首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents the findings of a 10-year survey carried out by the Portuguese Aerobiology Network (RPA) at seven pollen-monitoring stations: five mainland stations (Oporto, Coimbra, Lisbon, Évora and Portimão) and two insular stations [Funchal (Madeira archipelago) and Ponta Delgada (Azores archipelago)]. The main aim of the study was to examine spatial and temporal variations in the Annual Pollen Index (API) with particular focus on the most frequently recorded pollen types. Pollen monitoring (2003–2012) was carried out using Hirst-type volumetric spore traps, following the minimum recommendations proposed by the European Aerobiology Society Working Group on Quality Control. Daily pollen data were examined for similarities using the Kruskal–Wallis nonparametric test and multivariate regression trees. Simple linear regression analysis was used to describe trends in API. The airborne pollen spectrum at RPA stations is dominated by important allergenic pollen types such as Poaceae, Olea and Urticaceae. Statistically significant differences were witnessed in the API recorded at the seven stations. Mean API is higher in the southern mainland cities, e.g. Évora, Lisbon and Portimão, and lower in insular and littoral cities. There were also a number of significant trends in API during the 10-year study. This report identifies spatial and temporal variations in the amount of airborne pollen recorded annually in the Portuguese territory. There were also a number of significant changes in API, but no general increases in the amount of airborne pollen.  相似文献   

2.
We report on airborne pollen sampling in theatmosphere of Cagliari (southern Sardinia) inthe two-year period 1999–2000, with the aim ofsupplementing and extending the knowledge ofthe city air plankton. The total pollen grainswas 23,087. They belong systemically to 52families, including 32 trees and/or shrubs and20 herbaceous essences.The families with the highest airborne pollenincidence were the Cupressaceae, Pinaceae,Urticaceae, Anacardiaceae, Oleaceae, and thePolygonaceae.Compared to a previous monitoring, morefamilies and fewer airborne pollen grains wereobserved in this study. In addition, one airpollen component was observed that had neverbeen monitored in previous samplings. Oncomparing our data with national mean figures,the major anthesis is brought forward by amonth as a result of the particularmeteorological conditions that characterise theSardinian climate.The studies carried out disclosed therelationship between air pollen concentrationand meteorological factors. We also compiled apollen calendar showing data on monthly pollenconcentrations, from which a great deal ofuseful and important information has beenobtained.  相似文献   

3.
Summary A list of the principal airborne and allergenic pollen species in the Netherlands was compiled on the basis of the pollen lists of Leiden and Helmond, the Leiden pollen calendar, the hour-square frequencies of the species in question in the Netherlands and the degree of allergenicity of the extent known. Twenty-two trees and shrubs, 9 herbs and 32 grasses were selected.  相似文献   

4.
The present study seeks to compare daily and hourly airborne pollen concentrations at eight different stations in Castilla-La Mancha (central Spain) and Extremadura (south-western Spain) and assess pollen distribution sources. Sampling stations were located 69–440 km apart in a straight line in Albacete, Toledo, Talavera de la Reina and Ciudad Real in Castilla-La Mancha, and in Badajoz, Plasencia, Santa Amalia and Zafra in Extremadura. Airborne pollen was collected using Hirst-type volumetric spore traps. Quercus was the most abundant pollen type at all stations except for Ciudad Real, where Olea pollen predominated. Comparisons of daily data between pairs of stations revealed statistically significant positive correlations in all cases for Poaceae and Olea. Comparisons of hourly data between stations indicated greater differences than daily data. Analysis of correlation coefficients and straight-line distances between stations revealed a strong negative correlation. Analysis of total airborne pollen data for the eight sampling stations suggests that airborne pollen concentrations decrease from west to east and from south to north, partly reflecting dominant wind patterns. A clear correlation was observed between airborne pollen concentrations and the surface area covered by olive crops in a 50 km radius around the sampling stations.  相似文献   

5.
The goal of this study was to quantitatively assess the relationship linking vegetation and airborne pollen. For this, we established six sampling stations in the city of Thessaloniki, Greece. Once every week for 2 years, we recorded airborne pollen in them, at breast height, by use of a portable volumetric sampler. We also made a detailed analysis of the vegetation in each station by counting all existing individuals of the woody species contributing pollen to the air, in five zones of increasing size, from 4 to 40 ha. We found the local vegetation to be the driver of the spatial variation of pollen in the air of the city. Even at very neighbouring stations, only 500 m apart, considerable differences in vegetation composition were expressed in the pollen spectrum. We modelled the pollen concentration of each pollen taxon as a function of the abundance of the woody species corresponding to that taxon by use of a Generalized Linear Model. The relationship was significant for the five most abundantly represented taxa in the pollen spectrum of the city. It is estimated that every additional individual of Cupressaceae, Pinaceae, Platanus, Ulmus and Olea increases pollen in the air by approximately 0.7, 0.2, 2, 6 and 5%, respectively. Whether the relationships detected for the above pollen taxa hold outside the domain for which we have data, as well as under different environmental conditions and/or with different assemblages of species representing them are issues to be explored in the future.  相似文献   

6.
The long-term, 26 years’ data set of observations on daily concentrations of airborne grass pollen in Leiden is analyzed to present the variations and trends in quantities, and season starting dates. Monitoring of airborne pollen has been done continuously at one location, with a volumetric pollen trap. Annual totals of daily average grass-pollen concentrations are within a normal range of an urban site between 3690 and 9277, averagely 5510. The annual totals are irregularly fluctuating from year to year, and show no increasing or decreasing trend. Each year’s seasonal fluctuation is different, probably under the influence of changing weather conditions. The typical grass-pollen month is June. Using the Σ 75 criterium, the average starting date is on 16 May, whereas with the 1% threshold criterium the start of the grass-pollen season averagely is on 3 June. The mean air temperature in the preceding period is taken as the main factor for the timing of the season start. Analyzing the relationships of the two different criteria for the season starts with a number of temperature observation periods, the best relations were found between the mean air temperature in the period 11 April to 20 May and the Σ 75 criterium season start on 16 May (r=−0.78); and between the mean air temperature in May and the 1% threshold criterium season start on 3 June (r=−0.76). Forecasts of the season start which are significantly better than the average starting date are only possible with the mean air temperature up to a few days before the actual start. This limits the practical usefulness of the forecasting system.  相似文献   

7.
The annual sums of daily airborne pollen concentrations fluctuate from year to year. It has been suggested that for some taxa there is a regular or alternating pattern in these fluctuations. On the other hand, environmental changes may lead to decreasing or increasing trends in airborne pollen concentrations. These two phenomena can only be studied reliably on the basis of long-term volumetric observations of abundantly occurring pollen types. For this study two arboreal (Betula and Quercus) and two herbaceous (Poaceae and Urtica) types were chosen.

For some of these pollen types a weak but significant trend is observed. For the arboreal types (Quercus and Betula) there appears to be a rather constant biennial fluctuating rhythm.  相似文献   

8.
A comparative study is presented of the pollen emissions of Urticaceae, Plantaginaceae and Poaceae, collected during 1995 with Hirst samplers (Burkard or Lanzoni) at five sites in western Spain: two Mediterranean sites located in the south (Huelva and Seville) and three Atlantic sites in the north (Orense, Vigo and Santiago). The annual pollen of Poaceae and Plantaginaceae collected in the Atlantic cities was found to be twice that in the Mediterranean sites, and the total amount of Urticaceae was higher at sites with an urban environment and subject to sea influence (Vigo, Huelva and Seville). At all the sites, the start of the main pollination periods (MPP) took place in the following order: Urticaceae, Plantaginaceae and Poaceae. It was also observed that the MPP of these three pollen types began earlier in Huelva and Seville, where the mean temperatures necessary for the beginning of pollen emissions are recorded very early. Regarding the variation in pollen concentrations throughout the year, Urticaceae presented peaks of maximum concentration in March (Huelva, Seville, Vigo and Orense) and June (Santiago); Plantaginaceae in March (south) and June (north); and Poaceae in May (south) and June–July (north). At northern sites, pollen emissions of Urticaceae and Plantaginaceae continued throughout the summer, while in the south they decreased considerably from May onwards. From the allergenic point of view, the indices of reactivity described for Urticaceae and Poaceae were exceeded more often at northern sites, in particular at Vigo. The meteorological conditions associated with periods of highest pollen emission of these three herbaceous types are a rise in mean temperature, light or absent rainfall, and abundant sunshine. The statistical correlations between pollen emissions and meteorological factors were not well-defined, either for the stations or for all the taxa, although they were clearer for the Atlantic cities and for Urticaceae.  相似文献   

9.
Leon Bennun  Oliver Nasirwa 《Ostrich》2013,84(1-2):220-226
Bennun, L. & Nasirwa, O. 2000. Trends in waterbird numbers in the southern Rift Valley of Kenya. Ostrich 71 (1 & 2): 220–226.

Each January since 1991, volunteer teams have counted waterbirds at major wetlands in the southern Kenyan Rift Valley. There has been consistent coverage at Lakes Naivasha, Elmenteita, Nakuru and (since 1992) Bogoria. These lakes are shallow and, except for Bogoria, fluctuate greatly in extent; all but Naivasha are saline. Lake levels were moderately high in 1991–1993 but have been generally low since. Flamingo totals for the three saline lakes combined were more than one million from 1992–1994, but roughly halved each year since then. Greater Flamingos Phoenicopterus ruber made up between 0.7 and 4.1% of total flamingo numbers; other waterbirds made up between 2.7 and 10.2% of the overall total. Lakes Naivasha, Elmenteita and Nakuru together hold most of the non-flamingo waterbirds in the southern Rift; to compare trends for other species, we pooled totals for these sites. Significant, or near-significant, declines were evident for grebes, pelicans, cormorants, storks, gulls, rallids, kingfishers, terns and raptors. No group showed an overall increasing trend. At Dandora, a smaller site with stable water levels, these groups showed large annual fluctuations but no obvious declines. In most waterbird groups where numbers decreased, the probable cause was sustained low lake levels at Lake Nakuru; numbers at Lake Naivasha remained stable. Exceptions were rallids, kingfishers and raptors, where numbers steadily declined at Naivasha. There is a need to investigate local environmental causes of these changes for kingfishers and raptors, and to assess possible loss of breeding sites for rallids.  相似文献   

10.
The major allergenic pollen prevalent in the Derby air in May is Quercus pollen which has been monitored volumetrically from 1970–1997. Quercus pollen levels in Derby are increasing, showing an established long term trend, with 1995 being an exceptionally high year. There is now an earlier start date and a longer seasonal duration. The mean Quercus diurnal periodicity for 1991–1997 shows a peak at 15.00 hours.A detailed study of the 1990–1997 seasons established that a maximum temperature of 20 °C or above, at the usual time of flowering, occasions the start of the Quercus pollen season. Average May temperature and drought in the previous June and July are important factors in determining Quercus pollen totals. Predictions for the forthcoming seasons were produced which compared favourably with the actual pollen totals.  相似文献   

11.
Aerobiological data have been widely used by many scientists, including those that study modern flora as well as those wishing to reconstruct past vegetational associations. Burkard (Hirst-type) volumetric spore traps are widely used instruments for studying airborne pollen, while Tauber traps are typically used to analyze pollen deposition. The present study compared the pollen collected by these two methods in Tulsa, Oklahoma a warm temperate area with year-round pollen. There was a strong correlation between the pollen influx from the Tauber traps and cumulative sum of average daily airborne pollen concentrations recorded with the Burkard spore trap over the course of 12 months from 1 Feb 1997 through 1 Feb 1998. The correlation coefficient between all taxa over the 12 months was 0.914; while the correlation coefficient for the monthly totals was 0.972. The data showed that both methods reflected local anemophilous vegetation although variations occurred in the prevalence recorded by both samplers.  相似文献   

12.
Climatic change is expected to affect the spatiotemporal patterns of airborne allergenic pollen, which has been found to act synergistically with common air pollutants, such as ozone, to cause allergic airway disease (AAD). Observed airborne pollen data from six stations from 1994 to 2011 at Fargo (North Dakota), College Station (Texas), Omaha (Nebraska), Pleasanton (California), Cherry Hill and Newark (New Jersey) in the US were studied to examine climate change effects on trends of annual mean and peak value of daily concentrations, annual production, season start, and season length of Betula (birch) and Quercus (oak) pollen. The growing degree hour (GDH) model was used to establish a relationship between start/end dates and differential temperature sums using observed hourly temperatures from surrounding meteorology stations. Optimum GDH models were then combined with meteorological information from the Weather Research and Forecasting (WRF) model, and land use land coverage data from the Biogenic Emissions Land use Database, version 3.1 (BELD3.1), to simulate start dates and season lengths of birch and oak pollen for both past and future years across the contiguous US (CONUS). For most of the studied stations, comparison of mean pollen indices between the periods of 1994–2000 and 2001–2011 showed that birch and oak trees were observed to flower 1–2 weeks earlier; annual mean and peak value of daily pollen concentrations tended to increase by 13.6 %–248 %. The observed pollen season lengths varied for birch and for oak across the different monitoring stations. Optimum initial date, base temperature, and threshold GDH for start date was found to be 1 March, 8 °C, and 1,879 h, respectively, for birch; 1 March, 5 °C, and 4,760 h, respectively, for oak. Simulation results indicated that responses of birch and oak pollen seasons to climate change are expected to vary for different regions.  相似文献   

13.
During six consecutive years (1993–1998), aBurkard volumetric pollen trap was continuouslyoperated to sample pollen from the air of thecity of Murcia. The aim of the study was toelucidate the spectra of airborne pollen andthe variations during the year, and toelaborate a pollen calendar. This time spanincludes the end of the period with severedrought from 1990–1995, which particularly affected the south-eastern region of Spain.The total sum of daily average pollenconcentrations amounted to 148,645 pollen grainsbelonging to 93 different taxa. A daily averageof 74 pollen grains/m3 and 11 taxa wererecorded, with maxima of 1157 and 27respectively. The total pollen amountregistered in a year correlated with yearlyrainfall, but there was no relation with meanannual temperature. As for annual fluctuations,there seemed to be no influence by totalrainfall or temperature. Spring and winter werethe seasons with the highest pollen counts andpollen diversity.From the 93 identified taxa, 36 are included inthe pollen calendar. Noteworthy findings are:(i) the presence of Thymelaeaceae,Robinia, Betula, Castanea,Zygophyllum, Caryophyllaceae andCannabis, (ii) a long pollen season ofChenopodiaceae/Amaranthaceae, Urticaceae,Poaceae, Arecaceae and Plantago, (iii)the occurrence of summer, autumn and winterflowering of Artemisia, (iv) the lateappearance of Corylus pollen, and (v) theminor presence of Casuarina pollen duringthe mid winter and late spring.  相似文献   

14.
In this paper airborne pollen concentration is compared to meteorological data of Trento and S. Michele all’Adige, two sites in the Adige Valley, in Trentino (North Italy). Pollen ofCorylus, Alnus, Betula andOstrya, four winter-spring flowering plants are considered. Pollen sampling was carried out in 1996 by volumetric Hirst-type samplers. For all pollen types considered, maximum pollen concentration coincided in both stations and there was a good overlap of the main pollen season length; the pollen curves of S. Michele a/A and Trento showed a highly positive correlation. The daily airborne pollen concentrations, defined as the number of pollen grains per cubic meter of air (P/m3), were compared to daily meteorological data: minimum and maximum air temperature (°C), average relative humidity (%), precipitation (mm), global incident radiation (cal/cm2), average wind direction (°) and wind speed (m/s). A highly positive correlation was found forCorylus and maximum temperature in both monitoring stations.Betula was positively, whereasOstrya was negatively correlated to relative humidity. With this first analytical approach sharp differences in the atmospheric pollen presence between the stations located at Trento and S. Michele all’Adige were not found.  相似文献   

15.
Studies on Ambrosia pollen concentrations were carried out in Lublin in the period 1995–2004. The effects of a number of meteorological factors were analysed. In the first period of the study, the gravimetric method was used (1995–1999), while in the second period, the volumetric method was applied. The results show an increasing trend in the amount of airborne pollen. The Ambrosia pollen season in Lublin lasts from August to October. Over a period of 5 years, the highest number of pollen grains was recorded in September (53%), followed by August (44%) and October (3%). There were wide variations in annual totals. The annual total pollen counts was 167–1180 grains, with the peak value in 2002. Maximum daily pollen concentrations (56–312 pollen grains m−3) were recorded in the first half of August and in the first half of September. On the days when high Ambrosia pollen concentrations occurred, the temperature was above 21°C and the winds were mainly from the southeast, south and east. Maximum intradiurnal concentrations of pollen grains occurred in the afternoon hours. These results indicate, to some degree, that Ambrosia pollen is transported for long distances before descent.  相似文献   

16.
This work studies the airborne pollenconcentrations of Acer spp.,Fraxinus spp. and Platanus spp. sincethe pollen of these three taxa has beencharacterized as etiological agents ofpollinosis. These tree species are present inlarge amounts in the streets of La Plata city.The aeropalynological monitoring was performedwith a Hirst-type spore trap (Lanzoni VPPS,2000). The emission period of the three taxaextends from approximately late August to October.The maximum cumulative totalof arboreal pollen was found to be 30824.7from September 12 to 18. This period coincideswith the peak of total pollen concentration.Pollen grains trapped were analysed andexpressed as daily averages of 5-hour bandsper day during the whole year. Maximum pollenconcentration was registered between 10 a.m.and 2 p.m. During the studied period, 67 patients examinedat the Allergy Service of ``Hospital Interzonalde Agudos R. Rossi' (La Plata) showed allergicdisease. These allergenic episodes may beproduced by the large amount of pollen trees inthe city area.  相似文献   

17.
齐晨  姜江  叶彩华  尤焕苓  乔媛  沙祎  白帆 《生态学报》2023,43(7):2650-2662
花粉是我国北方引发过敏性鼻炎最主要过敏原,花粉症发病期与花粉浓度高峰期吻合。基于北京地区2012至2020年花粉季多站、逐日分类花粉浓度观测数据分析,得出北京地区花粉浓度在3月上旬至5月中旬(可进一步划分为3月中旬至4月上旬和4月下旬至5月上旬两个高峰期)和8月中旬至9月中旬分别存在两个高峰期,第一个高峰期内优势致敏花粉种类为柏科、杨柳科和松科,第二个高峰期内优势致敏花粉种类为桑科、菊科蒿属和藜科。根据优势致敏花粉年浓度峰值日期观测数据,使用与花粉采样站点位置相匹配的逐日气象观测数据累积值,基于作物模型概念和模糊逻辑原理建立了北京地区主要气传致敏花粉年浓度峰值日期预测模型。经检验,柏科、杨柳科、松科、桑科、菊科蒿属和藜科花粉模型预测准确率分别为87.8%、80.0%、64.4%、86.7%、78.8%和81.8%。基于北京地区主要气传致敏花粉年浓度峰值日期预测模型可为本地花粉症防治提供理论参考。  相似文献   

18.
In Switzerland the concentration of allergenic pollendecreases with increasing elevation of the samplingsite of the Swiss pollen measuring network. The aim ofthis study was, to compare the pollen concentrationsof five different localities in the Swiss Alps and inthe Jura mountains, to get an idea of the differencesin the pollen abundance in altitudes above 1000 m. Theinvestigated localities are: La Chaux-de-Fonds(1040 m), Wiesen (1420 m), Davos (1600 m), Samedan(1705 m) and Gütsch (2287 m). These pollen sumswere compared to the Swiss plateau (Basel 273 m).Basel, La Chaux-de-Fonds and Wiesen show clearlyhigher pollen values than Davos, Samedan andGütsch. Pollen concentrations of Corylus,Alnus glutinosa-type and Fraxinus arereduced with increasing altitude and are only a smallproblem for allergies above 1000 m. Betulapollen are also reduced in the higher localities, butthere still occur many days with high pollenconcentrations. Especially Betula pollen frommedium range transport can play an important role forallergies in higher localities. The total grass pollensum does not decrease up to an altitude of 1500 m. Thegrass pollen concentration depends more on factorslike composition of the local grassland, land use andwind situation.Pollen concentrations at higher elevations isinfluenced by the local vegetation, a reduced pollenproduction, land use, topography, exposition, windvelocity and wind direction. These factors modify thepollen concentration considerably. Due to the complextopography of the Prealps and Alps, it is thereforenot possible to propose a general rule of pollenreduction with increasing altitude.  相似文献   

19.
Abstract

A long‐period data set (1880–1970) of mean annual temperatures and precipitation totals for over 100 stations worldwide distributed was used to calculate time series of zonal means at 10 degree latitude bands. Power spectra of these zonally averaged series display the following features: over most of the earth zonal mean annual temperatures undergo long‐term climatic fluctuations (≥22 years).

Trends in rainfall totals are only detected in the zones 20°‐30°N and 40°‐50°N. As reported earlier for single stations, a quasi‐triennial oscillation (3–4 years) is seen also in zonal rainfall totals at most latitude belts. No 11‐years peak was observed both in temperature and precipitation spectra. A 22‐year peak is observed at equatorial zones and in the zone 40°‐50°N.  相似文献   

20.
The objective of this study was to analyse the dynamics of the Alnus and Corylus pollen seasons in Poland with reference to spatial and seasonal differentiation. Aerobiological monitoring was performed in 10 cities, in 1994–2007. Five characteristics defining the pollen season were considered: 1. beginning and end dates of the season phases (5, 25, 50, 75, 95% of annual totals), 2. pollen season duration (90% method), 3. skewness and 4. kurtosis of airborne pollen curves, and 5. annual pollen totals. The beginning of the Corylus pollen season in Warsaw started on the 53rd day of a year. The Alnus pollen season started 9.5 days (SE = 1.4) later. The start of the season for both taxa was delayed by 3.3 (SE = 0.5) days for each 100 km towards the east. The Corylus pollen season lasted about 15 days longer than the Alnus season. Season duration for both taxa decreased towards the east by 3.5 days (SE = 0.7) and towards the north by 1.3 days (SE = 0.6) for each 100 km. Seasonal dynamics of both taxa are skewed to the right. In cities located west of Warsaw the dynamics are more skewed (except at Szczecin, Wroclaw). Asymmetry decreases towards the east by 0.16/100 km. Almost all kurtosis values of pollen-season dynamics were positive and higher for Alnus. Kurtosis values for both taxa increase together with delay of the pollen season beginning by 4% per day (p < 0.0001). Mean pollen total increases: for Corylus mainly towards the north (by 64%/100 km), for Alnus mainly towards the west (by 15%/100 km). Geographical location (longitude and latitude) determines: the start and duration of the pollen season, skewness of the pollen curve, and annual totals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号