首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The adhesion of Salmonella typhimurium to the mineral particles quartz, albite, feldspar, and magnetite was shown to correlate with the hydrophobicity of the cell surface as measured by hydrophobic interaction chromatography. The same effects were also seen for seven other selected test strains, including Streptococcus faecalis, Streptococcus faecium, Escherichia coli, Citrobacter freundii, Shigella sonnei, and Shigella boydii. When the test strain of Salmonella typhimurium, was repeatedly cultivated in Luria broth, thus selecting for different degrees of fimbriation and roughness of the cell surface, varied cell hydrophobicity but constant negative and positive charge values were obtained. High hydrophobicity values always coincided with enhanced adhesion to the mineral particles. The negative charge of the bacterial surface as measured by electrostatic interaction chromatography appeared to play no role in the adhesion event. However, the positive charges on the cell surface contributed to the adhesion process. This was especially evident for cells exhibiting a high degree of hydrophobicity. Alteration of the pH between 4 and 9 did not significantly affect the adhesion process.  相似文献   

2.
The adhesion of Salmonella typhimurium to the mineral particles quartz, albite, feldspar, and magnetite was shown to correlate with the hydrophobicity of the cell surface as measured by hydrophobic interaction chromatography. The same effects were also seen for seven other selected test strains, including Streptococcus faecalis, Streptococcus faecium, Escherichia coli, Citrobacter freundii, Shigella sonnei, and Shigella boydii. When the test strain of Salmonella typhimurium, was repeatedly cultivated in Luria broth, thus selecting for different degrees of fimbriation and roughness of the cell surface, varied cell hydrophobicity but constant negative and positive charge values were obtained. High hydrophobicity values always coincided with enhanced adhesion to the mineral particles. The negative charge of the bacterial surface as measured by electrostatic interaction chromatography appeared to play no role in the adhesion event. However, the positive charges on the cell surface contributed to the adhesion process. This was especially evident for cells exhibiting a high degree of hydrophobicity. Alteration of the pH between 4 and 9 did not significantly affect the adhesion process.  相似文献   

3.
Hydrophobic and charge-charge interactions of Salmonella typhimirium and Serratia marcescens were determined and related to their content of fimbriae and lipopolysaccharide (LPS). The cell surface structures were characterized with hydrophobic interaction chromatography (HIC), electrostatic interaction chromatography (ESIC) and particle electrophoresis measurements. The degree of interaction at the air-water interface was tested using a monolayered lipid film applied to an aqueous surface. The cell surface hydrophobicity of S. typhimurium in the presence of fimbriae was less in smooth than in rought bacteria. Examination of a series of rough mutants of S. typhimurium indicates that reduction of the O-side chain and core oligosaccharides was correlated with increased cell hydrophobicity. The enrichment factors at the air-water interface were significantly higher for fimbriated than for non-fimbriated S. typhimurium cells. Fimbriated S. marcescens cells were less hydrophobic and adhered to a lesser degree at the air-water surface than non-fimbriated counterparts. Electrophoretic measurements and adsorption to ion exchangers gives different information about the surface charge of bacteria. The latter technique gives the interaction between localized charged surfaces.Abbreviations HIC hydrophobic interaction chromatography - ESIC electrostatic interaction chromatography - LPS lipopolysaccharide - PBS phosphate buffered saline solution  相似文献   

4.
Summary The role of fimbriae in enterobacterial adhesion to roots of grasses and cereals is discussed. All nitrogen-fixing enteric bacteria isolated in Finland had fimbriae. AllEnterobacter isolates had mannose-binding type-1 fimbriae, whereas most of theKlebsiella isolates had both type-1 and type-3 fimbriae. The strains were isolated from a total of ten different grass species, and no specific association was found between grass species and bacterial fimbriation, biogroup or serogroup. Purified, radiolabeled fimbriae bound to roots ofPoa pratensis in vitro, and bacterial adhesion was inhibited by Fab fragments specific for fimbriae.Klebsiella strains carrying type-3 fimbriae adhered to roots of various grasses and cereals more efficiently than type-1- or nonfimbriated strains, and it was concluded that type-3 fimbriae are the major adhesions ofKlebsiella. Immunofluorescence studies revealed that the bacteria preferentially adhered to root hairs, and to a lesser extent, to the zone of elongation and the root cap mucilage. No strict host specificity in enterobacterial adhesion was observed.  相似文献   

5.
Effective modelling of the fate and transport of water‐borne pathogens is needed to support federally required pollution‐reduction plans, for water quality improvement planning, and to protect public health. Lack of understanding of microbial–particle interactions in water bodies has sometimes led to the assumption that bacteria move in surface waters not associated with suspended mineral and organic particles, despite a growing body of evidence suggesting otherwise. Limited information exists regarding the factors driving interactions between micro‐organisms and particles in surface waters. This review discusses cellular, particle and environmental factors potentially influencing interactions and in‐stream transport. Bacterial attachment in the aquatic environment can be influenced by properties of the cell such as genetic predisposition and physiological state, surface structures such as flagella and fimbriae, the hydrophobicity and electrostatic charge of the cell surface, and the presence of outer‐membrane proteins and extracellular polymeric substances. The mechanisms and degree of attachment are also affected by characteristics of mineral and organic particles including the size, surface area, charge and hydrophobicity. Environmental conditions such as the solution chemistry and temperature are also known to play an important role. Just as the size and surface of chemical particles can be highly variable, bacterial attachment mechanisms are also diverse.  相似文献   

6.
Bacterial cell surface hydrophobicity is one of the most important factors that influence bacterial adhesion. A new method, microsphere adhesion to cells, for measuring bacterial cell surface hydrophobicity was developed. Microsphere adhesion to cells is based on microscopic enumeration of hydrophobic, fluorescent microspheres attaching to the bacterial surface. Cell surface hydrophobicity estimated by microsphere adhesion to cells correlates well with adhesion of bacteria to hydrocarbons or hydrophobic interaction chromatography for a set of hydrophilic and hydrophobic bacteria (linear correlation coefficients, R2, were 0.845 and 0.981 respectively). We also used microsphere adhesion to cells to investigate the in situ properties of individual free-living bacteria directly in activated sludge. Results showed that the majority of the bacteria were hydrophilic, indicating the importance of cell surface hydrophobicity for bacterial adhesion in sludge, and for the overall success of the wastewater treatment process.  相似文献   

7.
Bacteria adhere to almost any surface, despite continuing arguments about the importance of physico-chemical properties of substratum surfaces, such as hydrophobicity and charge in biofilm formation. Nevertheless, in vivo biofilm formation on teeth and also on voice prostheses in laryngectomized patients is less on hydrophobic than on hydrophilic surfaces. With the aid of micro-patterned surfaces consisting of 10-microm wide hydrophobic lines separated by 20-microm wide hydrophilic spacings, we demonstrate here, for the first time in one and the same experiment, that bacteria do not have a strong preference for adhesion to hydrophobic or hydrophilic surfaces. Upon challenging the adhering bacteria, after deposition in a parallel plate flow chamber, with a high detachment force, however, bacteria were easily wiped-off hydrophobic lines, most notably when these lines were oriented parallel to the direction of flow. Adhering bacteria detached slightly less from the hydrophilic spacings in between, but preferentially accumulated adhering on the hydrophilic regions close to the interface between the hydrophilic spacings and hydrophobic lines. It is concluded that substratum hydrophobicity is a major determinant of bacterial retention while it hardly influences bacterial adhesion.  相似文献   

8.
The influence of type 1 fimbriae, mannose-sensitive structures, on biofilm development and maturation has been examined by the use of three isogenic Escherichia coli K12 strains: wild type, fimbriated, and non-fimbriated. Experiments with the three strains were done in minimal medium or Luria–Bertani broth supplemented with different concentrations of d-mannose. The investigation consisted of: (1) characterizing the bacterial surface of the three strains with respect to hydrophilicity and surface charge, (2) investigating the effect of type 1 fimbriae on bacterial adhesion rate and reversibility of initial adhesion on glass surfaces, and (3) verifying the role of type 1 fimbriae and exopolysaccharides (EPS) in biofilm maturation. The results suggest that type 1 fimbriae are not required for the initial bacterial adhesion on glass surfaces as the non-fimbriated cells had higher adhesion rates and irreversible deposition. Type 1 fimbriae, however, are critical for subsequent biofilm development. It was hypothesized that in the biofilm maturation step, the cells synthesize mannose-rich EPS, which functions as a ‘conditioning film’ that can be recognized by the type 1 fimbriae.  相似文献   

9.
Biofilm formation is a developmental process in which initial reversible adhesion is governed by physico-chemical forces, whilst irreversible adhesion is mediated by biological changes within a cell, such as the production of extracellular polymeric substances. Using two bacteria, E. coli MG1655 and B. cereus ATCC 10987, this study establishes that the surface of the bacterial cell also undergoes specific modifications, which result in biofilm formation and maintenance. Using various surface characterisation techniques and proteomics, an increase in the surface exposed proteins on E. coli cells during biofilm formation was demonstrated, along with an increase in hydrophobicity and a decrease in surface charge. For B. cereus, an increase in the surface polysaccharides during biofilm formation was found as well as a decrease in hydrophobicity and surface charge. This work therefore shows that surface modifications during biofilm formation occur and understanding these specific changes may lead to the formulation of effective biofilm control strategies in the future.  相似文献   

10.
Phenotypic differences between planktonic bacteria and those attached to abiotic surfaces exist, but the mechanisms involved in the adhesion response of bacteria are not well understood. By the use of two-dimensional (2D) polyacrylamide gel electrophoresis, we have demonstrated that attachment of Escherichia coli to abiotic surfaces leads to alteration in the composition of outer membrane proteins. A major decrease in the abundance of resolved proteins was observed during adhesion of type 1-fimbriated E. coli strains, which was at least partly caused by proteolysis. Moreover, a study of fimbriated and nonfimbriated mutants revealed that these changes were due mainly to type 1 fimbria-mediated surface contact and that only a few changes occurred in the outer membranes of nonfimbriated mutant strains. Protein synthesis and proteolytic degradation were involved to different extents in adhesion of fimbriated and nonfimbriated cells. While protein synthesis appeared to affect adhesion of only the nonfimbriated strain, proteolytic activity mostly seemed to contribute to adhesion of the fimbriated strain. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry, six of the proteins resolved by 2D analysis were identified as BtuB, EF-Tu, OmpA, OmpX, Slp, and TolC. While the first two proteins were unaffected by adhesion, the levels of the last four were moderately to strongly reduced. Based on the present results, it may be suggested that physical interactions between type 1 fimbriae and the surface are part of a surface-sensing mechanism in which protein turnover may contribute to the observed change in composition of outer membrane proteins. This change alters the surface characteristics of the cell envelope and may thus influence adhesion.  相似文献   

11.
The effect of sub-inhibitory and inhibitory concentrations of antimicrobials including aminoglycosides, third generation cephalosporins and quinolones on the surface properties and adhesion of Klebsiella pneumoniae to uroepithelial cells (UECs) was examined. Antibiotics, ceftazidime and ofloxacin at 1/4, 1/8 × MIC and minimum inhibitory concentration (MIC) induced filament formation in bacteria, however cells treated with amikacin were similar in length to control organisms but showed a rough topology under the scanning electron microscope. An increase in bacterial hydrophobicity and decrease in uronic acid content were noted in the presence of ceftazidime and ofloxacin at MIC and sub-MIC level. However, amikacin at MIC level caused decreased hydrophobicity of the cells and the uronic content remained the same. This study clearly indicates that, although ceftazidime and ofloxacin brought about profound changes in cell surface characteristics, these changes did not result in any advantage to the bacterial cell in terms of adhesion. In contrast, with amikacin, which did not show any appreciable change in cell morphology or surface topology, exposure markedly increased the adherence of bacteria to UECs, indicating that the prophylactic use of this antibiotic not only induces resistance in bacteria but can also promote the colonization of UECs.  相似文献   

12.
The relative surface charge and hydrophobicity of 16 strains of Staphylococcus epidermidis showed large variations. For this species no relationship between the two surface parameters was found. A highly negative surface charge was observed in all seven encapsulated strains (one S. epidermidis and six Staphylococcus saprophyticus strains). The adhesion of the staphylococci to fluorinated polyethylene-propylene films was not related to the relative surface charge and the hydrophobicity of the bacteria. On films pre-exposed to human plasma, the bacterial adhesion was substantially reduced. Mechanisms involved in the adhesion of coagulase-negative staphylococci to this biomaterial are discussed.  相似文献   

13.
The development of bacteria on abiotic surfaces has important public health and sanitary consequences. However, despite several decades of study of bacterial adhesion to inert surfaces, the biophysical mechanisms governing this process remain poorly understood, due, in particular, to the lack of methodologies covering the appropriate time scale. Using micrometric colloidal surface particles and flow cytometry analysis, we developed a rapid multiparametric approach to studying early events in adhesion of the bacterium Escherichia coli. This approach simultaneously describes the kinetics and amplitude of early steps in adhesion, changes in physicochemical surface properties within the first few seconds of adhesion, and the self-association state of attached and free-floating cells. Examination of the role of three well-characterized E. coli surface adhesion factors upon attachment to colloidal surfaces--curli fimbriae, F-conjugative pilus, and Ag43 adhesin--showed clear-cut differences in the very initial phases of surface colonization for cell-bearing surface structures, all known to promote biofilm development. Our multiparametric analysis revealed a correlation in the adhesion phase with cell-to-cell aggregation properties and demonstrated that this phenomenon amplified surface colonization once initial cell-surface attachment was achieved. Monitoring of real-time physico-chemical particle surface properties showed that surface-active molecules of bacterial origin quickly modified surface properties, providing new insight into the intricate relations connecting abiotic surface physicochemical properties and bacterial adhesion. Hence, the biophysical analytical method described here provides a new and relevant approach to quantitatively and kinetically investigating bacterial adhesion and biofilm development.  相似文献   

14.
Bacteriophage-resistant mutant strains of the root-colonizing Pseudomonas strains WCS358 and WCS374 lack the O-antigenic side chain of the lipopolysaccharide, as was shown by the loss of the typical lipopolysaccharide ladder pattern after analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These strains differed from their parent strains in cell surface hydrophobicity and in cell surface charge. The observed variation in these physicochemical characteristics could be explained by the differences in sugar composition. The mutant strains had no altered properties of adherence to sterile potato roots compared with their parental strains, nor were differences observed in the firm adhesion to hydrophilic, lipophilic, negatively charged, or positively charged artificial surfaces. These results show that neither physicochemical cell surface properties nor the presence of the O-antigenic side chain plays a major role in the firm adhesion of these bacterial cells to solid surfaces, including potato roots.  相似文献   

15.
Summary The growth of Candida maltosa on hydrocarbons (dodecane and hexadecane) was influenced by adding various natural and synthetic surfactants. Microbial adhesion to the hydrocarbon was used to measure the surface cell hydrophobicity of the yeast, which in the presence of a synthetic surfactant correlated with the degree of hydrocarbon biodegradation. Non-ionic surfactants caused the highest degree of hydrocarbon biodegradation corresponding the lowest hydrophobicity. A different correlation was observed with natural surfactants, of which saponin was the most effective for hydrocarbon biodegradation, though the concentration of this surfactant had no influence on surface cell hydrophobicity.  相似文献   

16.
Surface hydrophobicity of hemagglutinatingVibrio cholerae, Vibrio parahaemolyticus, and NAG vibrios has been investigated. Most strains caused mannose-sensitive hemagglutination of monkey, guinea pig, chicken, and mannose-resistant hemagglutination of human erythrocytes with different degrees of hemagglutinating activity. Hemagglutinating strains adsorbed to a hydrophobic gel (Octyl Sepharose), whereas nonhemagglutinating strains failed to adsorb.Vibrio cholerae and other vibrios investigated seem to have pronounced surface hydrophobicity as estimated by Octyl Sepharose and they correspondingly autoaggregated into visible cell clumps in ammonium sulfate solution at low molarity (0.2–0.4 M). Nonhemagglutinating strains did not aggregate even at high (2 M) ammonium sulfate concentration. The presence of surface hemagglutinins of vibrios is growth-media-dependent. Strains, grown in four different liquid media, produced hemagglutinins and expressed pronounced surface hydrophobicity. Studies with electron microscopy revealed the presence of fimbriae on the vibrio cells. The number of fimbriae on the cells varied from strain to strain. Some strains possessed more than 300 fimbriae/cell whereas others had less than 10 fimbriae/cell. Vibrio hemagglutinins are easily detached from the cell surface by heating or sonication, and their cell surface hydrophobicity decreased simultaneously.  相似文献   

17.
Abstract

The effect of 2, 4-dinitrophenol (DNP) on the extracelluar polysaccharides (EPS), cell surface charge, and the hydrophobicity of six marine bacterial cultures was studied, and its influence on attachment of these bacteria to glass and polystyrene was evaluated. DNP treatment did not influence cell surface charge and EPS production, but had a significant effect on hydrophobicity of both hydrophilic (p = 0.05) and hydrophobic (p = 0.01) cultures. Significant reduction in the attachment of all the six cultures to glass (p = 0.02) and polystyrene (p = 0.03) was observed after DNP treatment. Moreover, hydrophobicity but not the cell surface charge or EPS production influenced bacterial cell attachment to glass and polystyrene. From this study, it was evident that DNP treatment influenced bacterial cell surface hydrophobicity, which in turn, reduced bacterial adhesion to surfaces.  相似文献   

18.
A novel quartz crystal microbalance (QCM) technique was used to study the adhesion of nonfimbriated and fimbriated Escherichia coli mutant strains to hydrophilic and hydrophobic surfaces at different ionic strengths. This technique enabled us to measure both frequency shifts (Deltaf), i.e., the increase in mass on the surface, and dissipation shifts (DeltaD), i.e., the viscoelastic energy losses on the surface. Changes in the parameters measured by the extended QCM technique reflect the dynamic character of the adhesion process. We were able to show clear differences in the viscoelastic behavior of fimbriated and nonfimbriated cells attached to surfaces. The interactions between bacterial cells and quartz crystal surfaces at various ionic strengths followed different trends, depending on the cell surface structures in direct contact with the surface. While Deltaf and DeltaD per attached cell increased for nonfimbriated cells with increasing ionic strengths (particularly on hydrophobic surfaces), the adhesion of the fimbriated strain caused only low-level frequency and dissipation shifts on both kinds of surfaces at all ionic strengths tested. We propose that nonfimbriated cells may get better contact with increasing ionic strengths due to an increased area of contact between the cell and the surface, whereas fimbriated cells seem to have a flexible contact with the surface at all ionic strengths tested. The area of contact between fimbriated cells and the surface does not increase with increasing ionic strengths, but on hydrophobic surfaces each contact point seems to contribute relatively more to the total energy loss. Independent of ionic strength, attached cells undergo time-dependent interactions with the surface leading to increased contact area and viscoelastic losses per cell, which may be due to the establishment of a more intimate contact between the cell and the surface. Hence, the extended QCM technique provides new qualitative information about the direct contact of bacterial cells to surfaces and the adhesion mechanisms involved.  相似文献   

19.
目的:对细菌吸附有机溶剂法进行一定的修改,探索水相溶液pH和电解质浓度对测定细胞疏水性的影响,以及不同底物培养的细胞疏水性的差异性。探索细胞和固体间的静电作用和疏水作用对细菌早期吸附的影响。方法:以9K液体培养基为水相溶液,测定不同pH值和电解质浓度下细胞转移到有机相的吸附率。测定不同底物培养的细胞的Zeta电位以及在石英砂和黄铜矿表面的吸附率。结果:水相溶液pH值的变化并没有引起细胞转移到有机溶液的吸附率的显著变化,而在实验所用的电解质浓度梯度范围内,随着浓度的增加,细胞转移到有机溶剂的吸附率也随之增加,但是以单质硫为底物培养的细胞的吸附率始终大于以Fe2+和黄铜矿为底物培养的细胞。在溶液pH 2.0的条件下,石英砂和黄铜矿带负电,单质硫培养的细胞带正电,而以Fe2+和黄铜矿为底物培养的额细胞带负电。结论:细胞表面疏水性不会受到溶液pH值变化的扰动,但是却会随着电解液浓度的增加而增加,以单质硫为底物培养的细胞的疏水性大于以Fe2+和黄铜矿为底物培养的细胞,不同的细胞表面均含有大量的作为电子供体和电子受体的官能团。不同底物培养的细胞在石英砂和黄铜矿表面的早期吸附受到静电作用和疏水作用力的共同影响。  相似文献   

20.
Abstract A biphasic increase in surface hydrophobicity of the surfactant-biodegrading bacterium Pseudomonas C12B has been correlated with biodegradation of the primary alkyl sulphate, sodium dodecyl sulphate. Using both hydrophobic interaction chromatography and microbial adhesion to hydrocarbon to measure surface hydrophobicity, it was shown that the first phase coincides with production of the primary metabolite dodecan-1-ol. The direct addition of dodecan-1-ol to Pseudomonas C12B resulted in the instantaneous increase in surface hydrophobicity, with a subsequent decrease which coincided with dodecan-1-ol biodegradation. In contrast, incubation of Pseudomonas C12B with sodium dodecane sulphonate, a non-metabolizable surfactant analogue of SDS, or the growth-supporting carbon source sodium pyruvate did not alter the surface hydrophobicity. These data are interpreted in terms of a model in which the hydrophobic metabolite dodecan-1-ol enters the bacterial membranes, thus increasing surface hydrophobicity and that these surfactant-biodegradation-dependent changes in bacterial surface hydrophobicity are correlated with reversible attachment of the bacteria to sediment surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号