首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of platelet-activating factor by chick retina   总被引:4,自引:0,他引:4  
In the present study it is demonstrated that platelet-activating factor (PAF) was produced by chick retinas, upon stimulation with neurotransmitters such as acetylcholine (ACh), dopamine, or with calcium ionophore A23187, but not upon stimulation with gamma-amino-n-butyric acid, L-glycine, L-glutamate, epinephrine, or histamine. PAF produced in response to ACh, dopamine, or A23187 was not released into supernatants but was extractable from retinas. The amounts of extractable PAF increased after sonication of stimulated retinas. While no PAF activity could be recovered from unstimulated retinas, small amounts of this lipid can be detected following sonication of the tissue. The amount of extractable PAF from ACh-, dopamine-, or A23187-stimulated retinas was dependent upon the incubation time and concentration of the agonists. PAF was identified on the basis of chemical and lipase treatments, biological activity with washed rabbit platelets, behavior on thin layer chromatography, and high pressure liquid chromatography. Control cell preparations (leukocytes, erythrocytes, and embryogenic fibroblasts) did not produce PAF upon neurotransmitter stimulation. ACh and dopamine promoted PAF production by increasing dithiothreitol-insensitive cholinephosphotransferase activity, without affecting the acetyltransferase activity. In contrast, the A23187 ionophore stimulated the acetyltransferase activity but did not affect the dithiothreitol-insensitive cholinephosphotransferase.  相似文献   

2.
Final steps in the synthesis of platelet activating factor (PAF) occur via two enzymatic reactions: the acetylation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine by a specific acetyltransferase or the transfer of the phosphocholine base group from CDP-choline to 1-alkyl-2-acetyl-sn-glycerol by a dithiothreitol (DTT)-insensitive cholinephosphotransferase. Our studies demonstrate that rat kidney inner medulla microsomes synthesize PAF primarily via the DTT-insensitive cholinephosphotransferase since the specific activity of this enzyme is greater than 100-fold higher than the acetyltransferase. The two cholinephosphotransferases that catalyze the biosynthesis of phosphatidylcholine and PAF have similar Mg2+ or Mn2+ requirements and are inhibited by Ca2+. Also topographic experiments indicated that both activities are located on the cytoplasmic face of microsomal vesicles. PAF synthesis was slightly stimulated by 10 mM DTT, whereas the enzymatic synthesis of phosphatidylcholine was inhibited greater than 95% under the same conditions. The concept of two separate enzymes for PAF and phosphatidylcholine synthesis is further substantiated by the differences in the two microsomal cholinephosphotransferase activities with respect to pH optima, substrate specificities, and their sensitivities to temperature, deoxycholate, or ethanol. Study of the substrate specificities of the DTT-insensitive cholinephosphotransferase showed that the enzyme prefers a lipid substrate with 16:0 or 18:1 sn-1-alkyl chains. Short chain esters at the sn-2 position (acetate or propionate) are utilized by the DTT-insensitive cholinephosphotransferase, but analogs with acetamide or methoxy substituents at the sn-2 position are not substrates. Also, CDP-choline is the preferred water-soluble substrate when compared to CDP-ethanolamine. Utilization of endogenous neutral lipids as a substrate by the DTT-insensitive cholinephosphotransferase demonstrated that sufficient levels of alkylacetylglycerols are normally present in rat kidney microsomes to permit the synthesis of physiological quantities of PAF. These data suggest the renal DTT-insensitive cholinephosphotransferase could be a potentially important enzyme in the regulation of systemic blood pressure.  相似文献   

3.
PAF (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine), a potent inflammatory mediator, is synthesized via the remodeling and the de novo route, key enzymes of which are acetyl-CoA:lyso-PAF acetyltransferase (lyso-PAF-AT) and DTT-insensitive CDP-choline:1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase (PAF-CPT), respectively. PAF-acetylhydrolase (PAF-AH) and its extracellular isoform lipoprotein-associated phospholipase-A(2) (Lp-PLA(2)) catabolize PAF. This study evaluated PAF levels together with leukocyte PAF-CPT, lyso-PAF-AT, PAF-AH and Lp-PLA(2) activities in 106 healthy volunteers. Men had lower PAF levels and higher activity of both catabolic enzymes and lyso-PAF-AT than women (P-values <0.05). Age was inversely correlated with PAF levels in men (r=-0.279, P=0.06) and lyso-PAF-AT in women (r=-0.280, P=0.05). In contrast, Lp-PLA(2) was positively correlated with age (r=0.201, P=0.04). Moreover, PAF-CPT was positively correlated with glucose (r=0.430, P=0.002) in women. In addition, Principal Component Analysis revealed three PAF metabolic patterns: (i) increased activities of PAF-CPT and PAF-AH, (ii) increased activities of PAF-CPT and lyso-PAF-AT and (iii) increased activity of Lp-PLA(2). The present study underlines the complexity of PAF's metabolism determinants.  相似文献   

4.
The biosynthesis of platelet-activating factor (PAF), a phospholipid autocoid with potent ulcerogenic properties that is produced in secretory exocrine glands by physiological secretagogues, was assessed in microsomal preparations of glandular gastric mucosa. For this purpose, 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PAF):acetyl-CoA acetyltransferase (EC 2.3.1.67); the enzymes of the 'de novo' pathway: 1-O-alkyl-2-lyso-sn-glycero-3-phosphate (alkyl-lyso-GP):acetyl-CoA acetyltransferase and 1-O-alkyl-2-acetyl-sn-glycerol (alkylacetyl-G):CDP-choline cholinephosphotransferase (EC 2.7.8.16); and some enzymes involved in the catabolism of PAF and lyso-PAF were assayed. Only the enzymes of the 'de novo' pathway and small amounts of PAF acetylhydrolase, phospholipase A2 and a lysophospholipase D acting on either lipids could be detected in the gastric preparations, whereas lyso-PAF:acetyl-CoA acetyltransferase activity was undetectable. The specific activity of alkyl-lyso-GP:acetyl-CoA acetyltransferase in the gastric mucosa was about one-tenth of that found in spleen microsomes and its apparent Km for acetyl-CoA was 454 microM compared with 277 microM in spleen microsomes. Glandular mucosa homogenates contained preformed PAF at a concentration of 2.7 +/- 0.7 ng equivalents of PAF (hexadecyl)/mg of protein. When gastric microsomes were incubated with micromolar concentrations of fatty acids (arachidonic, palmitic and oleic) prior to the assay of dithiothreitol (DTT)-insensitive cholinephosphotransferase, a dose-dependent reduction in the formation of PAF was observed, arachidonic acid being the most potent inhibitor, followed by linoleic acid (only tested on spleen microsomes) and oleic acid. By contrast, 1,2-diolein and phosphatidylcholine (dipalmitoyl) showed no or little effect. These results indicate that glandular gastric mucosa can produce PAF through the 'de novo' pathway, and that fatty acids, especially unsaturated, can reduce that synthesis by modulating the expression of DTT-insensitive cholinephosphotransferase.  相似文献   

5.
Human umbilical vein endothelial cells (HUVEC) produce platelet-activating factor (PAF) by a remodeling pathway involving a phospholipase A2 followed by an acetyl-CoA-dependent acetyltransferase which acetylates a lyso-PAF intermediate to form PAF and is stimulated by a variety of agents that generate inflammatory and allergic responses. A second route for PAF synthesis in mammalian tissues is a de novo pathway, which requires the participation of three enzymes: 1-alkyl-2-lyso-sn-glycero-3-phosphate (alkyllyso-GP): acetyl-CoA acetyltransferase, 1-alkyl-2-acetyl-sn-glycero-3-phosphate phosphohydrolase, and dithiothreitol (DDT)-insensitive 1-alkyl-2-acetyl-sn-glycerol (alkylacetyl-G):CDP-cholinecholinephosphotransferase. In the present study we show that protein kinase C activation by phorbol 12-myristate 13-acetate (PMA) induces PAF production in HUVEC by an increase of both alkyllyso-GP:acetyl-CoA acetyltransferase and DTT-insensitive alkylacetyl-G:CDP-choline choline-phosphotransferase. PAF synthesis, labeled precursors [( 3H]acetate and [methyl-3H]choline) incorporation, and both enzyme activities of the de novo pathway increase concomitantly in response to different doses of PMA. PMA does not activate the enzymes of the remodeling pathway. We conclude that both remodeling and the de novo pathway for PAF synthesis are present in HUVEC and might be alternatively activated depending on the conditions of cell stimulation.  相似文献   

6.
In this review, evidence is summarized for the production of PAF in brain, in response to stimulation associated with pathology. As well, there is a growing literature on the duality of actions of this lipid autocoid upon nervous tissue, indicated by extracellular and intracellular actions and binding sites for PAF in brain. The metabolic routes to PAF can be divided into the de novo and remodelling pathways of synthesis. The de novo route consists of 1-alkyl glycerophosphate acetyltransferase, and the subsequent actions of distinct phosphohydrolase and cholinephosphotransferase activities. This acetyltransferase can be activated by phosphorylation, and inhibited by MgATP and fatty acyl CoA thioesters, inhibitions which have particular relevance to brain ischemia. There is also evidence that the cholinephosphotransferase is controlled by phosphorylation, and regulated by levels of CDP-choline. The remodelling pathway to PAF relies upon the actions of phospholipase A2 or CoA-independent transacylases to generate the l-alkyl glycerophosphorylcholine, as substrate for a distinct acetyltransferase. Following stimulation, rising intracellular calcium may trigger arachidonate selective cytosolic phospholipase activity which leads to increased PAF synthesis. The l-alkyl glycerophosphocholine acetyltransferase activity is quite small in brain in comparison with the de novo acetyltransferase activity, and is also controlled by phosphorylation. Evidence has been presented for the actions of both pathways in brain, in response to biologically relevant stimulation pertinent to the disease state.Special issue dedicated to Dr. Leon S. Wolfe.  相似文献   

7.
We have established previously that 1-alkyl-2-acetyl-sn-glycerol (alkylacetyl-G) can be converted into at least six metabolites by rabbit platelets, including alkylacetyl-sn-(glycero-3-phosphocholine) (-GPC), i.e. platelet-activating factor (PAF) and 1-alkyl-2-acyl-sn- (alkylacyl)-GPC. Since part of the biological functions of alkylacetyl-G can be explained by its metabolic conversion to PAF and also to alkylacyl-GPC as an inactive storage precursor of PAF, the present study focused on the regulation of the synthesis of PAF and alkylacyl-GPC from alkylacetyl-G. Our results document the presence of a specific dithiothreitol (DTT)-insensitive cholinephosphotransferase in saponin-permeabilized rabbit platelets and show that DTT potentiates the production of PAF from alkylacetyl-G but inhibits the formation of phosphatidylcholine from diolein. We also demonstrated that the availability of CDP-choline controls the generation of PAF from alkylacetyl-G. Furthermore, when CTP: phosphocholine cytidylyltransferase is activated to produce more CDP-choline through the translocation of this enzyme from the cytosol to membranes by incubating the rabbit platelets with 0.2 mM sodium oleate, the production of PAF from alkylacetyl-G is increased 5-fold. More importantly, our experiments reveal the presence of two metabolic pathways that are responsible for the synthesis of alkylacyl-GPC from alkylacetyl-G, with each producing a unique molecular species composition of the stored PAF precursor, alkylacyl-GPC. The latter is enriched in polyunsaturates (70.7-78.5% 20:4) when formed through the remodeling pathway of PAF cycle via alkylacetyl-G (DTT-insensitive cholinephosphotransferase)----alkylacetyl-GPC----alkyllyso-GPC---- alkylacyl-GPC . Alkylacyl-GPC containing saturated species (71.8% 16:0) is generated by the retroconversion/de novo pathway according to the reaction scheme of alkylacetyl-G----alkyl-G----alkyllyso-glycero-3-phosphate (-GP)----alkylacyl-GP----alkylacyl-G (DTT-sensitive cholinephosphotransferase)----alkylacyl-GPC. Inactivation of PAF through the remodeling/PAF cycle can generate alkylacyl-GPC at both low (1.75 x 10(-7) M) and high (10(-6) M) concentrations of PAF whereas the conversion of alkylacetyl-G to alkylacyl-GPC via PAF through the remodeling pathway only occurs at a low concentration (1.75 x 10(-7) M). At a high concentration (10(-6) M), alkylacetyl-G is converted to alkylacyl-GPC via the retroconversion/de novo route. These data suggest that the formation of PAF by the DTT-insensitive cholinephosphotransferase activity limits the amounts of alkylacyl-GPC produced from alkylacetyl-G through this remodeling pathway (PAF cycle).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Francescangeli  E.  Lang  D.  Dreyfus  H.  Boila  A.  Freysz  L.  Goracci  G. 《Neurochemical research》1997,22(10):1299-1307
Platelet-Activating Factor (PAF) is a potent lipid mediator involved in physiological and pathological events in the nervous tissue where it can be synthesized by two distinct pathways. The last reaction of the de novo pathway utilizes CDPcholine and alkylacetylglycerol and is catalyzed by a specific phosphocholinetransferase (PAF-PCT) whereas the remodelling pathway ends with the reaction catalyzed by lyso-PAF acetyltransferase (lyso-PAF AcT) utilizing lyso-PAF, a product of phospholipase A2 activity, and acetyl-CoA. The levels of PAF in the nervous tissue are also regulated by PAF acetylhydrolase that inactivates this mediator. We have studied the activities of these enzymes during cell proliferation and differentiation in two experimental models: 1) neuronal and glial primary cell cultures from chick embryo and 2) LA-N-1 neuroblastoma cells induced to differentiate by retinoic acid (RA). In undifferentiated neuronal cells from 8-days chick embryos the activity of PAF-PCT was much higher than that of lyso-PAF AcT but it decreased during the period of cellular proliferation up to the arrest of mitosis (day 1–3). During this period no significant changes of lyso-PAF AcT activity was observed. Both enzyme activities increased during the period of neuronal maturation and the formation of cellular contacts and synaptic-like junctions. The activity of PAF acetylhydrolase was unchanged during the development of the neuronal cultures. PAF-PCT activity did not change during the development of chick embryo glial cultures but lyso-PAF AcT activity increased up to the 12th day. RA treatment of LA-N-1 cell culture in proliferation decreased PAF-PCT activity and had no significant effect on lyso-PAF AcT and PAF acetylhydrolase indicating that the synthesis of PAF by the enzyme catalyzing the last step of the de novo pathway is inhibited when the LA-N-1 cells are induced to differentiate. These data suggest that: 1) in chick embryo primary cultures, both pathways are potentially able to contribute to PAF synthesis during development of neuronal cells particularly when they form synaptic-like junctions whereas, during development of glial cells, only the remodelling pathway might be particularly active on synthesizing PAF; 2) in LA-N-1 neuroblastoma cells PAF-synthesizing enzymes coexist and, when cells start to differentiate the contribution of the de novo pathway to PAF biosynthesis might be reduced.  相似文献   

9.
Interleukin 1 promotes the conversion of the biologically inactive lyso-platelet activating factor (lyso-PAF) to the bioactive platelet activating factor (PAF) by an acetylation reaction in cultured human endothelial cells. After 2 h stimulation with interleukin 1, 1-O-alkyl-2-lysoglycero-3-phosphocholine (GPC): acetyl CoA acetyltransferase is activated, reaching a plateau after 6 h and then declining to the basal value within 24 h. This time course is comparable to that of PAF production. These cells are able to incorporate [3H]acetate and [3H]lyso-PAF into PAF. Synthetized [3H]PAF is then catabolized in [3H]alkylacyl phosphoglycerides. 1-O-alkyl-2-acetylglycerol: CDP-choline cholinephosphotransferase and 1-O-alkyl-2-acetyl-GPC: acetylhydrolase activities are both present in endothelial cells, but are not activated under our conditions of stimuli. These findings indicate that interleukin 1 induces the PAF synthesis by a deacylation/reacetylation mechanism into human endothelial cells.  相似文献   

10.
We have examined the ontogeny of somatostatin-, Glucagon-, Vasoactive Intestinal Polypeptide-, Substance P-, Neuropeptide Y, and Calcitonin gene-related peptide-Iike structures in the chicken retina by immunocytochemistry. Neuroblastic cells containing Substance P-Iike immunoreactivity (IR) first appeared at embryonic day 5 in the peripheral portion of the retina. Somatostatin-like immunoreactivity was detected as early as embryonic day 11 in the innermost level of the inner neuroblastic layer. The distribution pattern of amacrine cells containing Vasoactive Intestinal Peptide-Iike immunoreactivity was similar to that for Neuropeptide Y- and Calcitonin gene-related peptide-Iike immunoreactive cells. These three types of IR cell appeared at embryonic day 13. Glucagon-like immunoreactive cells first appeared in the retina at embryonic day 15, in the innermost part of the inner nuclear layer. From the 13th to 15th day of incubation, the number and intensity of Calcitonin gene-related peptide-, Somatostatin-, Neuropeptide Y- and Substance P-Iike immunoreactive cells increased and then decreased progressively before hatching. Glucagon immunoreactive cells increased in number on the last day before hatching. After embryonic day 15, the amacrine cells containing Vasoactive intestinal peptide-Iike immunoreactivity decreased notably in number. Our study showed that development of these immunoreactive structures was different for each neuropeptide. These differences in development may reflect the diverse neurophysiological roles of these neuroactive peptides, which could act as neurotransmitters/neuromodulators at the chick retinal level. Their presence may indicate roles as neuronal differentiation or growth factors.  相似文献   

11.
Reaggregated cell cultures from dissociated 7-day-old chick embryo whole brains were prepared, and the developmental profiles of acetylcholinesterase and choline acetyltransferase, in the aggregates, determined over a 30-day period. Enzyme activities in vitro, at different times of culture, typically lie between 30 and 60% of the values obtained for embryos or chicks of the same developmental age, up to day-10 posthatching. The increase in acetylcholinesterase activity over a 24-day period of culture/incubation is fourfold in the aggregates vs. sixfold for embryos, while the choline acetyltransferase values increase, during the same period of time, 32-fold in the aggregates vs. 17-fold in vivo. Choline acetyltransferase activity seems to be more dependent on good cell-to-cell contact than acetylcholinesterase activity. On the other hand, morphological studies on the aggregates with light and electron microscopy reveal a number of structural features characteristic of well-developed nervous tissue. It is suggested that aggregate cultures of chick brain cells are an adequate model system that is especially useful in analyzing developmental phenomena requiring free tridimensional interaction.Abbreviations AChE acetylcholinesterase - ChAT choline acetyltransferase - BW284 C51 dibromide 1,5-bis-(4-allyldimethylammoniumphenyl)pentan-3-one dibromide - ACh acetylcholine  相似文献   

12.
Triacsin C, a product of Streptmyces sp. SK-1894, was previously reported as an inhibitor of long chain acyl-CoA synthetase. Pretreatment with triacsin C (500 nM) for 1h enhanced production of platelet-activating factor in rat neutrophils, followed by stimulation with A23187 or fMLP. Amount of lyso-PAF was also augumented. Triacsin C alone did not increase PAF content and did not modulate enzymatic activities of acytransferase, cholinephosphotransferase, acetylhydrolase, acetyltransferase or phospholipase A2. These results suggest that triacsin C might enhance supply of substrate for PAF synthesis, i.e. accumulation of lyso-PAF by interfering reacylation pathway.  相似文献   

13.
Brain extracts from 8-day-old chick embryos have been shown to influence morphological development of dissociated brain cells from 7-day-old chick embryos in culture. Stimulatory, effects on size of the neuronal somas and on growth of long processes were observed by adding the cytosol of the brain extract or the dialysate of the cytosol. These morphological changes parallel modifications of various enzyme activities according to the age of the cultures. Adenyl cyclase, (Na+, K+)- and Mg2+-ATPase, 5-nucleotidase, choline acetyltransferase, and acetylcholinesterase activities were studied between 5 and 14 days of culture. Adenyl cyclase activity was strongly stimulated at 8 days by both extracts. (Na+, K+)-and Mg2+-ATPase activities were stimulated in 8-day-old cultures only by the dialysate. 5-Nucleotidase activity was stimulated in 8-day-old cultures by the dialysate and in 11-day-old cultures by both extracts. Choline acetyltransferase activity was stimulated by the cytosol in 8-day-old cultures and by the dialysate in 11-day-old cultures. The total acetylcholinesterase activity was higher in 8-, 11-, and 14-day-old cultures treated with the cytosol. When the cells were treated with the dialysate, the activity was only higher in 14-day-old cultures. We also found that following the addition of brain extracts, the specific activity of the enzymes we studied was enhanced and became close to the values found in vivo during embryogenesis. Thus in parallel to the morphological modifications observed in nerve cell cultures treated by embryo brain extracts, biochemical variations especially involved in synaptogenesis and membrane development could be measured.  相似文献   

14.
Cholinergic neurons from the septum area, the vertical limb of the diagonal band of Broca, and the nucleus basalis of Meynert of postnatal 13-day-old rats were cultured with or without nerve growth factor (NGF) conditions. Total choline acetyltransferase (ChAT) activities, acetylcholine (ACh) contents, and survival numbers of cholinergic neurons in culture from each of three distinct regions were increased by NGF treatment, but little difference was found in cellular ChAT activities and ACh contents obtained in cultures with or without NGF. The result shows that NGF promotes the survival of cholinergic neurons from 13-day-old rats. Furthermore, the release of ACh from cultured neurons was investigated. The cells cultured with NGF showed a larger increase of the high K+-evoked ACh release than those cultured without NGF. However, NGF had no effect on spontaneous release. This suggests that NGF could regenerate and sustain the stimulation-evoked release mechanisms of ACh in cultured cholinergic neurons from postnatal rats.  相似文献   

15.
Cells that were mechanically dissociated from the brains of 7-day-old chick embryos were grown in culture for 7–8 days. Two major cell populations were observed: (1) cells that aggregated and sent out processes, (2) flat cells that proliferated rapidly and formed a confluent layer by day 4 of culture. Many of the cells of the first type had the morphological, histochemical and biochemical attributes of neurons. They possessed choline acetyltransferase (ChAc) and acetylcholinesterase (AChEs) activities. The flat cells possessed neither of the activities, but did have butyrylcholinesterase (BuChEs) activity and a choline independent acetylase activity (CIA) that may be carnitine acetyltransferase.The activities of ChAc and AChEs in the cultured neurons increased approximately 9-fold and 5-fold, respectively, over an 8-day period. The patterns of change of these enzymes were not unlike those seen in vivo in intact developing chick brain.The addition of thyroxine (10?6M) to these cultures increased the activities of neuronal AChEs and flat cell BuChEs by 30–70%.  相似文献   

16.
When exposed to enteric pathogens intestinal epithelial cells produce several cytokines and other proinflammatory mediators. To date there is no evidence that the ether-lipid platelet-activating factor (PAF) is one of these mediators. Our results revealed a significant increase in PAF production by human colonic tissue 4 h after infection by enterohemorrhagic Escherichia coli (EHEC) or Salmonella enteritidis. PAF is produced in the gut by cells of the immune system in response to bacterial infection. To determine whether the epithelial cells of colonic mucosa might also modulate PAF levels, we carried out PAF quantification and analysis of the enzymes involved in PAF synthesis in 5-day-old (undifferentiated) or 28-day-old (differentiated) Caco-2 cell cultures. Infection of undifferentiated Caco-2 cells with either bacterium had no effect on PAF levels, whereas in differentiated cells, infection by S. enteritidis increased PAF levels. Following infection by S. enteritidis, there were no changes in the activity of dithiothreitol-insensitive choline phosphotransferase. However, the enzymes of the remodeling pathway cytosolic phospholipase A(2), which catalyzes the formation of the PAF precursor lysoPAF, and lysoPAF acetyltransferase, are activated in the infected epithelial cells. This response is Ca(2+)-dependent.  相似文献   

17.
The developmental profiles of acetylcholinesterase and choline acetyltransferase in chick optic tectum and retina cell aggregates, over a 30-day period, have been determined and compared with the corresponding developmental curves obtained in vivo. Both acetylcholinesterase and choline acetyltransferase activities in retina cell aggregates and the acetylcholinesterase activity in optic tectum cell aggregates usually lie between 40 and 90% of the values measured in vivo for the same cell (tissue) type and developmental age. However, the choline acetyltransferase activity in tectum aggregates increases only during the first 7 days of culture, and then decreases to reach a low value of 8% of that measured in vivo, by day 24. This fact, which is associated with widespread degeneration and cell death, could be attributed to the condition of natural deafferentiation occurring in a tectum cell aggregate. A parallel has been drawn between this behavior of a tectum cell aggregate and the effect of early embryonic eye removal on the development of the contralateral optic tectum in vivo. Thus, the tectum may have a biphasic pattern of development, with an autonomous period of growth of about 2 wk, followed by an afference-dependent phase, while the retina behaves, from a cholinergic point of view, as a relatively self-sufficient structure.Abbreviations AChE acetylcholinesterase - ChAT choline acetyltransferase - ACh acetylcholine - BW284 C51 dibromide 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide  相似文献   

18.
Cells dissociated from the neural retina of embryonic chick differentiate into lens and pigment cells, when cultured in vitro. Using 3.5-day-old and 8.5-day-old chick embryos, we examined whether neuronal specificities would be expressed in such transdifferentiating cultures of neural retinal cells. The synthesis of acetylcholine and γ-aminobutyric acid (GABA) and the activity of choline acetyl transferase (CAT) was searched for in these cultures. The synthesis of an appreciable amount of these two putative neurotransmitters was detected in cultures of 3.5-day-old embryonic retinas by about 15 days. The activity of CAT was maximum in 7-day cultures of the 3.5-day-old materials and in 2-day cultures of the 8.5-day-old materials, and then decreased. Concomitant with the decrease of CAT-activity, δ-crystallin became detectable and increased thereafter. CAT-activity changed in parallel with the increase in the number of small neuroblast-like cells in cultures. The results demonstrate that the neuronal specificity identified by the appearance of acetylcholine and GABA and of the enzyme for the synthesis of acetylcholine is expressed in the early period of transdifferentiating cultures, which would later differentiate into lens and pigment cells. The possible mechanisms of the transition from neuronal to non-neuroretinal specificities of the transdifferentiating cultures are discussed.  相似文献   

19.
The influence of neonatal thyroidectomy (Tx) on developmental changes in dopamine (DA), acetylcholine (ACh), and acetylcholinesterase (AChE) was studied in the whole brain of rats. In control animals, brain levels of ACh gradually increased and attained adult values at the 70th day. In contrast, AChE activity showed a rapid increase between the 7th and 30th days. Levels of DA were low during the early postnatal life but markedly increased to reach adult values of 1.47 mug/g at the 30th day, after which no further enhancement was noted. Neonatal Tx interfered with the normal growth of the animals, decreased brain weights, and markedly influenced the developmental pattern of both DA and ACh in the brain. The concentration of DA in 30-day-old hypothyroid rats was 46% of the control values. In contrast, brain ACh levels in Tx rats were consistently above those seen in controls, being significantly higher, by 49 and 64%, at 15 and 30 days, respectively. Activity of AChE in brains of hypothyroid animals was not significantly different from that in controls. Treatment of Tx rats with thyroid hormone virtually restored the levels of DA and ACh to values in control animals.  相似文献   

20.
The adenosine 3′,5′-cyclic monophosphate level of chick embryonic retina changes during the course of development. In retinas from 6- to 15-day-old embryos the cAMP level is approximately 7 pmol/mg protein. A sharp 3-fold increase is observed between the 16th and 18th embronic day and remains constant thereafter. A dopamine-dependent increase in cAMP of the chick retina is already present in 7-day-old embryos, and by the 8th embryonic day maximal response is attained. Glutamate promotes a 2-fold stimulation. Carbachol, γ-aminobutyric acid and glycine do not cause any significant change in the level of cAMP of the embryonic tissue. Guanosine 3′,5′-cyclic monophosphate also accumulates during development. Its concentration is approx 0.5 pmol/mg protein from the 8th to the 14th embryonic day, then increases gradually until the 19th day of development when the level observed is approx 14 pmol/mg protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号