首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between myonuclear number, cellular size, succinate dehydrogenase activity, and myosin type was examined in single fiber segments (n=54; 9±3 mm long) mechanically dissected from soleus and plantaris muscles of adult rats. One end of each fiber segment was stained for DNA before quantitative photometric analysis of succinate dehydrogenase activity; the other end was double immunolabelled with fast and slow myosin heavy chain monoclonal antibodies. Mean±S.D. cytoplasmic volume/myonucleus ratio was higher in fast and slow plantaris fibers (112±69 vs. 34±21x103 m3) than fast and slow soleus fibers (40±20 vs. 30±14x103 m3), respectively. Slow fibers always had small volumes/myonucleus, regardless of fiber diameter, succinate dehydrogenase activity, or muscle of origin. In contrast, smaller diameter (<70 m) fast soleus and plantaris fibers with high succinate dehydrogenase activity appeared to have low volumes/myonucleus while larger diameter (>70 m) fast fibers with low succinate dehydrogenase activity always had large volume/myonucleus. Slow soleus fibers had significantly greater numbers of myonuclei/mm than did either fast soleus or fast plantaris fibers (116±51 vs. 55±22 and 44±23), respectively. These data suggest that the myonuclear domain is more limited in slow than fast fibers and in the fibers with a high, compared to a low, oxidative metabolic capability.  相似文献   

2.
A histochemical study, using myosin-adenosine triphosphatase activity at pH 9.4, was conducted in soleus and plantaris muscles of adult rats, after bilateral crushing of the sciatic nerve at the sciatic notch. The changes in fiber diameter and per cent composition of type I and type II fibers plus muscle weights were evaluated along the course of denervation-reinnervation curve at 1, 2, 3, 4 and 6 weeks postnerve crush. The study revealed that in the early denervation phase (up to 2 weeks postcrush) both the slow and fast muscles, soleus and plantaris, resepctively, atrophied similarly in muscle mass. Soleus increased in the number of type II fibers, which may be attributed to "disuse" effect. During the same period, the type I fibers of soleus atrophied as much or slightly more than the type II fibers; whereas the type II fibers of plantaris atrophied significantly more than the type I fibers, reflecting that the process of denervation, in its early stages, may affect the two fiber types differentially in the slow and fast muscles. It was deduced that the type I fibers of plantaris may be essentially different in the slow (soleus) and fast (plantaris) muscles under study. The onset of reinnervation, as determined by the increase in muscle weight and fiber diameter of the major fiber type, occurred in soleus and plantaris at 2 and 3 weeks postcrush, respectively, which confirms the earlier hypotheses that the slow muscles are reinnervated sooner than the fast muscles. It is suggested that the reinnervation of muscle after crush injury may be specific to the muscle type or its predominant fiber type.  相似文献   

3.
Summary This report describes a quantitative histochemical study of myoglobin in skeletal muscle fibres. The muscle fibres were classified as fast or slow on the basis of their quantitative myofibrillar ATPase histochemistry. A large range of myoglobin absorbance values was found among fast skeletal muscle fibres. This range was relatively small among slow fibres. The concentrations of myoglobin and the activities of succinate dehydrogenase in individual muscle fibres in serial sections are weakly correlated in both the mouse soleus and plantaris muscle. The myoglobin concentration is higher in fast and slow oxidative soleus muscle fibres and the succinate dehydrogenase activity in these fibres is lower than in oxidative plantaris muscle fibres in the same range of cross-sectional area.  相似文献   

4.
The cross-sectional area (CSA), myonuclear number per mm of fiber length, and myonuclear domain (cytoplasmic volume/myonucleus) of mechanically isolated single fibers from biopsies of the soleus muscle of 5 vivarium control, 3 flight simulation and 2 flight (BION 11) Rhesus monkeys (Macaca [correction of Macacca] mulatta) were determined using confocal microscopy before and after a 14-day experimental period. Simulation monkeys were confined in chairs placed in capsules identical to those used during the flight. Fibers were classified as type I, type II or hybrid (containing both types I and II) based on myosin heavy chain (MHC) gel electrophoresis. A majority of the fibers sampled contained only type I MHC, i.e. 89, 62 and 68% for the control, simulation and flight groups, respectively. Most of the remaining fibers were hybrids, i.e. 8, 36 and 32% for the same groups. There were no significant pre-post differences in the fiber type composition for any of the experimental groups. There also were no significant pre-post differences in fiber CSA, myonuclear number or myonuclear domain. There was, however, a tendency for the fibers in the post-flight biopsies to have a smaller mean CSA and myonuclear domain (approximately 10%, p=0.07) than the fibers in the pre-flight biopsy. The combined mean cytoplasmic volume/myonucleus for all muscle fiber phenotypes in the Rhesus soleus muscle was approximately 25,000 micrometers3 and there were no differences in pre-post samples for the control and simulated groups. The cytoplasmic domains tended to be lower (p=0.08) after than before flight. No phenotype differences in cytoplasmic domains were observed. These data suggest that after a relatively short period of actual spaceflight, modest fiber atrophy occurs in the soleus muscle fibers without a concomitant change in myonuclear number.  相似文献   

5.
Effects of 14 days of hindlimb unloading or synergist ablation-related overloading with or without deafferentation on the fiber cross-sectional area, myonuclear number, size, and domain, the number of nucleoli in a single myonucleus, and the levels in the phosphorylation of the ribosomal protein S6 (S6) and 27-kDa heat shock protein (HSP27) were studied in rat soleus. Hypertrophy of fibers (+24%), associated with increased nucleolar number (from 1–2 to 3–5) within a myonucleus and myonuclear domain (+27%) compared with the preexperimental level, was induced by synergist ablation. Such phenomena were associated with increased levels of phosphorylated S6 (+84%) and HSP27 (+28%). Fiber atrophy (–52%), associated with decreased number (–31%) and domain size (–28%) of myonuclei and phosphorylation of S6 (–98%) and HSP27 (–63%), and with increased myonuclear size (+19%) and ubiquitination of myosin heavy chain (+33%, P > 0.05), was observed after unloading, which inhibited the mechanical load. Responses to deafferentation, which inhibited electromyogram level (–47%), were basically similar to those caused by hindlimb unloading, although the magnitudes were minor. The deafferentation-related responses were prevented and nucleolar number was even increased (+18%) by addition of synergist ablation, even though the integrated electromyogram level was still 30% less than controls. It is suggested that the load-dependent maintenance or upregulation of the nucleolar number and/or phosphorylation of S6 and HSP27 plays the important role(s) in the regulation of muscle mass. It was also indicated that such regulation was not necessarily associated with the neural activity. rat soleus muscle; functional overload; deafferentation; 27-kDa heat shock protein; ubiquitination of myosin heavy chain  相似文献   

6.
7.
8.
The present study was designed to determine whether the degree and kind of adaptation of a muscle fiber to a functional overload (FO) are determined by properties that are intrinsic to that fiber. The study also addresses the question of the capability of fibers to maintain a normal level of coordination of proteins per fiber as fiber volume changes dramatically. The plantaris muscle of six adult female cats was overloaded for 12 wk by bilateral synergist removal. Plantaris muscle fiber mean size doubled after FO, although some very small fibers that stained dark for adenosinetriphosphatase (ATPase) were observed in some of the FO muscles. There appeared to be no change in total succinate dehydrogenase activity per fiber. A reduction in succinate dehydrogenase activity per unit volume was observed in a substantial number of fibers, reflecting a disproportionate increase in fiber volume relative to mitochondrial volume. In contrast, total alpha-glycerophosphate dehydrogenase activity and actomyosin ATPase activity increased as fiber size increased, whereas there was no change in alpha-glycerophosphate dehydrogenase and ATPase activities per unit volume. Control and FO muscle fibers generally expressed either a fast or slow myosin heavy chain type, but in some cases FO muscle fibers expressed both fast and slow myosin heavy chains. The persistence of variability in fiber sizes and enzyme activities in fibers of overloaded muscles suggests a wide range in the adaptive potential of individual fibers to FO. These data indicate that a severalfold increase in cell size may occur without significant qualitative changes in the coordination of protein regulation associated with metabolic pathways and ATP utilization.  相似文献   

9.
To determine the level of coordination in succinate dehydrogenase (SDH) activity between plantaris motoneurons and muscle fibers, the soleus and gastrocnemius muscles were bilaterally excised in four cats to subject the plantaris to functional overload (FO). Five normal cats served as controls. Twelve weeks after surgery the right plantaris in each cat was injected with horseradish peroxidase to identify plantaris motoneurons. SDH activity then was measured in a population of plantaris motoneurons and muscle fibers in each cat. Control motoneurons and muscle fibers had similar mean SDH activities and a similar relationship between cell size and SDH activity. After FO, muscle fiber size doubled and mean muscle fiber SDH activity halved. Motoneuron mean SDH activity and size were unaffected by FO. Total SDH activity was unchanged in both the motoneurons and muscle fibers after FO. These changes suggest a selective increase in contractile proteins with little or no modulation of mitochondrial proteins in the muscle fibers, because total SDH activity was unchanged in muscle fibers after FO. These data demonstrate that although mean SDH activities were similar in control motoneurons and muscle fibers, mean SDH activities in these two cell types can change independently.  相似文献   

10.
Summary A quantitative modification of Meijer's calcium-lead capture method, for the demonstration of calcium-stimulated myofibrillar ATPase activity at physiological pH, is described. A range of myofibrillar ATPase activities has been found among fast muscle fibres in two mouse hind-limb muscles. The myofibrillar ATPase activity of fast muscle fibres is 1.5–3 times higher than the myofibrillar ATPase activity of slow muscle fibres.Myofibrillar ATPase activities and succinate dehydrogenase activities of individual muscle fibres have been determined in serial sections. Activities of the two enzymes are correlated positively in soleus (fast and slow fibres), and negatively in plantaris (almost all fast) and extensor digitorum longus muscle (all fast). However, this correlation is not significant among the oxidative fibres in the extensor digitorum longus. The fibres of the latter muscle cannot be classified satisfactorily into two sub-types.  相似文献   

11.
Effects of hindlimb suspension or exposure to 2-G between postnatal day 4 and month 3 and of 3-month recovery at 1-G environment on the characteristics of rat hindlimb muscles were studied. Pronounced growth inhibition was induced by unloading, but not by 2-G loading. It is suggested that the development and/or differentiation of soleus muscle fibers are closely associated with gravitational loading. The data indicated that gravitational unloading during postnatal development inhibits the myonuclear accretion in accordance with subnormal numbers of both mitotic active and quiescent satellite cells. Even though the fiber formation and longitudinal fiber growth were not influenced, cross-sectional growth of muscle fibers was also inhibited in association with lesser myonuclear domain and DNA content per unit volume of myonucleus. Unloading-related inhibition was generally normalized following the recovery.  相似文献   

12.
Prolonged inactivity associated with bed rest in a clinical setting or spaceflight is frequently associated with hypercortisolemia and inadequate caloric intake. Here, we determined the effect of 28 days of bed rest (BR); bed rest plus hypercortisolemia (BRHC); and bed rest plus essential amino acid (AA) and carbohydrate (CHO) supplement (BRAA) on the size and function of single slow- and fast-twitch muscle fibers. Supplementing meals, the BRAA group consumed 16.5 g essential amino acids and 30 g sucrose at 1100, 1600, and 2100 h, and the BRHC subjects received 5 daily doses of 10–15 mg of oral hydrocortisone sodium succinate throughout bed rest. Bed rest induced atrophy and loss of force (mN) and power (µN·FL·s–1) in single fibers was exacerbated by hypercortisolemia where soleus peak force declined by 23% in the type I fiber from a prevalue of 0.78 ± 0.02 to 0.60 ± 0.02 mN post bed rest (compared to a 7% decline with bed rest alone) and 27% in the type II fiber (1.10 ± 0.08 vs. 0.81 ± 0.05 mN). In the BRHC group, peak power dropped by 19, 15, and 11% in the soleus type I, and vastus lateralis (VL) type I and II fibers, respectively. The AA/CHO supplement protected against the bed rest-induced loss of peak force in the type I soleus and peak power in the VL type II fibers. These results provide evidence that an AA/CHO supplement might serve as a successful countermeasure to help preserve muscle function during periods of relative inactivity. isotonic contractile properties; peak force and power; calcium sensitivity; essential amino acids  相似文献   

13.
In a skeletal muscle fiber, each myonucleus is responsible for gene expression in its surrounding cytoplasm. The region of cytoplasm associated with an individual myonucleus is termed myonuclear domain. However, little is known about domain size variation within individual muscle fibers. This study tests the hypothesis that myonuclear domains expressing neonatal myosin within end regions of maturing fibers will be smaller than domains elsewhere in the fibers. The model used is chicken pectoralis, where we have previously shown that during development repression of neonatal myosin radiates from the central region towards the fiber ends. Samples excised from birds aged nine through to 115 days after hatching were sectioned transversely. Using computer image analysis and immunocytochemistry, fiber profiles were classified as neonatal, transforming or adult. Each profile was also located in an adjacent dystrophin-labelled section, where myonuclei were visualized using haematoxylin and bisbenzamide. Variation in myonuclear length with age was not found to be significant (p = 0.925). Myonuclei were counted, and formulae used to calculate mean myonuclear domain size for each profile type. Myonuclear number/mm fiber was calculated to be adult (mean = 108.57 myonuclei/mm), transforming (65.82) and neonatal (25.23). Transforming profiles had significantly (p=0.027) more myonuclei/mm than neonatal, as did adult (p=0.005). Volume of cytoplasm/myonucleus was adult (mean = 16,132 microm3/myonucleus), transforming (12,899) and neonatal (8,130). Transforming and adult profiles had significantly (p<0.001) larger myonuclear domains than did neonatal profiles. Transforming and adult profiles did not differ in either myonuclei/mm (p=0.302) or volume of cytoplasm/myonucleus (p=0.413). This study demonstrates smaller domains at the terminal tips of maturing muscle fibers.  相似文献   

14.
β-Hydroxy-β-methylbutyrate (HMB) is a leucine metabolite shown to reduce protein catabolism in disease states and promote skeletal muscle hypertrophy in response to loading exercise. In this study, we evaluated the efficacy of HMB to reduce muscle wasting and promote muscle recovery following disuse in aged animals. Fisher 344×Brown Norway rats, 34 mo of age, were randomly assigned to receive either Ca-HMB (340 mg/kg body wt) or the water vehicle by gavage (n = 32/group). The animals received either 14 days of hindlimb suspension (HS, n = 8/diet group) or 14 days of unloading followed by 14 days of reloading (R; n = 8/diet group). Nonsuspended control animals were compared with suspended animals after 14 days of HS (n = 8) or after R (n = 8). HMB treatment prevented the decline in maximal in vivo isometric force output after 2 wk of recovery from hindlimb unloading. The HMB-treated animals had significantly greater plantaris and soleus fiber cross-sectional area compared with the vehicle-treated animals. HMB decreased the amount of TUNEL-positive nuclei in reloaded plantaris muscles (5.1% vs. 1.6%, P < 0.05) and soleus muscles (3.9% vs. 1.8%, P < 0.05). Although HMB did not significantly alter Bcl-2 protein abundance compared with vehicle treatment, HMB decreased Bax protein abundance following R, by 40% and 14% (P < 0.05) in plantaris and soleus muscles, respectively. Cleaved caspase-3 was reduced by 12% and 9% (P < 0.05) in HMB-treated reloaded plantaris and soleus muscles, compared with vehicle-treated animals. HMB reduced cleaved caspase-9 by 14% and 30% (P < 0.05) in reloaded plantaris and soleus muscles, respectively, compared with vehicle-treated animals. Although, HMB was unable to prevent unloading-induced atrophy, it attenuated the decrease in fiber area in fast and slow muscles after HS and R. HMB's ability to protect against muscle loss may be due in part to putative inhibition of myonuclear apoptosis via regulation of mitochondrial-associated caspase signaling.  相似文献   

15.
Perlecan is a component of the basement membrane that surrounds skeletal muscle. The aim of the present study is to identify the role of perlecan in skeletal muscle hypertrophy and myostatin signaling, with and without mechanical stress, using a mouse model (Hspg2?/?-Tg) deficient in skeletal muscle perlecan. We found that myosin heavy chain (MHC) type IIb fibers in the tibialis anterior (TA) muscle of Hspg2?/?-Tg mice had a significantly increased fiber cross-sectional area (CSA) compared to control (WT-Tg) mice. Hspg2?/?-Tg mice also had an increased number of type IIx fibers in the TA muscle. Myostatin and its type I receptor (ALK4) expression was substantially decreased in the Hspg2?/?-Tg TA muscle. Myostatin-induced Smad activation was also reduced in a culture of myotubes from the Hspg2?/?-Tg muscle, suggesting that myostatin expression and its signaling were decreased in the Hspg2?/?-Tg muscle. To examine the effects of mechanical overload or unload on fast and slow muscles in Hspg2?/?-Tg mice, we performed tenotomy of the plantaris (fast) muscle and the soleus (slow) muscle. Mechanical overload on the plantaris muscle of Hspg2?/?-Tg mice significantly increased wet weights compared to those of control mice, and unloaded plantaris muscles of Hspg2?/?-Tg mice caused less decrease in wet weights compared to those of control mice. The decrease in myostatin expression was significantly profound in the overloaded plantaris muscle of Hspg2?/?-Tg mice, compared with that of control mice. In contrast, overloading the soleus muscle caused no changes in either type of muscle. These results suggest that perlecan is critical for maintaining fast muscle mass and fiber composition, and for regulating myostatin signaling.  相似文献   

16.
Histochemical and ultrastructural analyses were performed postflight on hind limb skeletal muscles of rats orbited for 12.5 days aboard the unmanned Cosmos 1887 biosatellite and returned to Earth 2 days before sacrifice. The antigravity adductor longus (AL), soleus, and plantaris muscles atrophied more than the non-weight-bearing extensor digitorum longus, and slow muscle fibers were more atrophic than fast fibers. Muscle fiber segmental necrosis occurred selectively in the AL and soleus muscles; primarily, macrophages and neutrophils infiltrated and phagocytosed cellular debris. Granule-rich mast cells were diminished in flight AL muscles compared with controls, indicating the mast cell secretion contributed to interstitial tissue edema. Increased ubiquitination of disrupted myofibrils implicated ubiquitin in myofilament degradation. Mitochondrial content and succinic dehydrogenase activity were normal, except for subsarcolemmal decreases. Myofibrillar ATPase activity of flight AL muscle fibers shifted toward the fast type. Absence of capillaries and extravasation of red blood cells indicated failed microcirculation. Muscle fiber regeneration from activated satellite cells was detected. About 17% of the flight AL end plates exhibited total or partial denervation. Thus, skeletal muscle weakness associated with spaceflight can result from muscle fiber atrophy and segmental necrosis, partial motor denervation, and disruption of the microcirculation.  相似文献   

17.
The primary objective of this study was to determine the effectiveness of isometric exercise (IE) as a countermeasure to hindlimb unloading (HU)-induced atrophy of the slow (soleus) and fast (plantaris and gastrocnemius) muscles. Rats were assigned to either weight-bearing control, 7-day HU (H7), H7 plus IE (I7), 14-day HU (H14), or H14 plus IE (I14) groups. IE consisted of ten 5-s maximal isometric contractions separated by 90 s, administered three times daily. Contractile properties of the soleus and plantaris muscles were measured in situ. The IE attenuated the HU-induced decline in the mass and fiber diameter of the slow-twitch soleus muscle, whereas the gastrocnemius and plantaris mass were not protected. These results are consistent with the mean electromyograph recordings during IE that indicated preferential recruitment of the soleus over the gastrocnemius and plantaris muscles. Functionally, the IE significantly protected the soleus from the HU-induced decline in peak isometric force (I14, 1.49 +/- 0.12 vs. H14, 1.15 +/- 0.07 N) and peak power (I14, 163 +/- 17 vs. H14, 75 +/- 11 mN.fiber length.s-1). The exercise protocol showed protection of the plantaris peak isometric force at H7 but not H14. The IE also prevented the HU-induced decline in the soleus isometric contraction time, which allowed the muscle to produce greater tension at physiological motoneuron firing frequencies. In summary, IE resulted in greater protection from HU-induced atrophy in the slow soleus than in the fast gastrocnemius or plantaris.  相似文献   

18.
The purpose ofthis study was to determine the effects of functional overload (FO)combined with growth hormone/insulin-like growth factor I (GH/IGF-I)administration on myonuclear number and domain size in rat soleusmuscle fibers. Adult female rats underwent bilateral ablation of theplantaris and gastrocnemius muscles and, after 7 days of recovery, wereinjected three times daily for 14 days with GH/IGF-I (1 mg/kg each; FO + GH/IGF-I group) or saline vehicle (FO group). Intact rats receivingsaline vehicle served as controls (Con group). Muscle wet weight was32% greater in the FO than in the Con group: 162 ± 8 vs. 123 ± 16 mg. Muscle weight in the FO + GH/IGF-I group (196 ± 14 mg) was59 and 21% larger than in the Con and FO groups, respectively. Meansoleus fiber cross-sectional area of the FO + GH/IGF-I group (2,826 ± 445 µm2) was increasedcompared with the Con (2,044 ± 108 µm2) and FO (2,267 ± 301 µm2) groups. The difference infiber size between the FO and Con groups was not significant. Meanmyonuclear number increased in FO (187 ± 15 myonuclei/mm) and FO + GH/IGF-I (217 ± 23 myonuclei/mm) rats compared with Con (155 ± 12 myonuclei/mm) rats, although the difference between FO and FO + GH/IGF-I animals was not significant. The mean cytoplasmic volume permyonucleus (myonuclear domain) was similar across groups. These resultsdemonstrate that the larger mean muscle weight and fibercross-sectional area occurred when FO was combined with GH/IGF-Iadministration and that myonuclear number increased concomitantly withfiber volume. Thus there appears to be some mechanism(s) that maintainsthe myonuclear domain when a fiber hypertrophies.

  相似文献   

19.
20.
Thompson, L. V., and J. A. Shoeman. Contractilefunction of single muscle fibers after hindlimb unweighting in aged rats. J. Appl. Physiol. 84(1):229-235, 1998.This investigation determined how muscle atrophyproduced by hindlimb unweighting (HU) alters the contractile functionof single muscle fibers from older animals (30 mo). After 1 wk of HU,small bundles of fibers were isolated from the soleus muscles and thedeep region of the lateral head of the gastrocnemius muscles. Singleglycerinated fibers were suspended between a motor lever and forcetransducer, functional properties were studied, and the myosin heavychain (MHC) composition was determined electrophoretically. After HU, the diameter of type I MHC fibers of the soleus declined (88 ± 2 vs. 80 ± 4 µm) and reductions were observed in peak active force (47 ± 3 vs. 28 ± 3 mg) and peak specific tension(Po; 80 ± 5 vs. 56 ± 5 kN/m2). The maximal unloadedshortening velocity increased. The type I MHC fibers from thegastrocnemius showed reductions in diameter (14%), peak active force(41%), and Po (24%), whereas thetype IIa MHC fibers showed reductions in peak active force andPo. Thus 1 wk ofinactivity has a significant effect on the force-generating capacity ofsingle skeletal muscle fibers from older animals in a fibertype-specific manner (type I MHC > type IIa MHC > type I-IIa MHC).The decline in the functional properties of single skeletal musclefibers in the older animals appears to be more pronounced than what hasbeen reported in younger animal populations.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号