首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
3.
4.
5.
6.
Testicular receptor 4 (TR4) is an orphan member of the nuclear receptor superfamily. Despite the lack of identified ligands, its functional role has been demonstrated both in animals and cell cultures. However, it remains unclear how the biological activity of TR4 is regulated without specific ligands. In this study, we showed that in the absence of specific ligands the activity of TR4 could be modulated by mitogen-activated protein kinase (MAPK)-mediated phosphorylation of its activation function 1 (AF-1) domain. A mass spectrometry-based proteome analysis of TR4 expressed in insect cells revealed three phosphorylation sites in its AF-1 domain, specifically on Ser(19), Ser(55), and Ser(68). Site-directed mutagenesis studies demonstrated the functionality of phosphorylation on Ser(19) and Ser(68) but not Ser(55). We also demonstrated that MAPK-mediated phosphorylation of the AF-1 domain rendered TR4 a repressor, mediated through the preferential recruitment of corepressor RIP140. Dephosphorylation of its AF-1 made TR4 an activator due to its selective recruitment of coactivator, P300/cyclic AMP-responsive element binding protein-binding protein-associated factor (PCAF). The biological effects were validated by using the wild type TR4 and its constitutive negative (dephosphorylated) and constitutive positive (phosphorylated) mutants in the studies of regulation of its natural target gene, apoE. This study uncovered, for the first time, a ligand-independent mechanism underlying the biological activity of TR4 that was mediated by MAPK-mediated receptor phosphorylation of AF-1 domain.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
The human nuclear receptor liver receptor homolog 1 (hLRH-1) plays an important role in the development of breast carcinomas. This orphan receptor is efficiently downregulated by the unusual co-repressor SHP and has been thought to be ligand-independent. We present the crystal structure at a resolution of 1.9 A of the ligand-binding domain of hLRH-1 in complex with the NR box 1 motif of human SHP, which we find contacts the AF-2 region of hLRH-1 using selective structural motifs. Electron density indicates phospholipid bound within the ligand-binding pocket, which we confirm using mass spectrometry of solvent-extracted samples. We further show that pocket mutations reduce phospholipid binding and receptor activity in vivo. Our results indicate that hLRH-1's control of gene expression is mediated by phospholipid binding, and establish hLRH-1 as a novel target for compounds designed to slow breast cancer development.  相似文献   

16.
17.
18.
19.
Khan SA  Park SW  Huq MD  Wei LN 《Proteomics》2006,6(1):123-130
In a previous report we demonstrated protein kinase C (PKC)-mediated phosphorylation of the ligand-binding domain (LBD) of orphan nuclear receptor TR2. In this report, we provide the evidence of PKC-mediated phosphorylation of the DNA-binding domain (DBD) of TR2. Two PKC target sites were predicted within the DBD, at Ser-170 and Ser-185, but only Ser-185 was confirmed by MS. Phosphorylation of DBD facilitated DNA binding of the TR2 receptor and its recruiting of coactivator p300/CBP-associated factor (P/CAF). Ser-185 was required for DNA binding, whereas both Ser-170 and Ser-185 were necessary for receptor interaction with P/CAF. The P/CAF-interacting domain of TR2 was located in its DBD. A double mutant (Ser-170 and Ser-185) of TR2 significantly lowered the activation of its target gene RARbeta2. This study provides the first evidence for ligand-independent activation of TR2 orphan receptor through PTM at the DBD, which enhanced its DNA-binding ability and interaction with coactivator P/CAF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号