首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Xanomeline is a unique agonist of muscarinic receptors that possesses functional selectivity at the M(1) and M(4) receptor subtypes. It also exhibits wash-resistant binding to and activation of the receptor. In the present work we investigated the consequences of this type of binding of xanomeline on the binding characteristics and function of the M(1) muscarinic receptor. Pretreatment of CHO cells that stably express the M(1) receptor for 1 hr with increasing concentrations of xanomeline followed by washing and waiting for an additional 23 hr in control culture media transformed xanomeline-induced inhibition of [(3)H]NMS binding from monophasic to biphasic. The high-affinity xanomeline binding site exhibited three orders of magnitude higher affinity than in the case of xanomeline added directly to the binding assay medium containing control cells. These effects were associated with a marked decrease in maximal radioligand binding and attenuation of agonist-induced increase in PI hydrolysis and were qualitatively similar to those caused by continuous incubation of cells with xanomeline for 24 hr. Attenuation of agonist-induced PI hydrolysis by persistently-bound xanomeline developed with a time course that parallels the return of receptor activation by prebound xanomeline towards basal levels. Additional data indicated that blockade of the receptor orthosteric site or the use of a non-functional receptor mutant reversed the long-term effects of xanomeline, but not its persistent binding at an allosteric site. Furthermore, the long-term effects of xanomeline on the receptor are mainly due to receptor down-regulation rather than internalization.  相似文献   

2.
A series of xanomeline analogs were synthesized and evaluated for binding at the M(1) muscarinic acetylcholine receptor (M(1) receptor). Specifically, compounds that substitute the O-hexyl chain of xanomeline with polar, ionizable, or conformationally restricted moieties were assessed for their ability to bind to the M(1) receptor in a wash-resistant manner (persistent binding). From our screen, several novel ligands that persistently bind to the M(1) receptor with greater affinity than xanomeline were discovered. Results indicate that persistent binding may arise not only from hydrophobic interactions but also from ionic interactions with a secondary M(1) receptor binding site. Herein, a qualitative model that accounts for both binding scenarios is proposed and applied to understand the structural basis to wash-resistant binding and long-acting effects of xanomeline-based compounds.  相似文献   

3.
The effects of the organophosphorus anticholinesterase paraoxon on the binding of radioactive ligands to the M3 subtype of the muscarinic receptor and receptor-coupled synthesis of second messengers in intact rat submaxillary gland (SMG) cells were investigated. The binding of [3H]quinuclidinyl benzilate ([3H]QNB) was most sensitive to atropine and the M3-specific antagonist 4-DAMP followed by pirenzepine and least sensitive to the cardioselective M2 antagonist AFDX116. This, and the binding characteristics of [3H]4-DAMP, confirmed that the muscarinic receptors in this preparation are of the M3 subtype. Activation of these muscarinic receptors by carbamylcholine (CBC) produced both stimulation of phosphoinositide (PI) hydrolysis and inhibition of cAMP synthesis, suggesting that this receptor subtype couples to both effector systems. Paraoxon (100 μM) reduced Bmax of [3H]4-DAMP binding from 27 ± 4 to 13 ± 3 fmol/mg protein with nonsignificant change in affinity, suggesting noncompetitive inhibition of binding by paraoxon. Like the agonist CBC, paraoxon inhibited the forskolininduced cAMP formation in SMG cells with an EC50 of 200 nM, but paraoxon was > 500 fold more potent than CBC. However, while the inhibition by CBC was counteracted by 2 μM atropine, that by paraoxon was unaffected by up to 100 μM atropine. It suggested that this effect of paraoxon was not via binding to the muscarinic receptor. Paraoxon did not affect β-adrenoreceptor function in the preparation, since it did not affect the 10 μM isoproterenol-induced cAMP synthesis, which was inhibited totally by 10 μM propranolol and partially by CBC. Paraoxon had a small but significant effect on CBC-stimulated PI metabolism in the SMG cells. It is suggested that paraoxon binds to two different sites in these SMG cells. One is an allosteric site on the M3 muscarinic receptor which affects ligand binding and may modulate receptor function. The other site may be on the Gi proteinadenylyl cyclase system, and produces CBC-like action, that is, inhibition of the forskolin-stimulated [3H]cAMP synthesis, and is unaffected by atropine inhibition of the muscarinic receptor. This adds to the complexity of paraoxon actions on muscarinic receptors and their effector systems.  相似文献   

4.
Muscarinic acetylcholine M1 receptors play an important role in synaptic plasticity in the hippocampus and cortex. Potentiation of NMDA receptors as a consequence of muscarinic acetylcholine M1 receptor activation is a crucial event mediating the cholinergic modulation of synaptic plasticity, which is a cellular mechanism for learning and memory. In Alzheimer's disease, the cholinergic input to the hippocampus and cortex is severely degenerated, and agonists or positive allosteric modulators of M1 receptors are therefore thought to be of potential use to treat the deficits in cognitive functions in Alzheimer's disease. In this study we developed a simple system in which muscarinic modulation of NMDA receptors can be studied in vitro. Human M1 receptors and NR1/2B NMDA receptors were co-expressed in Xenopus oocytes and various muscarinic agonists were assessed for their modulatory effects on NMDA receptor-mediated responses. As expected, NMDA receptor-mediated responses were potentiated by oxotremorine-M, oxotremorine or xanomeline when the drugs were applied between subsequent NMDA responses, an effect which was fully blocked by the muscarinic receptor antagonist atropine. However, in oocytes expressing NR1/2B NMDA receptors but not muscarinic M1 receptors, oxotremorine-M co-applied with NMDA also resulted in a potentiation of NMDA currents and this effect was not blocked by atropine, demonstrating that oxotremorine-M is able to directly potentiate NMDA receptors. Oxotremorine, which is a close analogue of oxotremorine-M, and xanomeline, a chemically distinct muscarinic agonist, did not potentiate NMDA receptors by this direct mechanism. Comparing the chemical structures of the three different muscarinic agonists used in this study suggests that the tri-methyl ammonium moiety present in oxotremorine-M is important for the compound's interaction with NMDA receptors.  相似文献   

5.
There are five subtypes of muscarinic receptors that serve various important physiological functions in the central nervous system and the periphery. Mental functions like attention, learning, and memory are attributed to the muscarinic M1 subtype. These functions decline during natural aging and an early deficit is typical for Alzheimer s disease. In addition, stimulation of the M1 receptor increases non-amyloidogenic processing of the amyloid precursor protein and thus prevents accumulation of noxious beta-amyloid fragments. The selectivity of classical muscarinic agonists among receptor subtypes is very low due to the highly conserved nature of the orthosteric binding site among receptor subtypes. Herein we summarize some recent studies with the functionally-selective M1 agonist xanomeline that indicate complex pharmacological profile of this drug that includes interactions with and activation of receptor from both orthosteric and ectopic binding sites, and the time-dependent changes of ligand binding and receptor activation. These findings point to potential profitability of exploitation of ectopic ligands in the search for truly selective muscarinic receptor agonists.  相似文献   

6.
3H-Clozapine binds specifically and with high affinity (KD = 1.3 nM) to rat brain membranes. About two thirds of reversibly bound 3H-clozapine are displaced by hyoscyamine in a stereospecific manner, suggesting interaction of clozapine with muscarinic cholinergic receptors. Most of the remaining 3H-clozapine binding is stereospecifically inhibited by butaclamol, but this binding component seems not to be related to dopamine receptors.  相似文献   

7.
Parasympathetic system plays an important role in insulin secretion from the pancreas. Cholinergic effect on pancreatic beta cells exerts primarily through muscarinic receptors. In the present study we investigated the specific role of muscarinic M1 and M3 receptors in glucose induced insulin secretion from rat pancreatic islets in vitro. The involvement of muscarinic receptors was studied using the antagonist atropine. The role of muscarinic M1 and M3 receptor subtypes was studied using subtype specific antagonists. Acetylcholine agonist, carbachol, stimulated glucose induced insulin secretion at low concentrations (10−8–10−5 M) with a maximum stimulation at 10−7 M concentration. Carbachol-stimulated insulin secretion was inhibited by atropine confirming the role of muscarinic receptors in cholinergic induced insulin secretion. Both M1 and M3 receptor antagonists blocked insulin secretion induced by carbachol. The results show that M3 receptors are functionally more prominent at 20 mM glucose concentration when compared to M1 receptors. Our studies suggest that muscarinic M1 and M3 receptors function differentially regulate glucose induced insulin secretion, which has clinical significance in glucose homeostasis.  相似文献   

8.
The effectiveness of several detergents and salts in solubilizing the muscarinic acetylcholine receptor (identified by its atropine-sensitive [3H]3-quinuclidinyl benzilate (QNB) binding) from bovine striatal membranes is reported. The highest density of receptor is obtained by extraction with 1% digitonin-0.1 mM EDTA. Although the total solubilized muscarinic receptors (sites/ml) are increased and the nonspecific binding is decreased when 1 M NaCl is included in this extraction medium, the receptor density (sites/mg protein) is lower. The solubilized receptors have the same specific QNB binding affinity, and sensitivity to a variety of drugs, as the membrane-bound muscarinic receptors.  相似文献   

9.
Calcium release in response to the activation of muscarinic M1 and histamine H1 receptors was studied in single N1E-115 cells using Fura-2 imaging. The objective was to relate changes in the kinetics of Ca release with reductions in functional receptor density resulting from receptor desensitization. Calcium release increased and its time course accelerated with increasing carbachol concentration with an EC50 = 96 ± 8 μM. This value is similar to the binding KD (100 μM) and the similarity shows that the activation of calcium release is limited by the number of muscarinic receptors. In contrast, the EC50 for Ca release in response to histamine is 4.0 ± 0.7 μM while the binding KD is 8.3 μM and, therefore, H1 receptors appear to be in approximately 2-fold excess over the minimum number necessary to fully engage the Ca release mechanism.Functional surface receptor number was assayed in the population of cells by counting the total number of cells responding to agonist. A 5 min exposure to 1 mM carbachol caused 12% of cells to lose their ability to respond to carbachol, with no change in their response to histamine. Interpolating from the dose-response curve taken before desensitization, this is equivalent to an average 23% reduction in the number of muscarinic receptors. In individual cells the latency to Ca release is dose-dependent in the absence of excess receptors. The loss of functional receptors was therefore estimated from the increase in latency after desensitization, and varied from 5–48% of receptors (22 ± 18%). Muscarinic desensitization did not depend on IP3-evoked Ca release, Ca entry, protein kinase C, NO, or cGMP. We conclude that in a population, the number of cells responding and in single cells, the latency to Ca release can serve as measures of functional receptor density.  相似文献   

10.
This study describes the synthesis, receptor binding characteristics, and some behavioral effects of p-bromoacetamidoprocaine (BAP), a new affinity ligand for brain muscarinic and nicotinic cholinergic receptors. The reversible binding of [3H]QNB to rat brain membranes was inhibited in a concentration dependent and saturable manner by both procaine and BAP, with Ki values of 4×10–6 and 3×10–7 M, respectively, and complete inhibition at 1×10–5 M. Both procaine and BAP, although at much concentrations, inhibited the binding of [3H]methylcarbamylcholine in a concentration dependent manner, with Ki values of 5×10–5 and 1×10–5 M, respectively, and complete inhibition for both at 1×10–3 M. Plots of the % irreversible inhibition of [3H]QNB, [3H]nicotine, and [3H]MCC vs [BAP] yielded Ki values of 7×10–8, 1×10–4, and 6×10–5 M, respectively. In behavioral studies BAP was able to antagonize the QNB-induced hyperactivity in mice; however, BAP did not appear to alter nicotine-induced seizure activity or other behavioral effects in mice. A plot of the time course of inhibition by BAP for [3H]QNB binding revealed that the inhibition was almost complete within 10 min exposure at 37°. The findings indicate that BAP is a useful affinity ligand for examining the biochemical and functional characteristics of brain cholinergic receptors, particularly the muscarinic which has an affinity near the nM concentration range.  相似文献   

11.
Abstract

Gallamine and d-tubocurarine inhibited (3H)N-methylscopolamine ((3H)NMS) binding to rat cardiac muscarinic receptors with I50 values of 0.7 μM and 22 μM, respectively. They decreased the association and dissociation rates of the two ligands (3H)NMS and (3H)Oxotremorine M ((3H)Oxo-M).

Gallamine interaction with muscarinic receptors was markedly inhibited by (3H)NMS and (3H)Oxo-M binding to the receptors. We were unable to demonstrate (3H)NMS or (3H)Oxo-M binding to the muscarinic receptor-gallamine complex.

By contrast, d-tubocurarine interaction with rat cardiac muscarinic receptors was facilitated by (3H)Oxo-M binding and only slightly inhibited by (3H)NMS binding to muscarinic binding sites. Furthermore, (3H)NMS and (3H)Oxo-M bound to the receptor-d-tubocurarine complex, indicating that the latter drug interacted with an allosteric site on cardiac muscarinic receptors but did not recognize the muscarinic binding site (at concentrations below 1 mM).  相似文献   

12.
Muscarinic cholinergic receptors are widespread in nervous tissue and smooth muscsle or paracrine epithelial cells of various organs. In the embryo, muscarinic receptors are transitorily expressed in the early blastoderm and later on in blastemic tissues during morphogenesis. Recently, a monoclonal antibody (M35) against muscarinic receptor from calf brain became available. In the present study the use of M35-immunohistochemistry is compared to autoradiographic localization of muscarinic binding sites in the mouse embryo. The aim of the study is to test the suitability of the antibody for localization of muscrinic receptors in embryonic tissues. For autoradiography whole-body sagittal cryostat sections of the 17- and 18-day mouse embryo were covered with LKB-Ultrofilm after incubation with the radioactive ligand [3H] quinuclidinyl benzylate (QNB). For immunohistochemistry cryostat sections of formalin fixed tissues were used. In general, all tissues exhibiting ligand binding were also recognized by the antibody. M35-immunohistochemistry resulted in higher spatial resolution of receptor localization than [3H]QNB autoradiography. Definitive muscarinic receptors were observed in smooth muscle and the epithelial lining of the vascular, intestinal, respiratory and urinary system, in the brain, spinal cord and peripheral nerves. The embryonic type of the muscarinic receptor was detected in the mesothelium of lung and liver, in the nephrogenic blastema of the metanephros, and in lung mesenchyme. A large amount of embryonic muscarinic receptors was found in the remnants of the notochord and in the nucleus pulposus of the developing vertebral column. A function in morphogenesis is discussed of the embryonic muscarinic receptor.  相似文献   

13.
Onali P  Adem A  Karlsson E  Olianas MC 《Life sciences》2005,76(14):1547-1552
The mamba toxin MT-7 is the most selective ligand currently available for the muscarinic M1 receptor subtype. The toxin binds stably to the receptor and blocks the agonist-induced activation non-competitively. Although its mode of action on M1 receptors is not yet fully understood, some of the toxin properties support an allosteric mechanism. Thus, the toxin fails to elicit a complete inhibition of the binding of either the muscarinic antagonist [3H]N-methyl-scopolamine ([3H]NMS) or the agonist [3H]acetylcholine ([3H]ACh). When added to ligand-occupied M1 receptors, the toxin slows the dissociation rate of [3H]NMS and increases that of [3H]ACh. Site-directed mutagenesis studies have provided important information about the toxin amino acid residues which are critical for the stable binding to the receptor and for the allosteric modulation of antagonist dissociation. In vivo studies have shown that the intracerebral injection of MT-7 causes a long-lasting blockade of M1 receptor, thus providing a tool for the characterization of the functional role of this receptor subtype in discrete brain areas.  相似文献   

14.
We previously reported similar levels of brain cholinesterase inhibition but marked differences in toxicity following acute maximum tolerated doses of the organophosphate pesticides parathion and chlorpyrifos. Because extensive acetylcholinesterase inhibition often induces compensatory changes in cholinergic receptor populations, we compared the effects of parathion and chlorpyrifos on brain muscarinic receptors. Adult male rats were treated with vehicle or the maximum tolerated dose of parathion (18 mg/kg, sc) or chlorpyrifos (279 mg/kg, sc) and observed for signs of acute toxicity. Similarly treated animals were sacrificed at 2, 7, or 14 days after treatment for measurement of cholinesterase activity and binding to the nonselective muscarinic antagonist [3H]quinuclidinyl benzilate, the M2-preferential antagonist [3H]AFDX-384, and the high-affinity agonist [3H]cis-methyldioxolane. More acute toxicity was noted after parathion treatment. Both insecticides caused similar levels (> 85%) of maximal cholinesterase inhibition and reductions (up to 55%) in atropine-sensitive quinuclidinyl benzilate binding (i.e., total muscarinic receptors) and [3H]AFDX-384 binding in cortex and striatum. Parathion also reduced, whereas chlorpyrifos increased, total muscarinic receptor binding and [3H]AFDX-384 binding in the cerebellum. When tissues were preincubated with paraoxon (10 μM), radiolabeling of a subset of quinuclidinyl benzilate binding sites was blocked and the apparent densities of these organophosphate-sensitive receptors in all three tissues were decreased (16% maximal) by parathion but increased (up to 37%) by chlorpyrifos. Similarly, parathion decreased whereas chlorpyrifos increased [3H]cis-methyldioxolane binding sites in all three brain regions. We propose that differential modulation of these organophosphate-sensitive muscarinic receptors contributes to differences in acute toxicity following exposure to these pesticides.  相似文献   

15.
Ma AW  Redka DS  Pisterzi LF  Angers S  Wells JW 《Biochemistry》2007,46(26):7907-7927
FLAG- and HA-tagged M2 muscarinic receptors from coinfected Sf9 cells have been purified in digitonin-cholate and reconstituted into phospholipid vesicles. The purified receptor was predominantly monomeric: it showed no detectable coimmunoprecipitation; it migrated as a monomer during electrophoresis before or after cross-linking with bis(sulfosuccinimidyl)suberate; and it bound agonists and antagonists in a manner indicative of identical and mutually independent sites. Receptor cross-linked after reconstitution or after reconstitution and subsequent solubilization in digitonin-cholate migrated almost exclusively as a tetramer. The binding properties of the reconstituted receptor mimicked those reported previously for cardiac muscarinic receptors. The apparent capacity for N-[3H]methylscopolamine (NMS) was only 60% of that for [3H]quinuclidinylbenzilate (QNB), yet binding at saturating concentrations of [3H]QNB was inhibited fully and in a noncompetitive manner at comparatively low concentrations of unlabeled NMS. Reconstitution of the receptor with a saturating quantity of functional G proteins led to the appearance of three classes of sites for the agonist oxotremorine-M in assays with [3H]QNB; GMP-PNP caused an apparent interconversion from highest to lowest affinity and the concomitant emergence of a fourth class of intermediate affinity. All of the data can be described quantitatively in terms of cooperativity among four interacting sites, presumably within a tetramer; the effect of GMP-PNP can be accommodated as a shift in the distribution of tetramers between two states that differ in their cooperative properties. Monomers of the M2 receptor therefore can be assembled into tetramers with binding properties that closely resemble those of the muscarinic receptor in myocardial preparations.  相似文献   

16.
A novel muscarinic receptor antagonist, darifenacin, inhibited specific binding of [N-methyl-(3)H]scopolamine ([(3)H]NMS) in the mouse bladder, submaxillary gland and heart in a concentration-dependent manner. The inhibitory effect was most potent in the submaxillary gland, followed by the bladder and heart. In addition, darifenacin inhibited specific [(3)H]NMS binding in the membranes of CHO-K1 cell lines expressing muscarinic M(2) and M(3) receptor subtypes, and the potency was significantly (22-fold) greater at the M(3) than at the M(2) subtype. At 0.5 to 12 h after oral administration of darifenacin, a significant increase in K(d) values for specific [(3)H]NMS binding was seen in the bladder, submaxillary gland and lung of mice, compared with control values. Also, there was a sustained decrease in the B(max) values in the submaxillary gland. These data suggest that muscarinic receptor binding of oral darifenacin is rapid in onset and of a long duration. On the other hand, oral darifenacin exerted only temporary or little binding of muscarinic receptors in the heart and colon. Pilocarpine-induced salivary secretion in mice was continuously suppressed by oral darifenacin. The time-course of suppression coincided well with that for the muscarinic receptor binding in the submaxillary gland. The antagonistic effect of darifenacin against the dose-response curves for pilocarpine appeared to be insurmountable. In conclusion, the present study has shown that oral darifenacin may exert a pronounced and long-lasting binding of muscarinic receptors in tissues expressing the M(3) subtype.  相似文献   

17.
Abstract

The binding of the nonselective muscarinic antagonist, [3H]N-methylscopolamine (NMS) to a mouse neuroblastoma cell line (Neuro-2A) and its coupling to the inhibition of adenylate cyclase were characterized. Specific [3H]NMS binding to membrane preparations was rapid, saturable, and of high affinity. Saturation experiments revealed a single class of binding sites for the radioligand. Competition experiments with the muscarinic drugs pirenzepine, AF DX 116, dicyclomine and atropine revealed that the muscarinic receptors present on these cells are predominantly of a single class, subtype B (M2). In addition, agonist binding demonstrated existence of a GTP-sensitive high affinity binding state of the receptors. Coupling of these muscarinic receptors to the adenylate cyclase system was investigated using the muscarinic agonist carbachol which was able to inhibit the prostaglandin (PGE1)-stimulated activation of adenylate cyclase. The agonist carbachol did not stimulate the formation of IP3 above basal levels, which indicated that the receptors are not coupled to phosphatidylinositol metabolism. In conclusion, we show that possessing predominantly one subtype of muscarinic receptor, the Neuro-2A cells provide a useful model for the investigation of the heterogeneity of muscarinic receptors and the relationship of subtype to the coupling of different effectors.  相似文献   

18.
Human erythrocyte ghosts contain a small population of muscarinic cholinergic receptors, as evidenced by their high affinity binding of radiolabeled quinuclinidinyl benzilate ([3H]QNB). The apparent KD is 1.3 × 10?9 M and the receptor sites are saturated at a QNB concentration of 5 nM. The number of sites is 23 fmoles/mg membrane protein. The pharmacological profile of the specific binding is similar to that of neural membranes. The binding is not stereoselective for the d and 1 isomers of QNB, a situation which prevails in the muscarinic receptors of another peripheral cholinergic system, the rat iris, but not in the central nervous system.  相似文献   

19.
A series of muscarinic agonists, straight chained, branched, cyclic alkyl and aromatic derivatives of the oxime 1 (demox) was designed with the aim of investigating their activity on muscarinic receptor subtypes. Effects on M1 receptor were assessed functionally by a microphysiometer apparatus, while M2, M3, and M4 receptor potency and affinity were studied on isolated preparations of guinea pig heart, ileum, and lung, respectively. The results suggest that the substitution of a hydrogen with a long side-chain or bulky group generally induces a decrease in potency at M1 and M3 subtypes, while a general increase in this parameter is obtained at M2 subtype. Among the agonists 2-18, compound 4 behaves as a full agonist with a preference for M3 subtype. Moreover, compound 12 is inactive at M1 and M4 receptors while it displays a full agonist activity at M2 and M3 subtypes. Since demox displays a variable response on cardiac M2 receptors regulating heart force, an in-depth inquiry of the functional behaviour of this compound was carried out at M2 receptors. In presence of 10(-11) and 10(-10) M demox, the binding of [3H]-NMS was increased by approximately 30% as a consequence of an increase of the association of [3H]-NMS to membranes; this effect was not observed in presence of a higher concentration of [3H]-NMS. Higher concentrations of demox decreased the binding of [3H]-NMS to heart atrial membranes but significantly retarded the dissociation of this radioligand. Our results suggest that demox may interact with orthosteric and allosteric sites of atrial M2 muscarinic receptor.  相似文献   

20.
The M1/M4-preferring muscarinic agonist xanomeline was found to have some benefit in the treatment of the memory impairment of Alzheimer’s disease (AD), but side effects precluded further development. EUK1001, a fluorinated derivative of xanomeline, because of greater affinity for M1 muscarinic receptors, is likely to have a significantly better side effect profile than xanomeline. We have now studied the effects of 3-month chronic administration of EUK1001 and xanomeline (0.5 mg/kg/day) in AD-like presenilin 1/presenilin 2 conditional double knockout (PS cDKO) mice. Only EUK1001 was found to significantly ameliorate the deficit in recognition memory. Histological analysis demonstrated partial attenuation of the brain atrophy in EUK1001-treated PS cDKO mice and minimal effect in the xanomeline-treated mice. Both compounds effectively suppressed the elevation of brain tau phosphorylation in the PS cDKO mice, but neither inhibited the increased inflammatory responses. These results indicate that EUK1001 showed superiority to xanomeline with regard to attenuation of several AD-like neurodegenerative phenotypes in PS cDKO mice. These results suggest further investigation of the development of EUK1001 for the treatment of AD is indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号