library. The results clearly show that FHA2 recognizes specific sequences C-terminal to pTyr with the following consensus: XX(pY)N(1)N(2)N(3), where N(1)=Leu, Met, Phe, or Ile, N(2)=Tyr, Phe, Leu, or Met, and N(3)=Phe, Leu, or Met. Two of the selected peptides, GF(pY)LYFIR and DV(pY)FYMIR, bind FHA2 with K(d) values of 1.1 and 5.0 microM, respectively. The results, along with other recent reports, demonstrate that the FHA domain is a new class of phosphoprotein-binding domain, capable of binding both pTyr and pThr sequences.  相似文献   

9.
Tam AT  Pike BL  Heierhorst J 《Biochemistry》2008,47(12):3912-3916
Signaling proteins often contain multiple modular protein-protein interaction domains of the same type. The Saccharomyces cerevisiae checkpoint kinase Rad53 contains two phosphothreonine-binding forkhead-associated (FHA) domains. To investigate if the precise position of these domains relative to each other is important, we created three rad53 alleles in which FHA1 and FHA2 domains were individually or simultaneously transposed to the opposite location. All three mutants were approximately 100-fold hypersensitive to DNA lesions whose survival requires intact Rad53 FHA domain functions, but they were not hypersensitive to DNA damage that is addressed in an FHA domain-independent manner. FHA domain-transposed Rad53 could still be recruited for activation by upstream kinases but then failed to autophosphorylate and activate FHA domain-dependent downstream functions. The results indicate that precise FHA domain positions are important for their roles in Rad53, possibly via regulation of the topology of oligomeric Rad53 signaling complexes.  相似文献   

10.
MDC1 is a key factor of DNA damage response in mammalian cells. It possesses two phospho-binding domains. In its C terminus, a tandem BRCA1 C-terminal domain binds phosphorylated histone H2AX, and in its N terminus, a forkhead-associated (FHA) domain mediates a phosphorylation-enhanced homodimerization. The FHA domain of the Drosophila homolog of MDC1, MU2, also forms a homodimer but utilizes a different dimer interface. The functional importance of the dimerization of MDC1 family proteins is uncertain. In the fission yeast Schizosaccharomyces pombe, a protein sharing homology with MDC1 in the tandem BRCA1 C-terminal domain, Mdb1, regulates DNA damage response and mitotic spindle functions. Here, we report the crystal structure of the N-terminal 91 amino acids of Mdb1. Despite a lack of obvious sequence conservation to the FHA domain of MDC1, this region of Mdb1 adopts an FHA-like fold and is therefore termed Mdb1-FHA. Unlike canonical FHA domains, Mdb1-FHA lacks all the conserved phospho-binding residues. It forms a stable homodimer through an interface distinct from those of MDC1 and MU2. Mdb1-FHA is important for the localization of Mdb1 to DNA damage sites and the spindle midzone, contributes to the roles of Mdb1 in cellular responses to genotoxins and an antimicrotubule drug, and promotes in vitro binding of Mdb1 to a phospho-H2A peptide. The defects caused by the loss of Mdb1-FHA can be rescued by fusion with either of two heterologous dimerization domains, suggesting that the main function of Mdb1-FHA is mediating dimerization. Our data support that FHA-mediated dimerization is conserved for MDC1 family proteins.  相似文献   

11.
It was proposed previously that the FHA2 domain of the yeast protein kinase Rad53 has dual specificity toward pY and pT peptides. The consensus sequences of pY peptides for binding to FHA2, as well as the solution structures of free FHA2 and FHA2 complex with a pY peptide derived from Rad9, have been obtained previously. We now report the use of a pT library to screen for binding of pT peptides with the FHA2 domain. The results show that FHA2 binds favorably to pT peptides with Ile at the +3 position. We then searched the Rad9 sequences with a pTXXI/L motif, and tested the binding affinity of FHA2 toward ten pT peptides derived from Rad9. One of the peptides, (599)EVEL(pT)QELP(607), displayed the best binding affinity (K(d)=12.9 microM) and the greatest chemical shift changes. The structure of the FHA2 complex with this peptide was then determined by solution NMR and the structure of the complex between FHA2 and the pY peptide (826)EDI(pY)YLD(832) was further refined. Structural comparison of these two complexes indicates that the Leu residue at the +3 position in the pT peptide and that at the +2 position in the pY peptide occupy a very similar position relative to the binding site residues from FHA2. This can explain why FHA2 is able to bind both pT and pY peptides. This position change from +3 to +2 could be the consequence of the size difference between Thr and Tyr. Further insight into the structural basis of ligand specificity of FHA domains was obtained by comparing the structures of the FHA2-pTXXL complex obtained in this work and the FHA1-pTXXD complex reported in the accompanying paper.  相似文献   

12.
Forkhead-associated (FHA) domains have been shown to recognize both pThr and pTyr-peptides. The solution structures of the FHA2 domain of Rad53 from Saccharomyces cerevisiae, and its complex with a pTyr peptide, have been reported recently. We now report the solution structure of the other FHA domain of Rad53, FHA1 (residues 14-164), and identification of binding sites of FHA1 and its target protein Rad9. The FHA1 structure consists of 11 beta-strands, which form two large twisted anti-parallel beta-sheets folding into a beta-sandwich. Three short alpha-helices were also identified. The beta-strands are linked by several loops and turns. These structural features of free FHA1 are similar to those of free FHA2, but there are significant differences in the loops. Screening of a peptide library [XXX(pT)XXX] against FHA1 revealed an absolute requirement for Asp at the +3 position and a preference for Ala at the +2 position. These two criteria are met by a pThr motif (192)TEAD(195) in Rad9. Surface plasmon resonance analysis showed that a pThr peptide containing this motif, (188)SLEV(pT)EADATFVQ(200) from Rad9, binds to FHA1 with a K(d) value of 0.36 microM. Other peptides containing pTXXD sequences also bound to FHA1, but less tightly (K(d)=4-70 microM). These results suggest that Thr192 of Rad9 is the likely phosphorylation site recognized by the FHA1 domain of Rad53. The tight-binding peptide was then used to identify residues of FHA1 involved in the interaction with the pThr peptide. The results are compared with the interactions between the FHA2 domain and a pTyr peptide derived from Rad9 reported previously.  相似文献   

13.
The DNA damage response depends on the concerted activity of protein serine/threonine kinases and modular phosphoserine/threonine-binding domains to relay the damage signal and recruit repair proteins. The PIKK family of protein kinases, which includes ATM/ATR/DNA-PK, preferentially phosphorylate Ser-Gln sites, while their basophilic downstream effecter kinases, Chk1/Chk2/MK2 preferentially phosphorylate hydrophobic-X-Arg-X-X-Ser/Thr-hydrophobic sites. A subset of tandem BRCT domains act as phosphopeptide binding modules that bind to ATM/ATR/DNA-PK substrates after DNA damage. Conversely, 14-3-3 proteins interact with substrates of Chk1/Chk2/MK2. FHA domains have been shown to interact with substrates of ATM/ATR/DNA-PK and CK2. In this review we consider how substrate phsophorylation together with BRCT domains, FHA domains and 14-3-3 proteins function to regulate ionizing radiation-induced nuclear foci and help to establish the G2/M checkpoint. We discuss the role of MDC1 a molecular scaffold that recruits early proteins to foci, such as NBS1 and RNF8, through distinct phosphodependent interactions. In addition, we consider the role of 14-3-3 proteins and the Chk2 FHA domain in initiating and maintaining cell cycle arrest.  相似文献   

14.
The regulation of a series of cellular events requires specific protein–protein interactions, which are usually mediated by modular domains to precisely select a particular sequence from diverse partners. However, most signaling domains can bind to more than one peptide sequence. How do proteins create promiscuity from precision? Moreover, these complex interactions typically occur at the interface of a well-defined secondary structure, α helix and β sheet. However, the molecular recognition primarily controlled by loop architecture is not fully understood. To gain a deep understanding of binding selectivity and promiscuity by the conformation of loops, we chose the forkhead-associated (FHA) domain as our model system. The domain can bind to diverse peptides via various loops but only interact with sequences containing phosphothreonine (pThr). We applied molecular dynamics (MD) simulations for multiple free and bound FHA domains to study the changes in conformations and dynamics. Generally, FHA domains share a similar folding structure whereby the backbone holds the overall geometry and the variety of sidechain atoms of multiple loops creates a binding surface to target a specific partner. FHA domains determine the specificity of pThr by well-organized binding loops, which are rigid to define a phospho recognition site. The broad range of peptide recognition can be attributed to different arrangements of the loop interaction network. The moderate flexibility of the loop conformation can help access or exclude binding partners. Our work provides insights into molecular recognition in terms of binding specificity and promiscuity and helpful clues for further peptide design.  相似文献   

15.
The forkhead-associated (FHA) domain of human Ki67 interacts with the human nucleolar protein hNIFK, recognizing a 44-residue fragment, hNIFK226-269, phosphorylated at Thr234. Here we show that high-affinity binding requires sequential phosphorylation by two kinases, CDK1 and GSK3, yielding pThr238, pThr234 and pSer230. We have determined the solution structure of Ki67FHA in complex with the triply phosphorylated peptide hNIFK226-269(3P), revealing not only local recognition of pThr234 but also the extension of the beta-sheet of the FHA domain by the addition of a beta-strand of hNIFK. The structure of an FHA domain in complex with a biologically relevant binding partner provides insights into ligand specificity and potentially links the cancer marker protein Ki67 to a signaling pathway associated with cell fate specification.  相似文献   

16.
Protein phosphorylation by protein kinases may generate docking sites for other proteins. It thus allows the assembly of signaling complexes in response to kinase activation. Several protein domains that bind phosphoserine or phosphothreonine residues have been identified, including the 14-3-3, PIN1, FHA, KIX, WD-40 domain, and polo box (Yaffe, M. B., and Elia, A. E. (2001) Curr. Opin. Cell Biol. 13, 131-138; Elia, A. E., Cantley, L. C., and Yaffe, M. B. (2003) Science 299, 1228-1231). The BRCA1 COOH-terminal (BRCT) domains are protein modules found in many proteins that regulate DNA damage responses (Koonin, E. V., Altschul, S. F., and Bork, P. (1996) Nat. Genet. 13, 266-268). Whether BRCT domains can mediate phosphorylation-dependent interactions has not been systematically investigated. We report here that the BRCT domains also recognize phosphopeptides. Oriented peptide library analysis indicated that the BRCT domains from BRCA1, MDC1, BARD1, and DNA Ligase IV preferred distinct phosphoserine-containing peptides. In addition, the interaction between BRCA1 and the BRCT binding motif of BACH1 was required for BACH1 checkpoint activity. Furthermore, BRCT domains of the yeast DNA repair protein Rad9 could bind phosphopeptides, suggesting that the BRCT domains represent a class of ancient phosphopeptide-binding modules. Potential targets of BRCT domains were identified through data base search. Structural analysis of BRCA1 BRCT repeats also predicted conserved residues that may form the phosphopeptide-binding pocket. Thus, the BRCT repeats are a new family of phosphopeptide-binding domains in DNA damage responses.  相似文献   

17.
The formation of CXCR2–NHERF1–PLCβ3 macromolecular complex in pancreatic cancer cells regulates CXCR2 signaling activity and plays an important role in tumor proliferation and invasion. We previously have shown that disruption of the NHERF1-mediated CXCR2–PLCβ3 interaction abolishes the CXCR2 signaling cascade and inhibits pancreatic tumor growth in vitro and in vivo. Here we report the crystal structure of the NHERF1 PDZ1 domain in complex with the C-terminal PLCβ3 sequence. The structure reveals that the PDZ1–PLCβ3 binding specificity is achieved by numerous hydrogen bonds and hydrophobic contacts with the last four PLCβ3 residues contributing to specific interactions. We also show that PLCβ3 can bind both NHERF1 PDZ1 and PDZ2 in pancreatic cancer cells, consistent with the observation that the peptide binding pockets of these PDZ domains are highly structurally conserved. This study provides an understanding of the structural basis for the PDZ-mediated NHERF1–PLCβ3 interaction that could prove valuable in selective drug design against CXCR2-related cancers.  相似文献   

18.
Mdc1 is a large modular phosphoprotein scaffold that maintains signaling and repair complexes at double-stranded DNA break sites. Mdc1 is anchored to damaged chromatin through interaction of its C-terminal BRCT-repeat domain with the tail of γH2AX following DNA damage, but the role of the N-terminal forkhead-associated (FHA) domain remains unclear. We show that a major binding target of the Mdc1 FHA domain is a previously unidentified DNA damage and ATM-dependent phosphorylation site near the N-terminus of Mdc1 itself. Binding to this motif stabilizes a weak self-association of the FHA domain to form a tight dimer. X-ray structures of free and complexed Mdc1 FHA domain reveal a 'head-to-tail' dimerization mechanism that is closely related to that seen in pre-activated forms of the Chk2 DNA damage kinase, and which both positively and negatively influences Mdc1 FHA domain-mediated interactions in human cells prior to and following DNA damage.  相似文献   

19.
20.
The MRE11–RAD50–NBS1 (MRN) complex accumulates at sites of DNA double‐strand breaks in large chromatin domains flanking the lesion site. The mechanism of MRN accumulation involves direct binding of the Nijmegen breakage syndrome 1 (NBS1) subunit to phosphorylated mediator of the DNA damage checkpoint 1 (MDC1), a large nuclear adaptor protein that interacts directly with phosphorylated H2AX. NBS1 contains an FHA domain and two BRCT domains at its amino terminus. Here, we show that both of these domains participate in the interaction with phosphorylated MDC1. Point mutations in key amino acid residues of either the FHA or the BRCT domains compromise the interaction with MDC1 and lead to defects in MRN accumulation at sites of DNA damage. Surprisingly, only mutation in the FHA domain, but not in the BRCT domains, yields a G2/M checkpoint defect, indicating that MDC1‐dependent chromatin accumulation of the MRN complex at sites of DNA breaks is not required for G2/M checkpoint activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号