共查询到20条相似文献,搜索用时 0 毫秒
1.
Dysregulation of intracellular Ca(2+) homeostasis may underlie amyloid beta peptide (Abeta) toxicity in Alzheimer's Disease (AD) but the mechanism is unknown. In search for this mechanism we found that Abeta(1-42) oligomers, the assembly state correlating best with cognitive decline in AD, but not Abeta fibrils, induce a massive entry of Ca(2+) in neurons and promote mitochondrial Ca(2+) overload as shown by bioluminescence imaging of targeted aequorin in individual neurons. Abeta oligomers induce also mitochondrial permeability transition, cytochrome c release, apoptosis and cell death. Mitochondrial depolarization prevents mitochondrial Ca(2+) overload, cytochrome c release and cell death. In addition, we found that a series of non-steroidal anti-inflammatory drugs (NSAIDs) including salicylate, sulindac sulfide, indomethacin, ibuprofen and R-flurbiprofen depolarize mitochondria and inhibit mitochondrial Ca(2+) overload, cytochrome c release and cell death induced by Abeta oligomers. Our results indicate that i) mitochondrial Ca(2+) overload underlies the neurotoxicity induced by Abeta oligomers and ii) inhibition of mitochondrial Ca(2+) overload provides a novel mechanism of neuroprotection by NSAIDs against Abeta oligomers and AD. 相似文献
2.
The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug,Amantadine 总被引:26,自引:0,他引:26
Griffin SD Beales LP Clarke DS Worsfold O Evans SD Jaeger J Harris MP Rowlands DJ 《FEBS letters》2003,535(1-3):34-38
Hepatitis C virus (HCV) cannot be grown in vitro, making biochemical identification of new drug targets especially important. HCV p7 is a small hydrophobic protein of unknown function, yet necessary for particle infectivity in related viruses [Harada, T. et al., (2000) J. Virol. 74, 9498-9506]. We show that p7 can be cross-linked in vivo as hexamers. Escherichia coli expressed p7 fusion proteins also form hexamers in vitro. These and HIS-tagged p7 function as calcium ion channels in black lipid membranes. This activity is abrogated by Amantadine, a compound that inhibits ion channels of influenza [Hay, A.J. et al. (1985) EMBO J. 4, 3021-3024; Duff, K.C. and Ashley, R.H. (1992) Virology 190, 485-489] and has recently been shown to be active in combination with current HCV therapies. 相似文献
3.
Ultraviolet-A (UV-A, 320 to 400 nm) radiation comprises 95% of the solar ultraviolet radiation (UVR) reaching the earth's surface. It has been associated experimentally and epidemiologically with malignant melanoma. In this study we investigated whether UV-A radiation can induce a persistent, heritable hypermutability in mammalian cells similar to that observed following ionising radiation (IR). Using the immortalized human skin keratinocyte cell line HaCaT we found that UV-A radiation does lead to a continuing reduction in plating efficiency, an increased "spontaneous" mutant fraction, and an increase in micronucleus formation up to 21 d after initial exposure. Reversal of these effects using catalase may indicate a role for hydrogen peroxide in this phenomenon. These results add to the significance of UV-A radiation as a risk factor in skin carcinogenesis. 相似文献
4.
星形胶质细胞维持神经元微环境,给予营养和代谢支持,并调节其对损伤的反应。鱼藤酮特异阻断线粒体复合物Ⅰ,长期暴露于鱼藤酮可能增加患帕金森病的几率,并引起帕金森综合征。然而,星形胶质细胞在鱼藤酮所致多巴胺能神经元损伤过程中的作用尚无报道。本研究采用多巴胺能神经元细胞系MN9D细胞模型,将经过或未经过星形胶质细胞条件培养基处理的MN9D细胞暴露于不同浓度的鱼藤酮中,用计数法测生长曲线,MTT法测细胞活性,DCFH染色流式细胞仪测氧化应激水平,比色法测还原型谷胱甘肽含量。结果显示,MN9D细胞在条件和普通培养基培养条件下生长曲线无明显差别;鱼藤酮浓度依赖性地降低细胞活性;不同浓度鱼藤酮作用24、48h后,经条件培养基处理的细胞其活性显著高于普通培养基培养的细胞:不同浓度的条件培养基都有保护作用,纯的条件培养基保护作用稍弱:预先24h条件培养基处理或同时给予鱼藤酮和条件培养基处理都有保护作用,鱼藤酮作用12h后再给予条件培养基则无保护作用;经条件培养基处理的细胞氧化应激水平降低:另外,条件培养基提高了细胞内还原型谷胱甘肽含量,缓解了鱼藤酮所致的谷胱甘肽耗竭。结果提示,星形胶质细胞可保护MN9D细胞抵抗鱼藤酮所致的氧化应激,还原型谷胱甘肽可能参与了该保护过程。 相似文献
5.
Beta amyloid (Abeta) peptides accumulate in Alzheimer's disease and are neurotoxic possibly through the production of oxygen free radicals. Using brain microdialysis we characterized the ability of Abeta to increase oxygen radical production in vivo. The 1-40 Abeta fragment increased 2,3-dehydroxybenzoic acid efflux more than the 1-28 fragment, in a manner dependent on nitric oxide synthase and NMDA receptor channels. We then examined the effects of Abeta peptides on mitochondrial function in vitro. Induction of the mitochondrial permeability transition in isolated rat liver mitochondria by Abeta(25-35) and Abeta(35-25) exhibited dose dependency and required calcium and phosphate. Cyclosporin A prevented the transition as did ruthenium red, chlorpromazine, or N-ethylmaleimide. ADP and magnesium delayed the onset of mitochondrial permeability transition. Electron microscopy confirmed the presence of Abeta aggregates and swollen mitochondria and preservation of mitochondrial structure by inhibitors of mitochondrial permeability transition. Cytochrome c oxidase (COX) activity was selectively inhibited by Abeta(25-35) but not by Abeta(35-25). Neurotoxic Abeta peptide can increase oxidative stress in vivo through mechanisms involving NMDA receptors and nitric oxide sythase. Increased intracellular Abeta levels can further exacerbate the genetically driven complex IV defect in sporadic Alzheimer's disease and may precipitate mitochondrial permeability transition opening. In combination, our results provide potential mechanisms to support the feed-forward hypothesis of Abeta neurotoxicity. 相似文献
6.
7.
Soares J Keppler BR Wang X Lee KH Jarstfer MB 《Bioorganic & medicinal chemistry letters》2011,21(24):7474-7478
The tanshinone natural products possess a variety of pharmacological properties including anti-bacterial, anti-inflammatory, anti-oxidant, and anti-neoplastic activity. The molecular basis of these effects, however, remains largely unknown. In the present study, we explored the direct effect of tanshinones on the enzyme telomerase. Telomerase is up-regulated in the majority of cancer cells and is essential for their survival, making it a potential anti-cancer drug target. We found that the ortho-quinone tanshinone II-A inhibits telomerase in a time- and DTT-dependent fashion, and the hydrogen peroxide scavenger catalase protected telomerase from inactivation. These findings demonstrate that ortho-quinone containing tanshinones can inhibit telomerase owing to their ability to generate reactive oxygen species. The results also provide evidence that telomerase is directly and negatively regulated by reactive oxygen species. 相似文献
8.
《Journal of receptor and signal transduction research》2013,33(5):410-416
AbstractBackground: Despite the importance of oxidative stress and apoptosis through mitochondrial depolarization in neurodegenerative diseases, their roles in etiology of glaucoma are poorly understood. We aimed to investigate whether oxidative stress and apoptosis formation are altered in rat pheochromocytoma-derived cell line-12 (PC12) neuronal cell cultures exposed to elevated different hydrostatic pressures as a cell culture model of glaucoma. Materials: Cultured PC12 cells were subjected to 0, 15 and 70?mmHg hydrostatic pressure for 1 and 24?h. Then, the following values were analyzed: (a) cell viability; (b) lipid peroxidation and intracellular reactive oxygen species production; (c) mitochondrial membrane depolarization; (d) cell apoptosis; (e) caspase-3 and caspase-9 activities; (f) reduced glutathione (GSH) and glutathione peroxidase (GSH-Px). Results: The hydrostatic pressures (15 and 70?mmHg) increased oxidative cell damage through a decrease of GSH and GSH-Px values, and increasing mitochondrial membrane potential. Additionally, 70?mmHg hydrostatic pressure for 24?h indicated highest apoptotic effects, as demonstrated by plate reader analyses of apoptosis, caspase-3 and -9 values. Conclusion: The present data indicated oxidative stress, apoptosis and mitochondrial changes in PC12 cell line during different hydrostatic pressure as a cell culture model of glaucoma. This findings support the view that mitochondrial oxidative injury contributes early to glaucomatous optic neuropathy. 相似文献
9.
Vascular endotheliocytes BAE-2 underwent the gradually proceeding cell death until 48 h after reoxygenation (Reox) following 3 h anoxia (Anox), but protected by pre-Anox administration with L-ascorbic acid (Asc)-2-O-phosphate (Asc2P), an autooxidation-resistant Asc derivative, but not by Asc itself. This cytoprotection with Asc2P was achieved in a glucose (Glc)-lacking buffer more advantageously than in a Glc-containing buffer where less efficiency had been demonstrated for Asc entry into BAE-2 cells than in a Glc-lacking buffer. Superoxide anion radicals were detected explosively in the extracellular space at 2-5 min after Reox following the Anox treatment of HUVE endotheliocytes, and were thereafter retained at levels as high as approximately one-half of the maximum level until 60 min after Reox, as shown by cytochrome c reduction assay. Superoxide anions at 3 and 60 min after Reox were suppressed by pre-Anox administration with Asc2P, but not with Asc or dehydro-Asc, and were not suppressed by post-Anox administration with Asc2P; the cytoprotection may need the intracellular accumulation of the ROS-scavenging effector Asc that is converted from Asc2P until 3 min after Reox. The ROS-generator tert-butylhydroperoxide (t-BuOOH) also induced both the diminished cell viability and nuclear DNA strand cleavages of BAE-2 endotheliocytes, which were also protected dose-dependently with Asc2P. The cytoprotection was attributed to reduction of intracellular ROS including hydroperoxide and hydrogen peroxide with Asc2P as shown by fluorometry with the redox indicator CDCFH-DA. Thus Anox/Reox-induced cell death can be prevented by Asc2P that suppresses ROS-generation immediately after Reox following Anox more efficiently in the intracellular sphere rather than in the extracellular space. 相似文献
10.
11.
Erol A 《BioEssays : news and reviews in molecular, cellular and developmental biology》2007,29(8):811-818
Several protective cellular mechanisms protect against the accumulation of reactive oxygen species (ROS) and the concomitant oxidative stress. Therefore, any reduction in glucose or fatty acid flux into cells leading to a decrease in the production of reducing equivalents would also lead to a decreased ROS production and protect cells against oxidative stress. In the presence of insulin, FOXO proteins are localized from the nucleus to the cytoplasm and degraded. An increase in cellular glucose uptake will lead to increased production of ROS. This in turn activates the stress-responsive Jun-N-terminal kinase (JNK), which promotes nuclear translocation of FOXO proteins, upregulating some important target genes including stress resistance. Consequently, insulin resistance should result in decreased cellular ROS production. For this reason, insulin resistance could be a physiological mechanism activated at the cellular level in response to conditions stimulating ROS production and leading to the prevention of oxidative stress, and extension of life. Concerning the whole organism, however, IR is a maladaptive process in the long term causing a diabetic state. 相似文献
12.
Albesa I Barnes AI Paraje MG 《Biochemical and biophysical research communications》2000,274(3):649-654
A leukotoxic and hemolytic toxin was purified from cultures of Enterobacter cloacae. Stimulation of oxidative stress was observed and the production of reactive oxidant species was measured in leukocytes treated with toxin by means of nitroblue tetrazolium and chemiluminescence assays. Molecular weight of toxin was estimated by chromatography and SDS-PAGE. Two protean peaks with toxic activity were found in Sephadex G-100 (P1, 42.0 kDa; and P2, 13.3 kDa). The relative amounts between the peaks (P1/P2 = 0.36) changed when 2-mercaptoethanol was employed (P1/P2 = 0.59). When Sephadex G-200 chromatography was performed, a protean peak of Ve = 113 mL (100 kDa) was found; its was dissociated with 3 M urea in toxic proteins of lower mass: 42, 27, and 13.3 kDa. SDS-PAGE (15%) showed a single toxin band of purified monomer (13.3 kDa), but electrophoresis of a 42-kDa toxin with urea presented three bands of trimer, dimer, and monomer. An increase of casein hydrolysate and albumin molecular weight was observed by chromatography after incubation with toxin due to the binding of both proteins with toxin. 相似文献
13.
Craxton A Butterworth M Harper N Fairall L Schwabe J Ciechanover A Cohen GM 《Cell death and differentiation》2012,19(9):1424-1434
Ubiquitin (Ub)-mediated proteasome-dependent proteolysis is critical in regulating multiple biological processes including apoptosis. We show that the unstructured BH3-only protein, NOXA, is degraded by an Ub-independent mechanism requiring 19S regulatory particle (RP) subunits of the 26S proteasome, highlighting the possibility that other unstructured proteins reported to be degraded by 20S proteasomes in vitro may be bona fide 26S proteasome substrates in vivo. A lysine-less NOXA (NOXA-LL) mutant, which is not ubiquitinated, is degraded at a similar rate to wild-type NOXA. Myeloid cell leukemia 1, but not other anti-apoptotic BCL-2 family proteins, stabilizes NOXA by interaction with the NOXA BH3 domain. Depletion of 19S RP subunits, but not alternate proteasome activator REG subunits, increases NOXA half-life in vivo. A NOXA-LL mutant, which is not ubiquitinated, also requires an intact 26S proteasome for degradation. Depletion of the 19S non-ATPase subunit, PSMD1 induces NOXA-dependent apoptosis. Thus, disruption of 26S proteasome function by various mechanisms triggers the rapid accumulation of NOXA and subsequent cell death strongly implicating NOXA as a sensor of 26S proteasome integrity. 相似文献
14.
In this study we investigated the molecular mechanism by which the Orp1 (Gpx3) protein in Saccharomyces cerevisiae senses and reacts with hydrogen peroxide. Upon exposure to H(2)O(2) Orp1(Cys36) forms a disulfide-bonded complex with the C-terminal domain of the Yap1 protein (Yap1-cCRD). We used 4-nitrobenzo-2-oxa-1,3-diazole to identify a cysteine sulfenic acid (Cys-SOH) modification that forms on Cys(36) of Orp1(Cys36) upon exposure to H(2)O(2). Under similar conditions, neither Cys(82) of Orp1(Cys82) nor Cys(598) of Yap1 forms Cys-SOH. A homology-based molecular model of Orp1 suggests that the structure of the active site of Orp1 is similar to that found in mammalian selenocysteine glutathione peroxidases. Proposed active site residues Gln(70) and Trp(125) form a catalytic triad with Cys(36) in the Orp1 molecular model. The remainder of the active site pocket is formed by Phe(38), Asn(126), and Phe(127), which are evolutionarily conserved residues. We made Q70A and W125A mutants and tested the ability of these mutants to form Cys-SOH in response to H(2)O(2). Both mutants were unable to form Cys-SOH and did not form a H(2)O(2)-inducible disulfide-bonded complex with Yap1-cCRD. The pK(a) of Cys(36) was determined to be 5.1, which is 3.2 pH units lower than that of a free cysteine (8.3). In contrast, Orp1 Cys(82) (the resolving cysteine) has a pK(a) value of 8.3. The pK(a) of Cys(36) in the Q70A and W125A mutants is also 8.3, demonstrating the importance of these residues in modulating the nucleophilic character of Cys(36). Finally, we show that S. cerevisiae strains with ORP1 Q70A and W125A mutations are less tolerant to H(2)O(2) than those containing wild-type ORP1. The results of our study suggest that attempts to identify novel redox-regulated proteins and signal transduction pathways should focus on characterization of low pK(a) cysteines. 相似文献
15.
Tyrosine hydroxylase (TH), the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter dopamine, is inhibited by the sulfhydryl oxidant diamide in a concentration-dependent manner. The inhibitory effect of diamide on TH catalytic activity is enhanced significantly by GSH. Treatment of TH with diamide in the presence of [(35)S]GSH results in the incorporation of (35)S into the enzyme. The effect of diamide-GSH on TH activity is prevented by dithiothreitol (DTT), as is the binding of [(35)S]GSH, indicating the formation of a disulfide linkage between GSH and TH protein cysteinyls. Loss of TH catalytic activity caused by diamide-GSH is partially recovered by DTT and glutaredoxin, whereas the disulfide linkage of GSH with TH is completely reversed by both. Treatment of intact PC12 cells with diamide results in a concentration-dependent inhibition of TH activity. Incubation of cells with [(35)S]cysteine, to label cellular GSH prior to diamide treatment, followed by immunoprecipitation of TH shows that the loss of TH catalytic activity is associated with a DTT-reversible incorporation of [(35)S]GSH into the enzyme. A combination of matrix-assisted laser desorption/ionization/mass spectrometry and liquid chromatography/tandem mass spectrometry was used to identify the sites of S-glutathionylation in TH. Six cysteines (177, 249, 263, 329, 330, and 380) of the seven cysteine residues in TH were confirmed as substrates for modification. Only Cys-311 was not S-glutathionylated. These results establish that TH activity is influenced in a reversible manner by S-glutathionylation and suggest that cellular GSH may regulate dopamine biosynthesis under conditions of oxidative stress or drug-induced toxicity. 相似文献
16.
Patil S Valdramidis VP Karatzas KA Cullen PJ Bourke P 《Journal of applied microbiology》2011,111(1):136-144
Aims: To investigate the effect of the oxidative stress of ozone on the microbial inactivation, cell membrane integrity and permeability and morphology changes of Escherichia coli. Methods and Results: Escherichia coli BW 25113 and its isogenic mutants in soxR, soxS, oxyR, rpoS and dnaK genes were treated with ozone at a concentration of 6 μg ml?1 for a period up to 240 s. A significant effect of ozone exposure on microbial inactivation was observed. After ozonation, minor effects on the cell membrane integrity and permeability were observed, while scanning electron microscopy analysis showed slightly altered cell surface structure. Conclusions: The results of this study suggest that cell lysis was not the major mechanism of microbial inactivation. The deletion of oxidative stress–related genes resulted in increased susceptibility of E. coli cells to ozone treatment, implying that they play an important role for protection against the radicals produced by ozone. However, DnaK that has previously been shown to protect against oxidative stress did not protect against ozone treatment in this study. Furthermore, RpoS was important for the survival against ozone. Significance and Impact of the Study: This study provides important information about the role of oxidative stress in the responses of E. coli during ozonation. 相似文献
17.
Conjugated linoleic acid (CLA) has shown chemopreventive activity in several tumorigenesis models, in part through induction of apoptosis. We previously demonstrated that the t10,c12 isomer of CLA induced apoptosis of TM4t mouse mammary tumor cells through both mitochondrial and endoplasmic reticulum (ER) stress pathways, and that the AMP-activated protein kinase (AMPK) played a critical role in the apoptotic effect. In the current study, we focused on the upstream pathways by which AMPK was activated, and additionally evaluated the contributing role of oxidative stress to apoptosis. CLA-induced activation of AMPK and/or induction of apoptosis were inhibited by infection of TM4t cells with an adenovirus expressing a peptide which blocks the interaction between the G protein coupled receptor (GPCR) and Gαq, by the phospholipase C (PLC) inhibitor U73122, by the inositol trisphosphate (IP3) receptor inhibitor 2-APB, by the calcium/calmodulin-dependent protein kinase kinase α (CaMKK) inhibitor STO-609 and by the intracellular Ca2+ chelator BAPTA-AM. This suggests that t10,c12-CLA may exert its apoptotic effect by stimulating GPCR through Gαq signaling, activation of phosphatidylinositol-PLC, followed by binding of the PLC-generated IP3 to its receptor on the ER, triggering Ca2+ release from the ER and finally stimulating the CaMKK–AMPK pathway. t10,c12-CLA also increased oxidative stress and lipid peroxidation, and antioxidants blocked its apoptotic effect, as well as the CLA-induced activation of p38 MAPK, a downstream effector of AMPK. Together these data elucidate two major pathways by which t10,c12-CLA induces apoptosis, and suggest a point of intersection of the two pathways both upstream and downstream of AMPK. 相似文献
18.
A signaling pathway that induces programmed necrotic cell death (necroptosis) was reported to be activated in cells by several cytokines and various pathogen components. The major proteins participating in that pathway are the protein kinases RIPK1 and RIPK3 and the pseudokinase mixed lineage kinase domain-like protein (MLKL). Recent studies have suggested that MLKL, once activated, mediates necroptosis by binding to cellular membranes, thereby triggering ion fluxes. However, our knowledge of both the sequence of molecular events leading to MLKL activation and the subcellular sites of these events is fragmentary. Here we report that the association of MLKL with the cell membrane in necroptotic death is preceded by the translocation of phosphorylated MLKL, along with RIPK1 and RIPK3, to the nucleus.Apart from the apoptotic cell death pathway that ligands of the tumor necrosis factor (TNF) family can activate, these ligands and various other inducers, including the interferons and various pathogen components, have in recent years been found also to trigger a signaling cascade that induces programmed necrotic death (necroptosis). This cascade encompasses sequential activation of the protein kinases RIPK1 and RIPK3 and the pseudokinase mixed lineage kinase domain-like protein (MLKL).1, 2, 3, 4, 5 RIPK3-mediated phosphorylation of MLKL triggers its oligomerization, which is necessary and sufficient for the induction of cell death,6, 7, 8 and can also trigger some non-deadly functions.9 MLKL was recently suggested to trigger cell death by binding to cellular membranes and initiating ion fluxes through them.6, 7, 8, 10 However, its exact molecular target in death induction is contentious.6, 8, 10, 11, 12 Current knowledge of the subcellular sites of MLKL action is based mainly on determination of the location of this protein close to the time of cell death. Here we present a detailed assessment of the cellular location of MLKL at different times following its activation. Our findings indicate that before cell death, MLKL translocates to the nucleus along with RIPK1 and RIPK3. 相似文献
19.
BackgroundExcess copper (Cu) is an oxidative stress factor which associates with a variety of diseases. The aim of this study was to evaluate the effect of Cu in primary chicken embryo hepatocytes (CEHs).MethodsCEHs were isolated from 13 days old chicken embryos and followed by different concentration Cu (0, 10, 100, 200 μM) and/or ALC treatment (0.3 mg/mL) for 12 or 24 h. The effects of Cu exposure in CEHs were determined by detecting reactive oxygen species (ROS), malondialdehyde (MDA), mitochondrial membrane potential (MMP), and ATP levels. The expression of mitochondrial dynamics-related genes and proteins were also detected.ResultsResults showed that Cu treatment (100 or 200 μM) significantly decreased CEHs viability, MMP and ATP levels, increased ROS and MDA levels in 12 or 24 h. The up-regulated mitochondrial fission genes and protein in 100 and 200 μM Cu groups suggested Cu promoted mitochondrial division but not fusion. However, the co-treatment of ALC and Cu alleviated those changes compared with the 100 or 200 μM Cu groups.ConclusionIn conclusion, we speculated that Cu increased the oxidative stress and induced mitochondria dysfunction via disturbing mitochondrial dynamic balance in CEHs, and this process was not completely reversible. 相似文献
20.
Suzuki Y Gómez-Guerrero C Shirato I López-Franco O Gallego-Delgado J Sanjuán G Lázaro A Hernández-Vargas P Okumura K Tomino Y Ra C Egido J 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(6):3243-3253
In immune complex (IC) diseases, FcR are essential molecules facilitating polymorphonuclear cell (PMN) recruitment and effector functions at the IC site. Although FcR-dependent initial tethering and FcR/integrin-dependent PMN accumulation were postulated, their underlying mechanisms remain unclear. We here addressed potential mechanisms involved in PMN recruitment in acute IC glomerulonephritis (nephrotoxic nephritis). Since some renal cells may be recruited from bone marrow (BM) lineages, reconstitution studies with BM chimeras and PMN transfer between wild-type (WT) and FcR-deficient mice (gamma(-/-)) were performed. Severe glomerular damage was induced in WT and W gamma chimeras (BM from WT to irradiated gamma(-/-)), while it was absent in gamma(-/-) and gamma W chimeras (gamma(-/-) BM to WT). Moreover, WT PMN transfer, but not gamma(-/-) PMN, reconstituted the disease in gamma(-/-), indicating that FcR on resident cells is not a prerequisite for PMN recruitment in this disease. Surprisingly, transferred WT PMN were recruited coincidentally with NF-kappa B activation and TNF-alpha overexpression even in glomeruli with preformed IC (nephrotoxic Ab administered 3 days previously), suggesting that PMN can initially be recruited via its own FcR without previous chemoattractant release. Furthermore, H(2)O(2) inhibition by catalase attenuated the acute WT PMN recruitment and the induction of NF-kappa B and TNF-alpha much more than integrin (CD18) blockade, indicating a role for the respiratory burst before integrin-dependent accumulation. In coculture experiments with IC-stimulated PMN and glomeruli, PMN caused acute glomerular TNF-alpha expression predominantly via FcR-mediated H(2)O(2) production. In conclusion, glomerular IC, even preformed, can cause PMN recruitment and injury through PMN FcR-mediated respiratory burst during initial PMN tethering to IC. 相似文献