首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
To examine whether human ATP-binding cassette (ABC) transporters play a role in the detoxification of plant alkaloid berberine, we investigated berberine transport using multidrug resistance protein1 (MDR1) and multidrug resistance-associated protein1 (MRP1). Cells expressing MDR1 or MRP1 accumulated less berberine. Berberine accumulation depended on the cellular ATP level, and was reversed by typical inhibitors of MDR1, suggesting that human MDR1 and MRP1 directly efflux berberine as their substrate.  相似文献   

3.
Human MDR1 and MRP1 recognize berberine as their transport substrate   总被引:6,自引:0,他引:6  
To examine whether human ATP-binding cassette (ABC) transporters play a role in the detoxification of plant alkaloid berberine, we investigated berberine transport using multidrug resistance protein1 (MDR1) and multidrug resistance-associated protein1 (MRP1). Cells expressing MDR1 or MRP1 accumulated less berberine. Berberine accumulation depended on the cellular ATP level, and was reversed by typical inhibitors of MDR1, suggesting that human MDR1 and MRP1 directly efflux berberine as their substrate.  相似文献   

4.
Previous work has shown that Na,K-ATPase of human erythrocytes can extract free energy from sinusoidal electric fields to pump cations up their respective concentration gradients. Because regularly oscillating waveform is not a feature of the transmembrane electric potential of cells, questions have been raised whether these observed effects are biologically relevant. Here we show that a random-telegraph fluctuating electric field (RTF) consisting of alternating square electric pulses with random lifetimes can also stimulate the Rb(+)-pumping mode of the Na,K-ATPase. The net RTF-stimulated, ouabain-sensitive Rb+ pumping was monitored with 86Rb+. The tracer-measured, Rb+ influx exhibited frequency and amplitude dependencies that peaked at the mean frequency of 1.0 kHz and amplitude of 20 V/cm. At 4 degrees C, the maximal pumping activity under these optimal conditions was 28 Rb+/RBC-hr, which is approximately 50% higher than that obtained with the sinusoidal electric field. These findings indicate that Na,K-ATPase can recognize an electric signal, either regularly oscillatory or randomly fluctuating, for energy coupling, with high fidelity. The use of RTF for activation also allowed a quantitative theoretical analysis of kinetics of a membrane transport model of any complexity according to the theory of electroconformational coupling (ECC) by the diagram methods. A four-state ECC model was shown to produce the amplitude and the frequency windows of the Rb(+)-pumping if the free energy of interaction of the transporter with the membrane potential was to include a nonlinear quadratic term. Kinetic constants for the ECC model have been derived.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The vanadate-induced nucleotide trapping technique, which has been conventionally used to characterize mammalian ATP-binding cassette (ABC) proteins, was applied to berberine-producing plant cell cultures, Thalictrum minus and Coptis japonica. One membrane protein at ca. 180 kDa was photoaffinity-labeled with 8-azido-[alpha-(32)P]ATP in the T. minus cells in the presence of vanadate, which was specifically induced by the addition of benzyladenine in a similar manner as the induction of berberine biosynthesis in these cell cultures, whereas three bands were observed in the C. japonica cells in the size region between 120 and 150 kDa corresponding to full-sized ABC protein. The benzyladenine-induced band in T. minus showed properties similar to those of human MDR1, including the recognition of berberine, which suggests that the ABC protein detected in T. minus takes this endogenous alkaloid as a putative substrate for transport. This is the first application of this technique to plant cells.  相似文献   

6.
In this paper, we studied effects of phosphonium dications P2C5 and P2C10 on bilayer planar phospholipid membrane (BLM) and rat liver mitochondria. In line with our previous observations [M.F. Ross, T. Da Ros, F.H. Blaikie, T.A. Prime, C.M. Porteous, I.I. Severina, V.P. Skulachev, H.G. Kjaergaard, R.A. Smith, M.P. Murphy, Accumulation of lipophilic dications by mitochondria and cells, Biochem. J. 400 (2006) 199-208], we showed both P2C5 and P2C10 are cationic penetrants for BLM. They generated transmembrane diffusion potential (Delta Psi), the compartment with a lower dication concentration positive. However, the Delta Psi values measured proved to be lower that the Nernstian. This fact could be explained by rather low BLM conductance for the cations at their small concentrations and by induction of some BLM damage at their large concentrations. The damage in question consisted in appearance of non-Ohmic current/voltage relationships which increased in time. Such a non-Ohmicity was especially strong at Delta Psi >100 mV. Addition of penetrating lipophilic anion TPB, which increases the BLM conductance for lipophilic cations, yielded the Nernstian Delta Psi, i.e. 30 mV per ten-fold dication gradient. In the State 4 mitochondria, dications stimulated respiration and lowered Delta Psi. Moreover, they inhibited the State 3 respiration with succinate or glutamate and malate (but not with TMPD and ascorbate) in an uncoupler-sensitive fashion. Effect on the in State 4 mitochondria, similarly to that on BLM, was accounted for by a time-dependent membrane damage. On the other hand, the State 3 effect was most probably due to inhibition of the respiratory chain Complex I and/or Complex III. The damaging and inhibitory activities of lipophilic dications should be taken into account when one considers a possibility to use them as a vehicle to target antioxidants or other compounds to mitochondria.  相似文献   

7.
In this paper, we studied effects of phosphonium dications P2C5 and P2C10 on bilayer planar phospholipid membrane (BLM) and rat liver mitochondria. In line with our previous observations [M.F. Ross, T. Da Ros, F.H. Blaikie, T.A. Prime, C.M. Porteous, I.I. Severina, V.P. Skulachev, H.G. Kjaergaard, R.A. Smith, M.P. Murphy, Accumulation of lipophilic dications by mitochondria and cells, Biochem. J. 400 (2006) 199-208], we showed both P2C5 and P2C10 are cationic penetrants for BLM. They generated transmembrane diffusion potential (ΔΨ), the compartment with a lower dication concentration positive. However, the ΔΨ values measured proved to be lower that the Nernstian. This fact could be explained by rather low BLM conductance for the cations at their small concentrations and by induction of some BLM damage at their large concentrations. The damage in question consisted in appearance of non-Ohmic current/voltage relationships which increased in time. Such a non-Ohmicity was especially strong at ΔΨ > 100 mV. Addition of penetrating lipophilic anion TPB, which increases the BLM conductance for lipophilic cations, yielded the Nernstian ΔΨ, i.e. 30 mV per ten-fold dication gradient. In the State 4 mitochondria, dications stimulated respiration and lowered ΔΨ. Moreover, they inhibited the State 3 respiration with succinate or glutamate and malate (but not with TMPD and ascorbate) in an uncoupler-sensitive fashion. Effect on the in State 4 mitochondria, similarly to that on BLM, was accounted for by a time-dependent membrane damage. On the other hand, the State 3 effect was most probably due to inhibition of the respiratory chain Complex I and/or Complex III. The damaging and inhibitory activities of lipophilic dications should be taken into account when one considers a possibility to use them as a vehicle to target antioxidants or other compounds to mitochondria.  相似文献   

8.
Natural products represent a rich reservoir of potential small chemical molecules exhibiting anti-proliferative and chemopreventive properties. Here, we show that treatment of pancreatic ductal adenocarcinoma (PDAC) cells (PANC-1, MiaPaCa-2) with the isoquinoline alkaloid berberine (0.3–6 µM) inhibited DNA synthesis and proliferation of these cells and delay the progression of their cell cycle in G1. Berberine treatment also reduced (by 70%) the growth of MiaPaCa-2 cell growth when implanted into the flanks of nu/nu mice. Mechanistic studies revealed that berberine decreased mitochondrial membrane potential and intracellular ATP levels and induced potent AMPK activation, as shown by phosphorylation of AMPK α subunit at Thr-172 and acetyl-CoA carboxylase (ACC) at Ser79. Furthermore, berberine dose-dependently inhibited mTORC1 (phosphorylation of S6K at Thr389 and S6 at Ser240/244) and ERK activation in PDAC cells stimulated by insulin and neurotensin or fetal bovine serum. Knockdown of α1 and α2 catalytic subunit expression of AMPK reversed the inhibitory effect produced by treatment with low concentrations of berberine on mTORC1, ERK and DNA synthesis in PDAC cells. However, at higher concentrations, berberine inhibited mitogenic signaling (mTORC1 and ERK) and DNA synthesis through an AMPK-independent mechanism. Similar results were obtained with metformin used at doses that induced either modest or pronounced reductions in intracellular ATP levels, which were virtually identical to the decreases in ATP levels obtained in response to berberine. We propose that berberine and metformin inhibit mitogenic signaling in PDAC cells through dose-dependent AMPK-dependent and independent pathways.  相似文献   

9.
Protonophorous uncouplers causing a partial decrease in mitochondrial membrane potential are promising candidates for therapeutic applications. Here we showed that hydrophobic penetrating cations specifically targeted to mitochondria in a membrane potential-driven fashion increased proton-translocating activity of the anionic uncouplers 2,4-dinitrophenol (DNP) and carbonylcyanide-p-trifluorophenylhydrazone (FCCP). In planar bilayer lipid membranes (BLM) separating two compartments with different pH values, DNP-mediated diffusion potential of H+ ions was enhanced in the presence of dodecyltriphenylphosphonium cation (C12TPP). The mitochondria-targeted penetrating cations strongly increased DNP- and carbonylcyanide m-chlorophenylhydrazone (CCCP)-mediated steady-state current through BLM when a transmembrane electrical potential difference was applied. Carboxyfluorescein efflux from liposomes initiated by the plastoquinone-containing penetrating cation SkQ1 was inhibited by both DNP and FCCP. Formation of complexes between the cation and CCCP was observed spectophotometrically. In contrast to the less hydrophobic tetraphenylphosphonium cation (TPP), SkQ1 and C12TPP promoted the uncoupling action of DNP and FCCP on isolated mitochondria. C12TPP and FCCP exhibited a synergistic effect decreasing the membrane potential of mitochondria in yeast cells. The stimulating action of penetrating cations on the protonophore-mediated uncoupling is assumed to be useful for medical applications of low (non-toxic) concentrations of protonophores.  相似文献   

10.
A convenient functional assay of the multidrug resistance (MDR) pump is useful for the diagnosis of MDR-1 cancers and the quantitative determination of the potency of inhibitors of the pump. Calcein-AM, a substrate of the MDR pump, was used to determine the concentration of SDZ PSC833 needed to completely inhibit the pump in CEM/VLB100 drug-resistant cells. The initial rates (in percent) for calcein retention by these MDR-1 cells were used to calculate values for the percent initial efflux of calcein-AM through the MDR pump in the presence of the inhibitors PSC833, cyclosporinA, and dexniguldipine. The percent efflux values at 250 and 60 nM calcein-AM were used to calculate the required concentration of each inhibitor to produce half-inhibition (I50) of initial efflux through the pump. These results are consistent with a noncompetitive inhibition of the MDR pump by each of the three inhibitors.  相似文献   

11.
Cholinergic agonists are major stimuli for fluid secretion in parotid acinar cells. Saliva bicarbonate is essential for maintaining oral health. Electrogenic and electroneutral Na(+)-HCO(3)(-) cotransporters (NBCe1 and NBCn1) are abundant in parotid glands. We previously reported that angiotensin regulates NBCe1 by endocytosis in Xenopus oocytes. Here, we studied cholinergic regulation of NBCe1 and NBCn1 membrane trafficking by confocal fluorescent microscopy and surface biotinylation in parotid epithelial cells. NBCe1 and NBCn1 colocalized with E-cadherin monoclonal antibody at the basolateral membrane (BLM) in polarized ParC5 cells. Inhibition of constitutive recycling with the carboxylic ionophore monensin or the calmodulin antagonist W-13 caused NBCe1 to accumulate in early endosomes with a parallel loss from the BLM, suggesting that NBCe1 is constitutively endocytosed. Carbachol and PMA likewise caused redistribution of NBCe1 from BLM to early endosomes. The PKC inhibitor, GF-109203X, blocked this redistribution, indicating a role for PKC. In contrast, BLM NBCn1 was not downregulated in parotid acinar cells treated with constitutive recycling inhibitors, cholinergic stimulators, or PMA. We likewise demonstrate striking differences in regulation of membrane trafficking of NBCe1 vs. NBCn1 in resting and stimulated cells. We speculate that endocytosis of NBCe1, which coincides with the transition to a steady-state phase of stimulated fluid secretion, could be a part of acinar cell adjustment to a continuous secretory response. Stable association of NBCn1 at the membrane may facilitate constitutive uptake of HCO(3)(-) across the BLM, thus supporting HCO(3)(-) luminal secretion and/or maintaining acid-base homeostasis in stimulated cells.  相似文献   

12.
We studied the factors that determine the intraphagosomal pH (pHp) in elicited murine peritoneal macrophages. pHp was measured in situ by recording the fluorescence of covalently fluoresceinated Staphylococcus aureus ingested by the macrophages. Following spontaneous acidification of the phagosomes, passive (leak) H+ permeability was determined measuring the rate of change of pHp upon complete inhibition of the H+ pump with bafilomycin A1. A significant, but comparatively low passive H+ permeability was detected. The existence of a passive H+ leak implies that continuous energy expenditure is required for the maintenance of an acidic pHp. In combination with ionophores, bafilomycin was also used to estimate the counterion permeability. The counterion conductance was found to be severalfold higher than the H+ leak. Ion substitution experiments in electropermeabilized cells and the inhibitory effects of quinine and 5-nitro-2-(3-phenylpropylamino)benzoic acid suggest that both monovalent anions and cations permeate the phagosomal membrane. The activity of the H+ pump was measured at various pHp levels. In the steady state, the rate of H+ pumping was considerably lower than counterion permeation. These findings suggest that the phagosomal membrane potential is insignificant. Consistent with this notion, increasing phagosomal conductance with ionophores failed to accelerate the rate of H+ pumping. Thus, the transmembrane delta pH is the predominant component of the proton-motive force across the phagosomal membrane in the steady state. The rate of H+ pumping was found to decrease steeply as the phagosomal lumen became acidified. Therefore, the pH sensitivity of the H+ pump, which possibly reflects a kinetic or allosteric effect, is the primary determinant of pHp.  相似文献   

13.
The effects of organic quaternary amines, tetraethylammonium (TEA) chloride and benzyltriethylammonium (BTEA) chloride, on Na,K pump current were examined in rat cardiac myocytes superfused in extracellular Na(+)-free solutions and whole-cell voltage-clamped with patch electrodes containing a high Na(+)-salt solution. Extracellular application of these quaternary amines competitively inhibited extracellular K(+) (K(+)(o)) activation of Na,K pump current; however, the concentration for half maximal inhibition of Na,K pump current at 0 mV (K(0)(Q)) by BTEA, 4.0 +/- 0.3 mM, was much lower than the K(0)(Q) for TEA, 26.6 +/- 0.7 mM. Even so, the fraction of the membrane electric field dissipated during K(+)(o) activation of Na,K pump current (lambda(K)), 39 +/- 1%, was similar to lambda(K) determined in the presence of TEA (37 +/- 2%) and BTEA (35 +/- 2%), an indication that the membrane potential (V(M)) dependence for K(+)(o) activation of the Na,K pump current was unaffected by TEA and BTEA. TEA was found to inhibit the Na,K pump current in a V(M)-independent manner, i.e., inhibition of current dissipated 4 +/- 2% of the membrane electric field. In contrast, BTEA dissipated 40 +/- 5% of the membrane electric field during inhibition of Na,K pump current. Thus, BTEA inhibition of the Na,K-ATPase is V(M)-dependent. The competitive nature of inhibition as well as the similar fractions of the membrane electric field dissipated during K(+)(o)-dependent activation and BTEA-dependent inhibition of Na,K pump current suggest that BTEA inhibits the Na,K-ATPase at or very near the enzyme's K(+)(o) binding site(s) located in the membrane electric field. Given previous findings that organic quaternary amines are not occluded by the Na,K-ATPase, these data clearly demonstrate that an ion channel-like structure provides access to K(+)(o) binding sites in the enzyme.  相似文献   

14.
Optical indicators of the cationic, cyanine and anionic oxonol classes were used to evaluate the plasma membrane potential of animal cells in suspension and in monolayer culture. The optical signals were calibrated by using diffusion potentials either of K+ (in the presence of valinomycin) or of H+ (in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone; FCCP); both classes of dye gave similar values of plasma membrane potential, in the range -40 to -90 mV for different cell types. Addition of haemolytic Sendai virus or Staphylococcus aureus alpha-toxin depolarizes cells and causes them to leak monovalent cations; these effects are antagonized by extracellular Ca2+. Cells infected with vesicular stomatitis or Semliki Forest virus become depolarized during an infectious cycle; infection with other viruses was without affect on plasma membrane potential.  相似文献   

15.
Multidrug-resistant (MDR) cells are characterized by a defect in drug accumulation caused by activity of an energy-dependent rapid drug efflux pump. The action of this drug pump can be inhibited by specific agents, referred to as membrane transport modulating agents (MTMAs), resulting in a restoration of the intracellular drug accumulation. This paper presents a flow cytometric assay for the detection of MDR cells, which is based on the ability of these cells to respond to MTMAs. Daunorubicin net-uptake kinetics were measured of anthracycline-sensitive (A2780/S) and -resistant (A2780/R) human ovarian carcinoma cells in vitro. A2780/R cells accumulated significantly less (about a factor of 5) daunorubicin as compared to A2780/S cells. Addition of verapamil or cyclosporin A to A2780/R cells at steady-state daunorubicin uptake led to a dose-dependent increase in cellular daunorubicin accumulation. The sensitivity of the assay was determined by testing mixtures of A2780/S and A2780/R cells. Analysis of A2780/S cells contaminated with A2780/R cells showed that as few as 2.5% MDR cells could readily be detected in the mixture. In conclusion, this functional assay enables the detection of MDR cells in a heterogeneous cell suspension and is ideally suited for the study of the occurrence of typical MDR in human cancer.  相似文献   

16.
Using dialkylphospholipid (diphytanyl phosphatidylcholine) instead of the conventional diacylphospholipid (diphytanoyl phosphatidylcholine) in planar lipid bilayer membranes (BLM) led to an increase in the diffusion potential of the penetrating cation plastoquinonyl-decyl-triphenylphosphonium (SkQ1), making it close to the Nernst value, and accelerated translocation of SkQ1 across the BLM as monitored by the kinetics of a decrease in the transmembrane electric current after applying a voltage (current relaxation). The consequences of changing from an ester to an ether linkage between the head groups and the hydrocarbon chains are associated with a substantial reduction in the membrane dipole potential known to originate from dipoles of tightly bound water molecules and carbonyl groups in ester bonds. The difference in the dipole potential between BLM formed of the ester phospholipid and that of the ether phospholipid was estimated to be 100 mV. In the latter case, suppression of SkQ1-mediated proton conductivity of the BLM was also observed.  相似文献   

17.
Phenylpiperidine selective serotonin reuptake inhibitors (PSSRIs) block the function of selected multidrug efflux pumps of Staphylococcus aureus. In this study PSSRI-based piperidine derivatives were prepared, evaluated for inhibition of two multidrug resistance (MDR)-conferring efflux pump systems, and tested for potentiation of antimicrobial activity of antibacterial efflux pump substrates. It is demonstrated that the 4-phenyl moiety of PSSRI-based efflux pump inhibitors (EPIs) is not an absolute structural requirement for inhibiting the NorA and MepA MDR efflux pumps. Potency of efflux inhibition is maintained or enhanced by replacing the aryloxymethyl substituent at position-3 of PSSRIs with arylalkene and arylthioether moieties. Novel 3-aryl piperidine EPIs that significantly increase substrate antibiotic activity against strains of S. aureus expressing NorA and MepA are described.  相似文献   

18.
The action of the antiviral drug rimantadine on the structure of bilayer lipid membranes (BLM) and RBC membranes was investigated. Structural changes in BLM were recorded by ionophore conductivity changes and by changes in the third harmonic of capacity current signal due to lateral compression of BLM in an electric field. It was shown that the adsorption of rimantadine on BLM results in an increase in ionophore mobility in bilayer membranes of dioleolyllecithin (DOL) and common lipids of bovine brain (CL) and in a decrease in those of azolectin (A). Relative changes in the third harmonic signal also depend on the membrane composition and have different signs. The results may be explained by the rimantadine action on the lipid bilayer structure: "rigidification" of A-membranes and "fluidization" of BLM from DOL and CL. Structural reorganization of RBC membranes as investigated by the ability of the cells to enter a micropipette (inner diameter greater than or equal to 3 microns) thereby undergoing deformation. It was shown that rimantadine influences RBC deformability due to drug induced inhomogenous mechanical membrane properties. Also, rimantadine accelerated the process of artificially induced aggregation of erythrocytes. The relation of the effects on artificial and biological membranes, and the structural changes in the lipid phase of membrane are discussed.  相似文献   

19.
Bacteriorhodopsin (bR) is the prototype of an integral membrane protein with seven membrane-spanning alpha-helices and serves as a model of the G-protein-coupled drug receptors. This study is aimed at reaching a greater understanding of the role of amine local anesthetic cations on the proton transport in the bR protein, and furthermore, the functional role of "the cation" in the proton pumping mechanism. The effect of the amine anesthetic cations on the proton pump in the bR blue membrane was compared with those by divalent (Ca2+, Mg2+ and Mn2+) and monovalent metal cations (Li+, Na+, K+ and Cs+), which are essential for the correct functioning of the proton pumping of the bR protein. The results suggest that the interacting site of the divalent cation to the bR membrane may differ from that of the monovalent metal cation. The electric current profile of the bR blue membrane in the presence of the amine anesthetic cations was biphasic, involving the generation and inhibition of the proton pumping activity in a concentration-dependent manner. The extent of the regeneration of the proton pump by the additives increased in the order of monovalent metal cation相似文献   

20.
The lateral leaflets of Desmodium motorium (Houtt.) Merr. exhibit ultradian up- and down movements, which are paralleled by oscillations of the membrane potential of motor cells in the pulvinus. By different treatments we have tested the hypothesis that both that both oscillation-types are causally related. The reactions of the leaflet movement and the membrane potential were evaluated by the following approaches. (1) Application of vanadate. an inhibitor of the proton pump in the plasmalemma. and N2 suppressed leaflet movements and finally arrested the leaflet in the lower position. Before the oscillations damped out, a strong lengthening in period was found. This indicates that the pump is part of the ultradian clock. A period lenthening and a final suppression of the rhythm by vanadate was also seen in the extracellular electric potential of the pulvinus. Intracellular recordings in situ showed that vanadate application depolarized the motor cells. (2) Light of high fluence rates diminished the amplitude of the oscillations of the membrane potential of single motor cells and shortened the period. The same effects were observed when monitoring the lateral leaflet movement. The leaflet always moved towards the direction of the light. whether it was applied from the abaxial or from the adaxial part of the pulvinus. (3) When light was applied to the pulvinus of lateral leaflets. which had spontancously stopped moving in an upper position. oscillations were induced transiently. This effect was also found for the membrane potential of motor cells in the pulvinus. - Our results thus provide further evidence that the membrane potential controls the volume state of the motor cells in the pulvinus of lateral leaflets of Desmodium motorium .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号