首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The understanding of airborne pollen transportation is crucial for the reconstruction of the paleoenvironment. Under favorable conditions, a considerable amount of long-distance-transported pollen can be deposited far from its place of origin. In extreme arid regions, in most cases, such situations occur and increase the difficulty to interpret fossil pollen records. In this study, three sets of Cour airborne pollen trap were installed on the northern slope of Tianshan Mountains to collect airborne Picea schrenkiana (spruce) pollen grains from July 2001 to July 2006. The results indicate that Picea pollen disperses extensively and transports widely in the lower atmosphere far away from spruce forest. The airborne Picea pollen dispersal period is mainly concentrated between mid-May and July. In desert area, weekly Picea pollen began to increase and peaked suddenly in concentration. Also, annual pollen indices do not decline even when the distance increased was probably related to the strong wind may pick up the deposited pollen grains from the topsoil into the air stream, leading to an increase of pollen concentration in the air that is irrelevant to the normal and natural course of pollen transport and deposition. This, in turn, may lead to erroneous interpretations of the pollen data in the arid region. This study provided insight into the shift in the Picea pollen season regarding climate change in arid areas. It is recorded that the pollen pollination period starts earlier and the duration became longer. The results also showed that the temperature of May and June was positively correlated with the Picea pollen production. Furthermore, the transport of airborne Picea pollen data is useful for interpreting fossil pollen records from extreme arid regions.  相似文献   

2.
The air that we inhale contains simultaneously a multiple array of allergenic pollen. It is well known that such allergens cause allergic reactions in some 15 of the population of the Western World. However little is known about the quantitative aspect of this phenomenon. What is the lowest concentration of pollen that might trigger allergic responses? As people are exposed to heterogeneous and variable environments, clarification of the partial contribution of each of the major airborne pollen allergens and determination of its role in invoking allergy are of prime importance. Objectives: (1) Assessment of a possible correlation between the concentration of airborne pollen and incidence of allergy. (2) Estimation of the lowest average concentrations for various species of airborne pollen that elicit allergic symptoms when exceeded. (3) Determination of the extent of the variations in manifestation of allergy symptoms that can be explained by fluctuations in the concentration of individual species of airborne pollen. Methods: The study was conducted during 14?months with a rural population in Israel. The participants completed a detailed questionnaire and were skin prick tested with the common airborne allergens. The appearance of clinical symptoms, i.e. nasal, bronchial, ocular or dermal, were reported daily by the patients. Concentrations of the airborne pollen and spores were monitored in the center of activity of the residents during one day every week, using three ‘Rotorod’ pollen traps. The pollen grains were identified by light microscopy. Results: The pollen spectrum was divided into time-blocks presenting the main pollination periods of the investigated species. The correlation between the concentration of airborne pollen of the relevant species and the clinical symptoms of the patients was determined for each time block. The correlation differed for different clinical symptoms and for different pollen allergens. Highest correlation with airborne pollen counts was found for patients with nasal and bronchial symptoms. The onset of the clinical symptoms by sensitive patients started, in each of the relevant groups, once the weekly average concentration of the airborne pollen crossed a threshold level. Under the limitations of the present study, this level was estimated to be 2–4 pollen m?3 air for olive, 3–5 pollen m?3 air for grasses, 4–5 pollen m?3 air for Artemisia, 10–20 pollen m?3 air for pecan and 50–60 pollen m?3 air for cypress. Conclusions: Fluctuations in specific airborne pollen grains explained up to 2/3 of the variation in clinical allergy responses. Those were: 69 of the variation for cypress (March–April), 66 for the grasses (March–April), 49 for the pecan (May–June) and 62 for Artemisia (Autumn).  相似文献   

3.
The goal of this study was to quantitatively assess the relationship linking vegetation and airborne pollen. For this, we established six sampling stations in the city of Thessaloniki, Greece. Once every week for 2 years, we recorded airborne pollen in them, at breast height, by use of a portable volumetric sampler. We also made a detailed analysis of the vegetation in each station by counting all existing individuals of the woody species contributing pollen to the air, in five zones of increasing size, from 4 to 40 ha. We found the local vegetation to be the driver of the spatial variation of pollen in the air of the city. Even at very neighbouring stations, only 500 m apart, considerable differences in vegetation composition were expressed in the pollen spectrum. We modelled the pollen concentration of each pollen taxon as a function of the abundance of the woody species corresponding to that taxon by use of a Generalized Linear Model. The relationship was significant for the five most abundantly represented taxa in the pollen spectrum of the city. It is estimated that every additional individual of Cupressaceae, Pinaceae, Platanus, Ulmus and Olea increases pollen in the air by approximately 0.7, 0.2, 2, 6 and 5%, respectively. Whether the relationships detected for the above pollen taxa hold outside the domain for which we have data, as well as under different environmental conditions and/or with different assemblages of species representing them are issues to be explored in the future.  相似文献   

4.
We studied airborne pollen along an elevation gradient of Mt Olympos (Greece). Samples were collected on a regular basis, over the period March–October 2009, in eight elevation-different stations, by use of a portable Hirst-type volumetric sampler. Concurrently, we studied pollen production in Quercus coccifera, Q. ilex, Pinus heldreichii and P. nigra, which are dominant species in the main vegetation types of the mountain. Of the 35 pollen taxa detected in the air, 18 account for 99.1 % of the total airborne pollen. These are the main pollen taxa each contributing by at least 0.5 %. Pinaceae (32 %) followed by Quercus (24 %) and Urticaceae (18 %) are the most abundantly represented taxa. Duration of the pollen season decreases with elevation by on average 3 days for every 100 m of elevation increase or by 5 days for every Celsius-degree of temperature decrease. Pollen concentration in the air decreases with elevation for the lowland taxa; with the exception of Cupressaceae, no pattern is observed for the other main taxa. The pine and oak species studied carry comparable amounts of pollen, approximately 104 grains per flower, 108–109 per m2 of crown surface and 1010–1011 per individual; pollen production, primarily of the two Quercus species, is not responsive to environmental changes associated with elevation. Results provide evidence that, within a margin of error, airborne pollen reflects the distributions of pollen taxa on the mountain; regarding abundance, airborne pollen is representative of Quercus, but under-representative of Pinaceae. Ambrosia pollen is found at all elevations examined, although plants producing it have not been recorded on or around Mt Olympos.  相似文献   

5.
In light of heightened interest in the response of pollen phenology to temperature, we investigated recent changes to the onset of Betula (birch) pollen seasons in central and southern England, including a test of predicted advancement of the Betula pollen season for London. We calculated onset of birch pollen seasons using daily airborne pollen data obtained at London, Plymouth and Worcester, determined trends in the start of the pollen season and compared timing of the birch pollen season with observed temperature patterns for the period 1995–2010. We found no overall change in the onset of birch pollen in the study period although there was evidence that the response to temperature was nonlinear and that a lower asymptotic start of the pollen season may exist. The start of the birch pollen season was strongly correlated with March mean temperature. These results reinforce previous findings showing that the timing of the birch pollen season in the UK is particularly sensitive to spring temperatures. The climate relationship shown here persists over both longer decadal-scale trends and shorter, seasonal trends as well as during periods of ‘sign-switching’ when cooler spring temperatures result in later start dates. These attributes, combined with the wide geographical coverage of airborne pollen monitoring sites, some with records extending back several decades, provide a powerful tool for the detection of climate change impacts, although local site factors and the requirement for winter chilling may be confounding factors.  相似文献   

6.
The worldwide human population suffering from allergies continues to increase. Pollen grains are a major source of airborne allergens and significant cause of these diseases. Therefore, continuous monitoring of pollen grains released and transported in the air locally or regionally is required to determine the prevalence of various pollen types and identify intra-day and intra-annual seasonal variations over time. In this study, we developed the first pollen calendar for Mexico City, which includes a large variety of taxa, many of which show a long Main Pollen Season which may last throughout the year. The analysis and comparison of daily, monthly and annual values showed that the occurrence and abundance of the main types of aero-allergenic pollen in the atmosphere were species of Fraxinus, Cupressaceae and Alnus, which occur during the periods from December through March, whereas airborne pollens of several species of Poaceae and Urticaceae occurred throughout the year. The variation in pollen concentration showed that the greatest intra-diurnal variations occurred during the second half of the day. Regarding the relationship of pollen with bioclimatic factors, the increase in temperature favoured the presence of pollen in the air, whereas the increase in pluvial precipitation and relative humidity was associated with a decrease in airborne pollen. Large tracts of the Valley of Mexico have atmospheric conditions that are conducive to the accumulation of airborne particles, including pollen. Anomalous winds from the southeast dominated the surface wind variability during the first months of 2010. These patterns induced extreme values in wind convergence at the lower levels of the atmosphere, which resulted in high concentrations of pollen at our sampling site. We suggest that these conditions are related to the warm phase of the El Niño Southern Oscillation phenomenon (2009–2010).  相似文献   

7.
Increased knowledge on allergenic molecules in the environmental air helps in the information on environmental air quality and in the prevention and treatment of allergies. The aim of this study is to develop and validate a new methodology for the simultaneous detection and quantification of several airborne allergens using protein microarray technology, which has been created for the clinical detection of allergens. The immunological method was performed with Immuno Solid-phase Allergen Chip (ISAC) inhibition assay. Reagents for the validation studies include the following: (1) three sera from patients allergic to grass pollen each with different IgE levels as the detection reagents, (2) recombinant Phl p 1 major allergen as the inhibitor for the inhibition assays, (3) “natural” Phl p 1 released by Phleum pratense (timothy grass) pollen grains as the “biologically” relevant aeroallergen and (4) samples of airborne pollens collected by a Multi-vial Cyclone Sampler for comparison of levels of pollen detection versus the protein allergen detection by the microarray assay. The results obtained showed that ISAC inhibition is a sensitive technique able to detect 2.1 pg/mL of Phl p 1 and the allergens released from 1 grain of natural pollen. Also, the airborne allergen samples analyzed showed a good correlation with the concentration of grass pollen in the air. The use of ISAC inhibition will greatly improve future airborne simultaneous allergen quantification, becoming a valuable option in air quality control.  相似文献   

8.
A survey of airborne pollen was conducted during 1984 in the coastal plain of Israel. The flora of that area is continuously changing due to urbanization and agriculture, thus affecting the airborne pollen spectrum.

Significant pollen counts were monitored throughout the year, with a seasonal peak during spring. Meteorological parameters, such as wind velocity, wind direction and temperature affected pollen content of the air. Under certain conditions, even pollen of insect-pollinated plant species was found in the air.

The most conspicuous among the airborne pollen were olive, cypress and pine trees as well as pollen grains from the Poaceae, Amaranthaccae, Chenopodiaceae, Asteraceae, Brassicaceae and Urticaccae.

Results indicate that most of the airborne pollen grains were of local origin and from cultivated trees. Thus, it is possible to reduce airborne pollen contaminants around human habitations by selection of the proper non-allergenic ornamental plants.  相似文献   

9.
Although plant species with either animal or wind pollination modes are widespread and usually sympatric in nature, the degree of pollen interference from wind‐pollinated species on animal‐pollinated species remains little known. Conifer trees generally release a huge number of pollen grains into the air, floating into our noses and sometimes causing an allergic response. Here we document airborne pollen from two conifers (Pinus densata Mast. and Picea likiangensis (Franch.) E. Pritz.) deposited on the stigmas of eight coflowering insect‐pollinated angiosperms over 2 years in a mountainous forest community, in Shangri‐La, southwest China. Pollen density in the air as well as conifer pollen deposited onto stigmas at short and long distances from the airborne pollen source were quantified. Our results showed that conifer pollen as a proportion of total stigmatic pollen loads in the insect‐pollinated plants varied from 0.16% to 8.67% (3.16% ± 0.41%, n = 735) in 2016 and 0.66% to 5.38% (2.87% ± 0.86%, n = 180), and pollen quantity per unit area was closely related to that of airborne pollen in the air. Conifer pollen deposition on stigmas of insect‐pollinated species decreased greatly with increased distance from the pollen source. In the 10 plant species flowering in summer after conifer pollen release had finished, heterospecific pollen deposited on these stigmas came mainly from other insect‐pollinated flowers, with little contribution from airborne conifer pollen. The results indicate that there might be little interference with coflowering angiosperms by airborne pollen from dominant conifers in natural communities.  相似文献   

10.
In this study, a Tauber pollen trap was used in the urban area of Shijiazhuang to monitor continuously the outdoor air pollen from 2007 to 2011. The trap was emptied at regular intervals (typically 15 days). The results show that airborne pollen assemblages are generally similar each year among 2007–2011 and are responsive to the flowering times of plants, being dominated by pollen from woody plants in the spring and by pollen from herbaceous plants in summer and autumn. Two peak pollen influx periods, especially for the main allergenic pollen taxa, are seen, one between early March to early June and a second between late August to early October. During the four seasons, the main pollen taxa are Juglans, Artemisia, Platanus, Populus, Chenopodiaceae, Urtica + Humulus, Rosaceae, Pinus, Poaceae, Cereals, Quercus, and Betula, and all taxa other than Rosaceae were confirmed by relevant studies to be allergenic pollen taxa. RDA analysis of pollen influx and meteorological factors shows that in spring, temperature and humidity have significant effects on the pollen influx of woody plants; in summer, humidity and precipitation have significant negative effects on pollen influx of herbaceous plants; in autumn, temperature, water vapor pressure, and precipitation have a significant positive influence on herbaceous pollen influx; in winter, there were no significant correlations between airborne pollen influx and meteorological factors. The results reveal the dispersion patterns of airborne pollen and provide an important reference to appropriate construction of urban green systems and the reliable reduction in regional pollinosis.  相似文献   

11.
石家庄市空气花粉散布规律及与气候因子的关系   总被引:1,自引:0,他引:1  
李英  李月丛  吕素青  许清海 《生态学报》2014,34(6):1575-1586
石家庄市2007—2009连续两年空气花粉分析表明:受植物花期影响,春季以木本植物花粉为主,夏、秋季以草本植物花粉为主,不同类型花粉通量存在一定年际差异。松属、杨属、胡桃属等当地花粉含量占花粉组合的80.0%以上,桦木属、栎属、虎榛子属等区域花粉含量低于20.0%,显示空气花粉能较好地反映周围植被,但也受区域植被的影响。依据空气花粉通量变化规律,石家庄市主要空气花粉类型通量从高到低排在前5位的依次为:胡桃属、悬铃木属、蒿属、杨属、藜科,均为高致敏类型,花粉过敏症患者在其花期或通量较高时期应早作防范。空气花粉百分含量与气候因子之间的(CCA)分析结果显示,其主要受风速与水汽压影响;不同季节主要花粉类型通量与气候因子的相关分析表明:春季和秋季空气花粉通量主要受气温和水汽压的影响,夏季主要受相对湿度和水汽压的影响,冬季与气候因子相关较弱。  相似文献   

12.
We developed a novel flow particle analyzer that automatically classifies airborne pollen grains. The design of the particle counter (model KP-1000) is based on that of a flow cytometer, applied to the measurement of airborne particles. The counter classifies pollen species by simultaneously detecting both scattered light and the characteristic fluorescence excited by ultraviolet light in the flow cell. We observed airborne pollen using KP-1000 pollen counters and Durham samplers to compare their performance at three study sites in Japan during the spring pollen season. The pollen counter followed the variation in pollen concentrations, and its daily pollen counts were significantly correlated with the results of the Durham sampling method at all study sites. Although the counter over- or under-counted 2 target pollen species (Cryptomeria japonica and Chamaecyparis obtusa) when they coexisted, a data correction based on the Durham sampling results improved the accuracy of pollen classification of the counter. Our results indicate that the new pollen counter has a strong potential for counting and identifying airborne pollen grains in real time, and it requires further improvement, field trials, and tests with other common airborne pollen grains.  相似文献   

13.
The European Commission Cooperation in Science and Technology (COST) Action FA1203 “SMARTER” aims to make recommendations for the sustainable management of Ambrosia across Europe and for monitoring its efficiency and cost-effectiveness. The goal of the present study is to provide a baseline for spatial and temporal variations in airborne Ambrosia pollen in Europe that can be used for the management and evaluation of this noxious plant. The study covers the full range of Ambrosia artemisiifolia L. distribution over Europe (39°N–60°N; 2°W–45°E). Airborne Ambrosia pollen data for the principal flowering period of Ambrosia (August–September) recorded during a 10-year period (2004–2013) were obtained from 242 monitoring sites. The mean sum of daily average airborne Ambrosia pollen and the number of days that Ambrosia pollen was recorded in the air were analysed. The mean and standard deviation (SD) were calculated regardless of the number of years included in the study period, while trends are based on those time series with 8 or more years of data. Trends were considered significant at p < 0.05. There were few significant trends in the magnitude and frequency of atmospheric Ambrosia pollen (only 8% for the mean sum of daily average Ambrosia pollen concentrations and 14% for the mean number of days Ambrosia pollen were recorded in the air). The direction of any trends varied locally and reflected changes in sources of the pollen, either in size or in distance from the monitoring station. Pollen monitoring is important for providing an early warning of the expansion of this invasive and noxious plant.  相似文献   

14.
This study compares phenological observations of Corylus (hazel) and Alnus (alder) flowering with airborne pollen counts of these taxa recorded using volumetric spore traps (2009–2011). The work was carried out in the Polish cities of Szczecin and Rzeszów that are located in different climatic regions. Correlations between pollen concentrations and meteorological data were investigated using Spearman’s rank correlation analysis. The timings of hazel and alder pollination and the occurrence of airborne pollen varied greatly and were significantly influenced by meteorological conditions (p < 0.05). The flowering synchronization of hazel and alder pollination in Szczecin and Rzeszów varied over the study period. Hazel and alder trees flowered notably earlier in stands located in places that were exposed to sunlight (insolated) and sheltered from the wind. On the other hand, a delay in the timing of pollination was observed in quite sunny but very windy sites. In Rzeszów, maximum hazel pollen concentrations did not coincide with the period of full pollination (defined as between 25 % hazel and alder and 75 % of flowers open). Conversely, in Szczecin, the highest hazel pollen concentrations were recorded during phenophases of the full pollination period. The period when the highest alder pollen concentrations were recorded varied between sites, with Rzeszów recording the highest concentrations at the beginning of pollination and Szczecin recording alder pollen throughout the full pollination period. Substantial amounts of hazel and alder pollen grains were recorded in the air of Rzeszów (but not Szczecin) before the onset of the respective pollen seasons.  相似文献   

15.
Forecasting daily airborne pollen concentrations is of great importance for management of seasonal allergies. This paper explores the performance of the pollen calendar as the most basic observation-oriented model for predicting daily concentrations of airborne Ambrosia, Betula and Poaceae pollen. Pollen calendars were calculated as the mean or median value of pollen concentrations on the same date in previous years of the available historic dataset, as well as the mean or median value of pollen concentrations of the smoothed dataset, pre-processed using moving mean and moving median. The performance of the models was evaluated by comparing forecasted to measured pollen concentrations at both daily and 10-day-average resolutions. This research demonstrates that the interpolation of missing data and pre-processing of the calibration dataset yields lower prediction errors. The increase in the number of calibration years corresponds to an improvement in the performance of the calendars in predicting daily pollen concentrations. However, the most significant improvement was obtained using four calibration years. The calendar models correspond well to the shape of the pollen curve. It was also found that daily resolution instead of 10-day averages adds to their value by emphasising variability in pollen exposure, which is important for personal assessment of dose-response for pollen-sensitive individuals.  相似文献   

16.
With a view to obtaining fuller information on airborne pollen content in the city of Havana, pollen sampling was carried out using a volumetric capture method, for the first time in Cuba. The study was conducted during 2 years (2011 and 2015). An annual pollen integral of 3414 grains was registered during the first year of study, whereas 5120 grains were observed along the 2015. Monthly maximum concentrations were recorded during April, June and July with total values close to 800 pollen grains. Of the 45 pollen types identified, Cecropia (38% of the total pollen identified in both years), Poaceae (18%), Urera type (9%) and Casuarina (6%) were particularly abundant. Although the main pollen types differed in terms of intradiurnal distribution, the highest concentrations were in all cases recorded between 0900 and 1300 hours. Maximum temperature was the variable most influencing airborne pollen counts in the air, with the exception of Casuarina. This paper sought to establish a methodological basis for the further development of aerobiological research in Cuba, thus helping to enhance the prevention and diagnosis of pollen allergies in the affected island population.  相似文献   

17.
The air that we inhale contains simultaneously a multiple array of allergenic pollen. It is well known that such allergens cause allergic reactions in some 15 of the population of the Western World. However little is known about the quantitative aspect of this phenomenon. What is the lowest concentration of pollen that might trigger allergic responses? As people are exposed to heterogeneous and variable environments, clarification of the partial contribution of each of the major airborne pollen allergens and determination of its role in invoking allergy are of prime importance. Objectives: (1) Assessment of a possible correlation between the concentration of airborne pollen and incidence of allergy. (2) Estimation of the lowest average concentrations for various species of airborne pollen that elicit allergic symptoms when exceeded. (3) Determination of the extent of the variations in manifestation of allergy symptoms that can be explained by fluctuations in the concentration of individual species of airborne pollen. Methods: The study was conducted during 14months with a rural population in Israel. The participants completed a detailed questionnaire and were skin prick tested with the common airborne allergens. The appearance of clinical symptoms, i.e. nasal, bronchial, ocular or dermal, were reported daily by the patients. Concentrations of the airborne pollen and spores were monitored in the center of activity of the residents during one day every week, using three Rotorod pollen traps. The pollen grains were identified by light microscopy. Results: The pollen spectrum was divided into time-blocks presenting the main pollination periods of the investigated species. The correlation between the concentration of airborne pollen of the relevant species and the clinical symptoms of the patients was determined for each time block. The correlation differed for different clinical symptoms and for different pollen allergens. Highest correlation with airborne pollen counts was found for patients with nasal and bronchial symptoms. The onset of the clinical symptoms by sensitive patients started, in each of the relevant groups, once the weekly average concentration of the airborne pollen crossed a threshold level. Under the limitations of the present study, this level was estimated to be 2–4 pollen m–3 air for olive, 3–5 pollen m–3 air for grasses, 4–5 pollen m–3 air for Artemisia, 10–20 pollen m–3 air for pecan and 50–60 pollen m–3 air for cypress. Conclusions: Fluctuations in specific airborne pollen grains explained up to 2/3 of the variation in clinical allergy responses. Those were: 69 of the variation for cypress (March–April), 66 for the grasses (March–April), 49 for the pecan (May–June) and 62 for Artemisia (Autumn).  相似文献   

18.
The aim of this study was to determine the qualitative and quantitative composition of the airborne pollen of Santa Rosa city, La Pampa (Argentina), and to analyse the seasonal behaviour of the pollen types that have the highest representation in the atmosphere. The city, with temperate climate, is located in a cultivated area that corresponds phytogeographically to a xerophytic forest limiting with grasslands. The pollen sampling was performed using a Hirst-type volumetric spore trap located in the urban centre of the city, 15 m above ground level, from July 2007–June 2009. The annual pollen index was 51,647 pollen grains. The airborne pollen consisted of 73 pollen types, 42 of woody origin represented 66 % of the total and with winter-spring seasonality and 31 were of herbaceous origin, which represented 30 % of the total and with spring-summer seasonality. The composition of the woody airborne pollen reflected the formation of urban vegetation, consisting mainly of exotic taxa from tree species used in urban tree alignment. The most abundant types were as follows: Cupressaceae, Fraxinus, Ulmus, Olea europaea, Styphnolobium japonicum, Myrtaceae, Pinaceae, Platanus, Celtis- Morus and Populus. Native components such as Condalia microphylla were also found, indicating the ‘Espinal’ phytogeographical province that was typical of the area. The most abundant herbaceous airborne pollen types, in descending order, were as follows: Poaceae, Amaranthus-Chenopodiaceae, Urticaceae, Brassicaceae and Asteraceae. The emission sources of these pollen types were weeds that grew spontaneously in parks, waste grounds and flower beds of the city.  相似文献   

19.
The concentration of pollen grains in the air was studied using two aerobiological volumetric Hirst-type spore traps, one at ground level and the other at a height of 16 m on a terrace. The study was carried out between 2009 and 2011, from March to June in Badajoz (SW Spain). Intradiurnal and daily pollen counts were compared with both, different meteorological parameters and the distribution of local pollen sources. Forty-six pollen types were identified and 89 % of the total grains corresponded to Quercus, Poaceae, Olea, Pinaceae and Plantago pollen types, in descending order. The mean height ratio of the daily pollen count was 1.02. Significant correlations were observed when comparing daily pollen counts for predominant pollen types at both levels. The comparisons have shown significant differences in the daily pollen count between the two samplers in the case of Olea and Pinaceae, but not for Quercus, Poaceae and Plantago. Similar results were obtained using the intradiurnal airborne pollen database. No significant correlation has been found between pollen count and the different meteorological parameters, showing no dependence on height. These differences of Olea and Pinaceae may be explained in part by the uneven distribution of the pollen sources and the disturbance by nearby buildings. The temporal variation patterns between the two sites were similar; however, taking into account the average of the data, the higher values were obtained first at the ground level and later at 16 m.  相似文献   

20.
For calculating the total annual Olea pollen concentration, the onset of the main pollen season and the peak pollen concentration dates, using data from 1998 to 2004, predictive models were developed using multiple regression analysis. Four Portuguese regions were studied: Reguengos de Monsaraz, Valença do Douro, Braga and Elvas. The effect of some meteorological parameters such as temperature and precipitation on Olea spatial and temporal airborne pollen distribution was studied. The best correlations were found when only the pre‐peak period was used, with thermal parameters (maximum temperature) showing the highest correlation with airborne pollen distribution. Independent variables, selected by regression analysis for the predictive models, with the greatest influence on the Olea main pollen season features were accumulated number of days with rain and rainfall in the previous autumn, and temperatures (average and minimum) from January through March. The models predict 59 to 99% of the total airborne pollen concentration recorded and the initial and peak concentration dates of the main Olea pollen season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号