首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LPTS/PinX1, a telomerase inhibitor composed of 328 amino acids, binds to the telomere associated protein Pin2/TRF1 and to the telomerase catalytic subunit hTERT. However, the mechanism by which LPTS/PinX1 regulates telomerase activity remains unclear. Here we show, for the first time, that LPTS/PinX1 uses different domains to interact with Pin2/TRF1 and hTERT. The LPTS/PinX1254-289 fragment specifically binds to Pin2/TRF1, and LPTS/PinX1290-328 can associate with hTERT. Compared with the full-length LPTS/PinX1 protein, LPTS/PinX1290-328 shows stronger in vitro telomerase inhibitory activity. Moreover, the LPTS/PinX1 protein was recruited to telomeres for binding to Pin2/TRF1. Overexpression of LPTS/PinX1290-328, which contains a nucleolus localization signal, in cells resulted in telomere shortening and progressive cell death. Conversely, telomere elongation was induced by expression of the dominant-negative LPTS/PinX11-289. Our results suggest that the C-terminal fragment of LPTS/PinX1 (LPTS/PinX1290-328) contains a telomerase inhibitory domain that is required for the inhibition of telomere elongation and the induction of cell crisis. Our studies also provide evidence that LPTS/PinX1 interaction with Pin2/TRF1 may play a role in the stabilization of telomeres.  相似文献   

2.
3.
The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor.   总被引:38,自引:0,他引:38  
X Z Zhou  K P Lu 《Cell》2001,107(3):347-359
Telomerase activity is critical for normal and transformed human cells to escape from crisis and is implicated in oncogenesis. Here we describe a novel Pin2/TRF1 binding protein, PinX1 that inhibits telomerase activity and affects tumorigenicity. PinX1 and its small TID domain bind the telomerase catalytic subunit hTERT and potently inhibit its activity. Overexpression of PinX1 or its TID domain inhibits telomerase activity, shortens telomeres, and induces crisis, whereas depletion of endogenous PinX1 increases telomerase activity and elongates telomeres. Depletion of PinX1 also increases tumorigenicity in nude mice, consistent with its chromosome localization at 8p23, a region with frequent loss of heterozygosity in a number of human cancers. Thus, PinX1 is a potent telomerase inhibitor and a putative tumor suppressor.  相似文献   

4.
TRF1, a telomere-binding protein, is important for telomere protection and homeostasis. PinX1 interacts with TRF1, but the physiological consequences of their interaction in telomere protection are not yet understood. Here we investigated PinX1 function on TRF1 stability in HeLa cells. PinX1 overexpression stabilized TRF1, but PinX1 depletion by siRNA led to TRF1 degradation, TRF1 ubiquitination, and less TRF1 telomere association. The depletion also induced DNA damage responses at telomeres and chromosome instability. These telomere dysfunctional phenotypes were in fact due to TRF1 deficiency. We also report that hTERT, a catalytic component of telomerase, plays dual roles in the TRF1 steady state pathway. PinX1-mediated TRF1 stability was not observed in hTERT-negative immortal cells, but was pronounced when hTERT was ectopically expressed in the cells, suggesting that hTERT may be needed in the PinX1-mediated TRF1 stability pathway. Interestingly, the knockdown of both PinX1 and hTERT in HeLa cells stabilized TRF1, suppressed DNA damage response activation, and restored chromosome stability. In summary, our findings suggested that PinX1 may maintain telomere integrity by regulating TRF1 stability and that hTERT may act as both a positive and a negative regulator of TRF1 homeostasis in a PinX1-dependent manner.  相似文献   

5.
Telomere maintenance is essential for protecting chromosome ends. Aberrations in telomere length have been implicated in cancer and aging. Telomere elongation by human telomerase is inhibited in cis by the telomeric protein TRF1 and its associated proteins. However, the link between TRF1 and inhibition of telomerase elongation of telomeres remains elusive because TRF1 has no direct effect on telomerase activity. We have previously identified one Pin2/TRF1-interacting protein, PinX1, that has the unique property of directly binding and inhibiting telomerase catalytic activity (Zhou, X. Z., and Lu, K. P. (2001) Cell 107, 347-359). However, nothing is known about the role of the PinX1-TRF1 interaction in the regulation of telomere maintenance. By identifying functional domains and key amino acid residues in PinX1 and TRF1 responsible for the PinX1-TRF1 interaction, we show that the TRF homology domain of TRF1 interacts with a minimal 20-amino acid sequence of PinX1 via hydrophilic and hydrophobic interactions. Significantly, either disrupting this interaction by mutating the critical Leu-291 residue in PinX1 or knocking down endogenous TRF1 by RNAi abolishes the ability of PinX1 to localize to telomeres and to inhibit telomere elongation in cells even though neither has any effect on telomerase activity per se. Thus, the telomerase inhibitor PinX1 is recruited to telomeres by TRF1 and provides a critical link between TRF1 and telomerase inhibition to prevent telomere elongation and help maintain telomere homeostasis.  相似文献   

6.
Human LPTS/PinX1 is a telomerase-inhibitory protein, which binds to the telomere protein Pin2/TRF1 and the catalytic subunit hTERT of telomerase. To explore the proteins that might be involved in the telomerase pathway, we performed a yeast two-hybrid screening with LPTS/PinX1 as the bait. A novel gene, MCRS2, encoding for an isoform of MCRS1/p78 and MSP58 was isolated. The expression of MCRS2 protein is cell-cycle dependent, accumulating in the very early S phase. MCRS2 interacts with LPTS/PinX1 in vitro, in vivo and colocalizes with LPTS/PinX1 in cells. MCRS2 and its amino terminus inhibit telomerase activity in vitro and long-term overexpression of MCRS2 in SMMC-7721 cells results in a gradual and progressive shortening of telomeres. Our findings suggest that MCRS2 might be a linker between telomere maintenance and cell-cycle regulation.  相似文献   

7.
8.
端粒酶活性调节的分子机制   总被引:4,自引:0,他引:4  
Liu WJ  Ding J 《生理科学进展》2001,32(3):220-224
人端粒酶由RNA亚基、hTERT催化亚基和hTEP1调节蛋白等组成。端粒酶对端粒结构的稳定起着重要的作用,而端粒结构和端粒结合蛋白也影响着端粒酶活性。某些化疗药物通过破坏端粒结构下调端粒酶活性。端粒酶的激活需要hTERT基因的从头转录和各个蛋白亚基正确装配为端粒酶全酶。端粒酶活性调节的分子机制包括:(1)TERT基因的表达和转录是决定端粒酶活性的重要环节,受多种因素调控;(2)蛋白激酶Cα和蛋白激酶B磷酸化端粒酶蛋白而激活端粒酶,蛋白磷酸酯酶2A(PP2A)可逆转这一过程,下调端粒酶活性;(3)多种癌基因和抑癌基因及其编码的蛋白质也直接或间接与端粒蛋白、端粒酶蛋白反应,参与端粒酶活性的调控。  相似文献   

9.
10.
11.
12.
13.
Human telomerase uses its integral core components, hTR and hTERT, to maintain telomeres in many cell types. Expression of a dominant-negative mutant of the catalytic subunit of telomerase, DN-hTERT, has been shown to cause telomere shortening and ultimately cell death in a number of tumor-derived cell lines. However, the mechanism of dominant-negative hTERT function and its fate inside the cell are still unknown. In order to understand the effect of the dominant-negative on wild-type hTERT, each was fused with GFP and expressed in telomerase-positive cells. GFP-DN-hTERT expression resulted in cytoplasmic exportation and degradation via ubiquitination. Co-expression of wild-type GFP-hTERT with an untagged DN-hTERT resulted in decreased wild-type hTERT levels, export to the cytoplasm, and increased ubiquitination, suggesting that DN-hTERT complexes with wild-type hTERT to induce cytoplasmic localization. Based on the cytoplasmic degradation, we propose two new mechanisms of dominant-negative hTERT, employing the theory of interactive dimerization. First, the heterodimer of DN-hTERT with wild-type hTERT is exported to the cytoplasm for ubiquitin-mediated protein degradation, and second, the heterodimer may be degraded at a faster rate than the wild-type hTERT homodimer. Understanding mechanisms of telomerase degradation will guide future drug design to target sites on telomerase important for catalytic activity and protein stability.  相似文献   

14.
15.
16.
17.
18.
19.
Expression of the catalytic subunit of human telomerase, hTERT, extends human primary fibroblast life span. Such life span extension has generally been reported to be accompanied by net telomere lengthening, which led to the hypothesis that it is the telomere lengthening that causes the life span extension. Here we show that hTERT+C and hTERT-FlagC, mutant telomerase proteins with either 10 additional residues or a FLAG epitope added to the hTERT C-terminus, confer significant but limited life span extension to IMR90 human primary lung fibroblasts. However, as the cells continue to grow for >100 population doublings past their normal senescence point, bulk telomere length continues to erode to lengths much shorter than those seen at the senescence of control telomerase-negative cells. Expression of hTERT+C immortalized IMR90 cells transformed by three different oncogenes. Again, bulk telomeres became much shorter than those of the control cells at crisis. Additional hTERT mutants were constructed and analyzed similarly. Enzymatically active hTERT-N125A+T126A, like other previously reported conserved GQ domain mutants and C-terminally HA-tagged hTERT, failed to extend life span. Another GQ domain mutant, hTERT-E79A, was indistinguishable from wild-type hTERT in its cell growth effects, but there was no net telomere lengthening. These results uncover further hTERT allele-specific phenotypes that uncouple telomerase activity, net telomere lengthening and life span extension.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号