首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The GTPase dynamin plays an essential role in clathrin-mediated endocytosis [1] [2] [3]. Substantial evidence suggests that dynamin oligomerisation around the necks of endocytosing vesicles and subsequent dynamin-catalysed GTP hydrolysis is responsible for membrane fission [4] [5]. The pleckstrin homology (PH) domain of dynamin has previously been shown to interact with phosphoinositides, but it has not been determined whether this interaction is essential for dynamin's function in endocytosis [6] [7] [8] [9]. In this study, we address the in vivo function of the PH domain of dynamin by assaying the effects of deletions and point mutations in this region on transferrin uptake in COS-7 fibroblasts. Overexpression of a dynamin construct lacking its entire PH domain potently blocked transferrin uptake, as did overexpression of a dynamin construct containing a mutation in the first variable loop of the PH domain. Structural modelling of this latter mutant suggested that the lysine residue at position 535 (Lys535) may be critical in the coordination of phosphoinositides, and indeed, the purified mutant no longer interacted with lipid nanotubes. Interestingly, the inhibitory phenotype of cells expressing this dynamin mutant was partially relieved by a second mutation in the carboxy-terminal proline-rich domain (PRD), one that prevents dynamin from binding to the Src homology 3 (SH3) domain of amphiphysin. These data demonstrate that dynamin's interaction with phosphoinositides through its PH domain is essential for endocytosis. These findings also support our hypothesis that PRD-SH3 domain interactions are important in the recruitment of dynamin to sites of endocytosis.  相似文献   

2.
Myo1c is a member of the myosin superfamily that binds phosphatidylinositol-4,5-bisphosphate (PIP(2)), links the actin cytoskeleton to cellular membranes and plays roles in mechano-signal transduction and membrane trafficking. We located and characterized two distinct membrane binding sites within the regulatory and tail domains of this myosin. By sequence, secondary structure, and ab initio computational analyses, we identified a phosphoinositide binding site in the tail to be a putative pleckstrin homology (PH) domain. Point mutations of residues known to be essential for polyphosphoinositide binding in previously characterized PH domains inhibit myo1c binding to PIP(2) in vitro, disrupt in vivo membrane binding, and disrupt cellular localization. The extended sequence of this binding site is conserved within other myosin-I isoforms, suggesting they contain this putative PH domain. We also characterized a previously identified membrane binding site within the IQ motifs in the regulatory domain. This region is not phosphoinositide specific, but it binds anionic phospholipids in a calcium-dependent manner. However, this site is not essential for in vivo membrane binding.  相似文献   

3.
In nonneural tissues, the dynamin-2 isoform participates in the formation of clathrin-coated vesicles during receptor endocytosis. In this study, the mechanism of dynamin-2 action was explored during endocytosis of the G protein-coupled AT1A angiotensin receptor expressed in Chinese hamster ovary cells. Dynamin-2 molecules with mutant pleckstrin homology domains or deleted proline-rich domains (PRD) exerted dominant negative inhibition on the endocytosis of radiolabeled angiotensin II. However, only the PRD mutation interfered with the localization of the dynamin-2 molecule to clathrin-coated pits and reduced the inhibitory effect of the GTPase-deficient K44A mutant dynamin-2. Green fluorescent protein-tagged Src homology 3 (SH3) domains of endophilin I and amphiphysin II, two major binding partners of dynamins, also inhibited AT1A receptor-mediated endocytosis of angiotensin II. These effects were partially or fully, respectively, restored by the overexpression of dynamin-2. Transient overexpression of these SH3 domains also reduced the localization of dynamin-2 to clathrin-coated pits. These data indicate that, similar to the recruitment of dynamin-1 during the recycling of synaptic vesicles, interaction of the dynamin-2 PRD with SH3 domains of proteins such as the amphiphysins and endophilins is essential for AT1A receptor endocytosis. This mechanism could be of general importance in dynamin-dependent endocytosis of other G protein-coupled receptors in nonneural tissues.  相似文献   

4.
The small GTPase Rho and its effector ROCK/Rho-kinase regulate actin cytoskeletal reorganization through phosphorylation of the regulatory light chain of myosin II. We previously reported that ROCK co-purified with the actin-binding protein filamin-A from HeLa cells. Here, we show that the pleckstrin homology (PH) domain of ROCK, but not the kinase or coiled-coil domain, interacts with filamin-A. We also determined that the PH domain of ROCK binds to the carboxy-terminal region of filamin-A containing the last 24th repeat. ROCK co-localized with filamin-A at the protrusive cell membranes of HeLa cells.  相似文献   

5.
The pleckstrin homology (PH) domain of the general receptor for phosphoinositides 1 (GRP1) exhibits specific, high-affinity, reversible binding to phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P(3)) at?the plasma membrane, but the nature and extent of the interaction between this bound complex and the surrounding membrane environment remains unclear. Combining equilibrium and nonequilibrium molecular dynamics (MD) simulations, NMR spectroscopy, and monolayer penetration experiments, we characterize the membrane-associated state of?GRP1-PH. MD simulations show loops flanking the binding site supplement the interaction with PI(3,4,5)P(3) through multiple contacts with the lipid bilayer. NMR data show large perturbations in chemical shift for these loop regions on binding to PI(3,4,5)P(3)-containing DPC micelles. Monolayer penetration experiments and further MD simulations demonstrate that mutating hydrophobic residues to polar residues in the flanking loops reduces membrane penetration. This supports a "dual-recognition" model of binding, with specific GRP1-PH-PI(3,4,5)P(3) interactions supplemented by interactions of loop regions with the lipid bilayer.  相似文献   

6.
An in vitro transformation system of carcinogen-treated Syrian hamster embryo (SHE) cell cultures represents multistep genetic and nongenetic changes that develop during the neoplastic progression of normal cells to tumor cells in vivo. During this neoplastic progression, SHE cells demonstrate an altered response to epidermal growth factor (EGF). In the present report, we examined the role of the adapter protein Gab1 (Grb2-associated binder-1) in the neoplastic progression of SHE cells. We used two asbestos-transformed SHE cell clones in different neoplastic stages: a 10W+8 clone, which is immortal and retains the ability to suppress the tumorigenicity of tumor cells in cell-cell hybrid experiments, and a 10W-1 clone, which has lost this tumor suppressor ability. 10W+8 cells expressed full-length 100-kDa Gab1 and associated 5.2-kb mRNA. Upon repeated cell passaging, 10W-1 cells showed increasing expression of a novel 87-kDa form of Gab1 as well as 4.6-kb mRNA with diminishing expression of the original 100-kDa Gab1. cDNA encoding the 87-kDa Gab1 predicts a form of Gab1 lacking the amino-terminal 103 amino acids (Gab1(Delta1-103)), which corresponds to loss of most of the pleckstrin homology (PH) domain. Gab1(Delta1-103) retains the ability to be phosphorylated in an EGF-dependent manner and to associate with the EGF receptor and SHP-2 upon EGF stimulation. The endogenous expression of Gab1(Delta1-103) in 10W-1 cells appeared closely related to EGF-dependent colony formation in soft agar. Moreover, transfection and expression of Gab1(Delta1-103), but not Gab1, in 10W+8 cells enhanced their EGF-dependent colony formation in soft agar. These results demonstrate that Gab1 is a target of carcinogen-induced transformation of SHE cells and that the expression of a Gab1 variant lacking most of the PH domain plays a specific role in the neoplastic progression of SHE cells.  相似文献   

7.
SCAB1 is a novel plant-specific actin-binding protein that binds, bundles, and stabilizes actin filaments and regulates stomatal movement. Here, we dissected the structure and function of SCAB1 by structural and biochemical approaches. We show that SCAB1 is composed of an actin-binding domain, two coiled-coil (CC) domains, and a fused immunoglobulin and pleckstrin homology (Ig-PH) domain. We determined crystal structures for the CC1 and Ig-PH domains at 1.9 and 1.7 Å resolution, respectively. The CC1 domain adopts an antiparallel helical hairpin that further dimerizes into a four-helix bundle. The CC2 domain also mediates dimerization. At least one of the coiled coils is required for actin binding, indicating that SCAB1 is a bivalent actin cross-linker. The key residues required for actin binding were identified. The PH domain lacks a canonical basic phosphoinositide-binding pocket but can bind weakly to inositol phosphates via a basic surface patch, implying the involvement of inositol signaling in SCAB1 regulation. Our results provide novel insights into the functional organization of SCAB1.  相似文献   

8.
Pleckstrin homology (PH) domains are protein modules that bind with varying degrees of affinity and specificity membrane phosphoinositides. Previously we have shown that although the PH domains of the Ras GTPase-activating proteins GAP1m and GAP1IP4BP are 63% identical at the amino acid level they possess distinct phosphoinositide-binding profiles. The GAP1m PH domain binds phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), whereas the domain from GAP1IP4BP binds PtdIns(3,4,5)P3 and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) equally well. These phosphoinositide specificities are translated into distinct subcellular localizations. GAP1m is cytosolic and undergoes a rapid PtdIns(3,4,5)P3-dependent association with the plasma membrane following growth factor stimulation. In contrast, GAP1IP4BP is constitutively associated, in a PtdIns(4,5)P2-dependent manner, with the plasma membrane (Cozier, G. E., Lockyer, P. J., Reynolds, J. S., Kupzig, S., Bottomley, J. R., Millard, T., Banting, G., and Cullen, P. J. (2000) J. Biol. Chem. 275, 28261-28268). In the present study, we have used molecular modeling to identify residues in the GAP1IP4BP PH domain predicted to be required for high affinity binding to PtdIns(4,5)P2. This has allowed the isolation of a mutant, GAP1IP4BP-(K591T), which while retaining high affinity for PtdIns(3,4,5)P3 has a 6-fold reduction in its affinity for PtdIns(4,5)P2. Importantly, GAP1IP4BP-(K591T) is predominantly localized to the cytosol and undergoes a PtdIns(3,4,5)P3-dependent association with the plasma membrane following growth factor stimulation. We have therefore engineered the phosphoinositide-binding profile of the GAP1IP4BP PH domain, thereby emphasizing that subtle changes in PH domain structure can have a pronounced effect on phosphoinositide binding and the subcellular localization of GAP1IP4BP.  相似文献   

9.
AKT kinase, also known as protein kinase B, is a key regulator of cell growth, proliferation, and metabolism. The activation of the AKT signaling pathway is one of the most frequent molecular alterations in a wide variety of human cancers. Dickson and coworkers recently observed that Ca(2+).calmodulin (Ca(2+).CaM) may be a common regulator of AKT1 activation (Deb, T. B., Coticchia, C. M., and Dickson, R. B. (2004) J. Biol. Chem. 279, 38903-38911). In our efforts to scan the mRNA-displayed proteome libraries for Ca(2+).CaM-binding proteins, we found that both human and Caenorhabditis elegans AKT1 kinases bound to CaM in a Ca(2+)-dependent manner (Shen, X., Valencia, C. A., Szostak, J., Dong, B., and Liu, R. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 5969-5974 and Shen, X., Valencia, C. A., Gao, W., Cotten, S. W., Dong, B., Chen, M., and Liu, R. (2007) submitted for publication). Here we demonstrate that Ca(2+).CaM and human AKT1 were efficiently co-immunoprecipitated, and their interaction was direct rather than mediated by other proteins. The binding is in part attributed to the first 42 residues of the pleckstrin homology (PH) domain, a region that is critical for the recognition of its lipid ligands. The PH domain of human AKT1 can disrupt the complex of the full-length AKT1 with Ca(2+).CaM. In addition, Ca(2+).CaM competes with phosphatidylinositol 3,4,5-trisphophate for interaction with the PH domain of human AKT1. Our findings suggest that Ca(2+).CaM is directly involved in regulating the functions of AKT1, presumably by releasing the activated AKT1 from the plasma membrane and/or prohibiting it from re-association with phosphoinositides on plasma membrane.  相似文献   

10.
The protein hSos1 is a Ras guanine nucleotide exchange factor. In the present study, we investigated the function of the amino-terminal region of the hSos1 protein, corresponding to the first 600 residues, which includes the Dbl and pleckstrin homology (DH and PH) domains. We demonstrated, using a series of truncated mutants, that this region is absolutely necessary for hSos1 activity. Our results suggest that the first 200 residues (upstream of DH domain), which we called the HF motif on the basis of their homology with histone H2A, may exert negative control over the functional activity of the whole hSos1 protein. In vitro binding analysis showed that the HF motif is able to interact specifically with the PH domain of hSos1. The amino-terminal region of hSos1 may be associated in vivo with an expressed HF motif. These findings document the existence of the HF motif located upstream of the DH domain in the hSos1 protein. This motif may be responsible for the negative control of hSos1, probably by intramolecular binding with the PH domain.  相似文献   

11.
The N-terminus of ceramide kinase (CERK) is thought to be myristoylated and to contain a pleckstrin homology (PH) domain. We found that deletion of this region (DeltaPH-CERK) ablates activity. This is not due to prevention of N-terminal myristoylation since a G2A CERK mutant, which cannot be myristoylated, was active. CERK was able to bind liposomes, as well as the isolated unmyristoylated PH domain; DeltaPH-CERK was not. Upon analysis of EGFP-tagged proteins, CERK was found associated with the Golgi complex. Osmotic cell swelling induced translocation of CERK to the plasma membrane and formation of large vesicles displaying bound CERK. None of these features occurred with DeltaPH-CERK, which remained disseminated throughout the cytoplasm. These findings show that the PH domain of CERK is essential for localization, translocation, and activity of this lipid kinase.  相似文献   

12.
The amino terminus of phospholipase D1 (PLD1) contains three potential membrane-interacting determinants: a phox homology (PX) domain, a pleckstrin homology (PH) domain and two adjacent cysteines at positions 240 and 241 within the PH domain that are fatty acylated in vivo. To understand how these determinants contribute to membrane localization, we have mutagenized critical residues of the PLD1 PH domain in the wild type or palmitate-free background in the intact protein, in a fragment that deletes the first 210 amino acids including the PX domain, and in the isolated PH domain. Mutants were expressed in COS-7 cells and examined for membrane residence, intracellular localization, palmitoylation, and catalytic activity. Our results are as follows. 1) Mutagenesis of critical residues of the PH domain results in redistribution of PLD1 from membranes to cytosol, independently of fatty acylation sites. Importantly, PH domain mutants in the wild type background showed greatly reduced fatty acylation, despite the presence of all relevant cysteines. 2) The isolated PH domain did not co-localize with PLD1 and was not palmitoylated. 3) The PX deletion mutant showed similar distribution and palmitoylation to the intact protein. Interestingly, PH domain mutants in this background showed significant palmitoylation and incomplete cytosolic redistribution. 4) PH domain mutants in the wild type or palmitate-free background maintained catalytic activity. We propose that membrane targeting of PLD1 involves a hierarchy of signals with a functional PH domain allowing fatty acylation leading to strong membrane binding. The PX domain may modulate function of the PH domain.  相似文献   

13.
A thiol-reactive membrane-associated protein (TRAP) binds covalently to the cytoplasmic domain of the human insulin receptor (IR) beta-subunit when cells are treated with the homobifunctional cross-linker reagent 1,6-bismaleimidohexane. Here, TRAP was found to be phospholipase C gamma1 (PLCgamma1) by mass spectrometry analysis. PLCgamma1 associated with the IR both in cultured cell lines and in a primary culture of rat hepatocytes. Insulin increased PLCgamma1 tyrosine phosphorylation at Tyr-783 and its colocalization with the IR in punctated structures enriched in cortical actin at the dorsal plasma membrane. This association was found to be independent of PLCgamma1 Src homology 2 domains, and instead required the pleckstrin homology (PH)-EF-hand domain. Expression of the PH-EF construct blocked endogenous PLCgamma1 binding to the IR and inhibited insulin-dependent phosphorylation of mitogen-activated protein kinase (MAPK), but not AKT. Silencing PLCgamma1 expression using small interfering RNA markedly reduced insulin-dependent MAPK regulation in HepG2 cells. Conversely, reconstitution of PLCgamma1 in PLCgamma1-/- fibroblasts improved MAPK activation by insulin. Our results show that PLCgamma1 is a thiol-reactive protein whose association with the IR could contribute to the activation of MAPK signaling by insulin.  相似文献   

14.
A plant homologue of mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1) has been identified in Arabidopsis and rice which displays 40% overall identity with human 3-phosphoinositide-dependent protein kinase-1. Like the mammalian 3-phosphoinositide-dependent protein kinase-1, Arabidopsis 3-phosphoinositide-dependent protein kinase-1 and rice 3-phosphoinositide-dependent protein kinase-1 possess a kinase domain at N-termini and a pleckstrin homology domain at their C-termini. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 can rescue lethality in Saccharomyces cerevisiae caused by disruption of the genes encoding yeast 3-phosphoinositide-dependent protein kinase-1 homologues. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 interacts via its pleckstrin homology domain with phosphatidic acid, PtdIns3P, PtdIns(3,4,5)P3 and PtdIns(3,4)P2 and to a lesser extent with PtdIns(4,5)P2 and PtdIns4P. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 is able to activate human protein kinase B alpha (PKB/AKT) in the presence of PtdIns(3,4,5)P3. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 is only the second plant protein reported to possess a pleckstrin homology domain and the first plant protein shown to bind 3-phosphoinositides.  相似文献   

15.
The Dbl family guanine nucleotide exchange factors (GEFs) contain a region of sequence similarity consisting of a catalytic Dbl homology (DH) domain in tandem with a pleckstrin homology (PH) domain. PH domains are involved in the regulated targeting of signaling molecules to plasma membranes by protein-protein and/or protein-lipid interactions. Here we show that Dbl PH domain binding to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-triphosphate results in the inhibition of Dbl GEF activity on Rho family GTPase Cdc42. Phosphatidylinositol 4,5-bisphosphate binding to the PH domain significantly inhibits the Cdc42 interactive activity of the DH domain suggesting that the DH domain is subjected to the PH domain modulation under the influence of phosphoinositides (PIPs). We generated Dbl mutants unable to interact with PIPs. These mutants retained GEF activity on Cdc42 in the presence of PIPs and showed a markedly enhanced activating potential for both Cdc42 and RhoA in vivo while displaying decreased cellular transforming activity. Immunofluorescence analysis of NIH3T3 transfectants revealed that whereas the PH domain localizes to actin stress fibers and plasma membrane, the PH mutants are no longer detectable on the plasma membrane. These results suggest that modulation of PIPs in both the GEF catalytic activity and the targeting to plasma membrane determines the outcome of the biologic activity of Dbl.  相似文献   

16.
Intersectin-long (ITSN-L) contains the invariant Dbl homology (DH) and pleckstrin homology (PH) domain structure characteristic of the majority of Dbl family proteins. This strict domain topography suggests that the PH domain serves an essential, conserved function in the regulation of the intrinsic guanine nucleotide exchange activity of the DH domain. We evaluated the role of the PH domain in regulating the DH domain function of ITSN-L. Surprisingly, we found that the PH domain was dispensable for guanine nucleotide exchange activity on Cdc42 in vitro, yet the PH domain enhanced the ability of the DH domain to activate Cdc42 signaling in vivo. PH domains can interact with phosphoinositide substrates and products of phosphatidylinositol 3-kinase (PI3K). However, PI3K activation did not modulate ITSN-L DH domain function in vivo.  相似文献   

17.
The pleckstrin homology (PH) domain is a small motif for membrane targeting in the signaling molecules. Phospholipase C (PLC)-gamma1 has two putative PH domains, an NH(2)-terminal and a split PH domain. Here we report studies on the interaction of the PH domain of PLC-gamma1 with translational elongation factor (EF)-1alpha, which has been shown to be a phosphatidylinositol 4-kinase activator. By pull-down of cell extract with the glutathione S-transferase (GST) fusion proteins with various domains of PLC-gamma1 followed by peptide sequence analysis, we identified EF-1alpha as a binding partner of a split PH domain of PLC-gamma1. Analysis by site-directed mutagenesis of the PH domain revealed that the beta2-sheet of a split PH domain is critical for the interaction with EF-1alpha. Moreover, Dot-blot assay shows that a split PH domain specifically binds to phosphoinositides including phosphatidylinositol 4-phosphate and phosphatidylinositol 4, 5-bisphosphate (PIP(2)). So the PH domain of PLC-gamma1 binds to both EF-1alpha and PIP(2). The binding affinity of EF-1alpha to the GST.PH domain fusion protein increased in the presence of PIP(2), although PIP(2) does not bind to EF-1alpha directly. This suggests that EF-1alpha may control the binding affinity between the PH domain and PIP(2). PLC-gamma1 is substantially activated in the presence of EF-1alpha with a bell-shaped curve in relation to the molar ratio between them, whereas a double point mutant PLC-gamma1 (Y509A/F510A) that lost its binding affinity to EF-1alpha shows basal level activity. Taken together, our data show that EF-1alpha plays a direct role in phosphoinositide metabolism of cellular signaling by regulating PLC-gamma1 activity via a split PH domain.  相似文献   

18.
A bifunctional molecule containing biotin and d-myo-inositol 1,3,4,5-tetrakisphosphate was synthesized. This molecule was designed on the basis of X-ray structure of the complex of d-myo-inositol 1,3,4,5-tetrakisphosphates, Ins(1,3,4,5)P(4), and Grp1 PH (general receptor of phosphoinositides pleckstrin homology) domain for the application to the widely employed biotin-avidin techniques. The building block of inositol moiety was synthesized starting with myo-inositol and assembled with the biotin-linker moiety through a phosphate linkage. The equilibrium dissociation constant K(D) of biotinylated Ins(1,3,4,5)P(4) binding of original Grp1 PH domain was 0.14 μM in pull-down analysis, which was comparable to that of unmodified Ins(1,3,4,5)P(4). Furthermore, biotinylated Ins(1,3,4,5)P(4) had an ability to distinguish Grp1 PH domain from PLCδ(1) PH domain. Thus, biotinylated Ins(1,3,4,5)P(4) retained the binding affinity and selectivity of original Grp1 PH domain, and realized the intracellular Ins(1,3,4,5)P(4) despite a tethering at the 1-phosphate group of inositol.  相似文献   

19.
Oak SA  Jarrett HW 《Biochemistry》2000,39(30):8870-8877
Syntrophins are known to self-associate to form oligomers. Mouse alpha 1-syntrophin sequences were produced as chimeric fusion proteins in bacteria and were found to also oligomerize and in a micromolar Ca(2+)-dependent manner. The oligomerization was localized to the N-terminal pleckstrin homology domain (PH1) or adjacent sequences; the second, C-terminal PH2 domain did not show oligomerization. PH1 was found to self-associate, and calmodulin or Ca(2+)-chelating agents such as ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) could effectively prevent this oligomerization. A single calmodulin bound per syntrophin to cause inhibition of the precipitation. Since calmodulin inhibited syntrophin oligomerization in the presence or absence of Ca(2+), Ca(2+) binding to syntrophin is responsible for the inhibition by EGTA of syntrophin oligomerization.  相似文献   

20.
Several isoforms of phospholipase C (PLC) are regulated through interactions with Ras superfamily GTPases, including Rac proteins. Interestingly, of two closely related PLCgamma isoforms, only PLCgamma(2) has previously been shown to be activated by Rac. Here, we explore the molecular basis of this interaction as well as the structural properties of PLCgamma(2) required for activation. Based on reconstitution experiments with isolated PLCgamma variants and Rac2, we show that an unusual pleckstrin homology (PH) domain, designated as the split PH domain (spPH), is both necessary and sufficient to effect activation of PLCgamma(2) by Rac2. We also demonstrate that Rac2 directly binds to PLCgamma(2) as well as to the isolated spPH of this isoform. Furthermore, through the use of NMR spectroscopy and mutational analysis, we determine the structure of spPH, define the structural features of spPH required for Rac interaction, and identify critical amino acid residues at the interaction interface. We further discuss parallels and differences between PLCgamma(1) and PLCgamma(2) and the implications of our findings for their respective signaling roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号