首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A slight increase in mean corpuscular hemoglobin (MCH) has been reported in erythrocytes from human fragile X patients. As it is difficult to perform casecontrolled studies in patients with fragile X syndrome, we studied MCH in erythrocytes from transgenic mice with an Fmr1 knockout. None of the knockout mice showed increased MCH levels when compared with normal littermates. We conclude that it is unlikely that the FMR1 gene product has an effect on MCH.  相似文献   

3.
Fragile X syndrome is the most common inherited form of mental retardation. It is caused by the lack of the Fragile X Mental Retardation Protein (FMRP), which is encoded by the FMR1 gene. Although Fmr1 knockout mice display some characteristics also found in fragile X patients, it is a complex animal model to study brain abnormalities, especially during early embryonic development. Interestingly, the ortholog of the FMR1 gene has been identified not only in mouse, but also in zebrafish (Danio rerio). In this study, an amino acid sequence comparison of FMRP orthologs was performed to determine the similar regions of FMRP between several species, including human, mouse, frog, fruitfly and zebrafish. Further characterisation of Fmrp has been performed in both adults and embryos of zebrafish using immunohistochemistry and western blotting with specific antibodies raised against zebrafish Fmrp. We have demonstrated a strong Fmrp expression in neurons of the brain and only a very weak expression in the testis. In brain tissue, a different distribution of the isoforms of Fmrp, compared to human and mouse brain tissue, was shown using western blot analysis. Due to the high similarity between zebrafish Fmrp and human FMRP and their similar expression pattern, the zebrafish has great potential as a complementary animal model to study the pathogenesis of the fragile X syndrome, especially during embryonic development.Edited by D. Tautz  相似文献   

4.
Fragile X syndrome is the most common cause of inherited mental retardation, and recently a number of mouse models have been generated to study the condition. Knockout of the gene associated with fragile X, Fmr1, results in mild, but consistent abnormalities, analogous to the clinical and pathological symptoms observed in human patients. Thus, many aspects of the syndrome can now be studied in mice, taking full advantage of the benefits of this model organism, including the short generation time and unlimited supply of tissue. The experimental data suggest that knockout of Fmr1 mildly disturbs a variety of processes in different brain regions.  相似文献   

5.
6.
The loss of fragile X mental retardation (FMR1) gene function causes fragile X syndrome (FXS), a common mental retardation syndrome. Anxiety and abnormal social behaviors are prominent features of FXS in humans. To better understand the role of FMR1 in these behaviors, we analyzed anxiety-related and social behaviors in Fmr1 knockout (KO) mice. In the mirrored chamber test, Fmr1 KO mice showed greater aversion to the central mirrored chamber than wild-type (WT) littermates, suggesting increased anxiety-like responses to reflected images of mice. Fmr1 KO mice exhibited abnormal social interactions in a tube test of social dominance, winning fewer matches than WT littermates. In a partition test, Fmr1 KO mice had normal levels of social interest and social recognition. However, during direct interaction tests, Fmr1 KO mice showed significant increases in sniffing behaviors. We further tested the influence of environmental familiarity on the social responses of Fmr1 KO mice to unfamiliar partners. In unfamiliar partitioned cages, Fmr1 KO mice did not differ from WT mice in investigation of unfamiliar partners. However, in familiar partitioned cages, Fmr1 KO mice showed less investigation of a newly introduced partner during the first 5 min and more investigation during the last 5 min of a 20-min partition test, behaviors consistent with initial social anxiety followed by enhanced social investigation. Our findings indicate that the loss of Fmr1 gene function results in altered anxiety and social behavior in mice and demonstrate that the Fmr1 KO mouse is a relevant animal model for the abnormal social responses seen in FXS.  相似文献   

7.
The fragile X mental retardation syndrome is caused by large methylated expansions of a CGG repeat in the FMR1 gene leading to the loss of expression of FMRP, an RNA-binding protein. FMRP is proposed to act as a regulator of mRNA transport or translation that plays a role in synaptic maturation and function. To study the physiological function of the FMR1 protein, mouse and Drosophila models have been developed. The loss-of-function mouse model shows slightly enlarged testes, a subtle behavioral phenotype, and discrete anomalies of dendrite spines similar to those observed in brains of patients. Studies in Drosophila indicate that FXMR plays an important role in synaptogenesis and axonal arborization, which may underlie the observed deficits in flight ability and circadian behavior of FXR mutant flies. The relevance of these studies to our understanding of fragile X syndrome is discussed.  相似文献   

8.
Fragile X syndrome (FXS) is a developmental disorder caused by the loss of Fragile X Mental Retardation 1 (FMR1) gene function because of a CGG repeat expansion (> 200 repeats) in the gene. The molecular mechanism(s) linking loss of FMR1 function to the molecular pathology and cognitive/behavioral disability remain unclear. Given the critical role of extracellular signal-regulated kinase (ERK) in synaptic plasticity and neurodevelopment, a number of recent studies have investigated ERK phosphorylation under basal conditions or upon mGluR-induction using neuronal and peripheral tissues from Fmr1 knockout mice and peripheral tissues from FXS patients. However, these reports have presented conflicting results. The current study is the first to focus on the levels of ERK phosphorylation in brain tissue from human FXS patients. In both human brain tissue and brain tissue from Fmr1 knockout mice there was significantly increased phosphorylation of MEK1/2 and ERK. Indeed, treating Fmr1 knockout mice with the MEK1/2 inhibitor SL327 abrogated audiogenic seizure activity, a feature of the Fmr1 knockout mice that replicates the symptom in patients with FXS. These findings suggest that activation of the ERK pathway results in some cardinal cognitive and clinical features in FXS patients and likely have profound translational implications.  相似文献   

9.
The (CGG)n-repeat in the 5′-untranslated region of the fragile X mental retardation gene (FMR1) gene is polymorphic and may become unstable on transmission to the next generation. In fragile X syndrome, CGG repeat lengths exceed 200, resulting in silencing of FMR1 and absence of its protein product, fragile X mental retardation protein (FMRP). CGG repeat lengths between 55 and 200 occur in fragile X premutation (FXPM) carriers and have a high risk of expansion to a full mutation on maternal transmission. FXPM carriers have an increased risk for developing progressive neurodegenerative syndromes and neuropsychological symptoms. FMR1 mRNA levels are elevated in FXPM, and it is thought that clinical symptoms might be caused by a toxic gain of function due to elevated FMR1 mRNA. Paradoxically, FMRP levels decrease moderately with increasing CGG repeat length in FXPM. Lowered FMRP levels may also contribute to the appearance of clinical problems. We previously reported increases in regional rates of cerebral protein synthesis (rCPS) in the absence of FMRP in an Fmr1 knockout mouse model and in a FXPM knockin (KI) mouse model with 120 to 140 CGG repeats in which FMRP levels are profoundly reduced (80%–90%). To explore whether the concentration of FMRP contributes to the rCPS changes, we measured rCPS in another FXPM KI model with a similar CGG repeat length and a 50% reduction in FMRP. In all 24 brain regions examined, rCPS were unaffected. These results suggest that even with 50% reductions in FMRP, normal protein synthesis rates are maintained.  相似文献   

10.
11.
Fragile X syndrome (FXS) is the most prevalent form of heritable mental retardation. It arises from a mutation in the FMR1 gene on the X chromosome that interferes with expression of fragile X mental retardation protein (FMRP) and leads to a wide range of behavioural and cognitive deficits. Previous studies have shown a deficit in basic visual perceptual processing as well as spatial abilities in FXS. How such a deficit may impact spatial navigation remains unknown. The current study extended previous research by evaluating spatial learning and memory using both virtual and physical versions of Hebb-Williams mazes, which allows for testing of humans and animals under comparable conditions. We compared the performance of individuals affected by FXS to typically developing individuals of equivalent mental age as well as the performance of Fmr1 knockout mice to wild-type control mice on the same maze problems. In human participants, performance of the comparison group improved across trials, showing expected significant decreases in both errors and latency. In contrast, the performance of the fragile X group remained at similar levels across trials. Although wild-type control mice made significantly fewer errors than the Fmr1 knockout mice, latencies were not statistically different between the groups. These findings suggest that affected humans and mice show similar spatial learning deficits attributable to the lack of FMRP. The implications of these data are discussed including the notion that Hebb-Williams mazes may represent a useful tool to examine the impact of pharmacological interventions on mitigating or reversing the symptoms associated with FXS.  相似文献   

12.
Previous research indicates that the GABAAergic system is involved in the pathophysiology of the fragile X syndrome, a frequent form of inherited intellectual disability and associated with autism spectrum disorder. However, the molecular mechanism underlying GABAAergic deficits has remained largely unknown. Here, we demonstrate reduced mRNA expression of GABAA receptor subunits in the cortex and cerebellum of young Fmr1 knockout mice. In addition, we show that the previously reported underexpression of specific subunits of the GABAA receptor can be corrected in YAC transgenic rescue mice, containing the full-length human FMR1 gene in an Fmr1 knockout background. Moreover, we demonstrate that FMRP directly binds several GABAA receptor mRNAs. Finally, positive allosteric modulation of GABAA receptors with the neurosteroid ganaxolone can modulate specific behaviors in Fmr1 knockout mice, emphasizing the therapeutic potential of the receptor.  相似文献   

13.
Previous research indicates that the GABAAergic system is involved in the pathophysiology of the fragile X syndrome, a frequent form of inherited intellectual disability and associated with autism spectrum disorder. However, the molecular mechanism underlying GABAAergic deficits has remained largely unknown. Here, we demonstrate reduced mRNA expression of GABAA receptor subunits in the cortex and cerebellum of young Fmr1 knockout mice. In addition, we show that the previously reported underexpression of specific subunits of the GABAA receptor can be corrected in YAC transgenic rescue mice, containing the full-length human FMR1 gene in an Fmr1 knockout background. Moreover, we demonstrate that FMRP directly binds several GABAA receptor mRNAs. Finally, positive allosteric modulation of GABAA receptors with the neurosteroid ganaxolone can modulate specific behaviors in Fmr1 knockout mice, emphasizing the therapeutic potential of the receptor.  相似文献   

14.
Fragile X syndrome, the most common form of inherited mental retardation in males, arises when the normally stable 5 to 50 CGG repeats in the 5' untranslated region of the fragile X mental retardation protein 1 (FMR1) gene expand to over 200, leading to DNA methylation and silencing of the FMR1 promoter. Although the events that trigger local CGG expansion remain unknown, the stability of trinucleotide repeat tracts is affected by their position relative to an origin of DNA replication in model systems. Origins of DNA replication in the FMR1 locus have not yet been described. Here, we report an origin of replication adjacent to the FMR1 promoter and CGG repeats that was identified by scanning a 35-kb region. Prereplication proteins Orc3p and Mcm4p bind to chromatin in the FMR1 initiation region in vivo. The position of the FMR1 origin relative to the CGG repeats is consistent with a role in repeat maintenance. The FMR1 origin is active in transformed cell lines, fibroblasts from healthy individuals, fibroblasts from patients with fragile X syndrome, and fetal cells as early as 8 weeks old. The potential role of the FMR1 origin in CGG tract instability is discussed.  相似文献   

15.
Molecular screening programs in mentally retarded individuals have been performed in several populations worldwide. One finding has been an excess of FMR1 intermediate alleles in a population with learning difficulties. However, other published reports with similar characteristics did not corroborate those previous results. In order to contribute additional data from our population, we studied 563 patients affected with nonspecific mental retardation (MRX) that did not present a CGG expansion in the FMR1 gene and 208 individuals as a control population. Forty MRX patients presented alleles within the intermediate range. Among them, one case showed a pattern of expression of the FMR1 protein (FMRP) concordant with a fragile X syndrome case with an intermediate allele/full mutation mosaicism, although it was not detected by Southern blot analysis. Statistical analysis was performed again showing no statistically significant difference regarding the intermediate allele frequency in the MRX and control populations. This finding is in agreement with the hypothesis that the incidence of intermediate FMR1 alleles in MRX populations does not seem to be higher than in control populations, and it emphasizes the importance of FMRP detection as a diagnostic tool for fragile X syndrome.  相似文献   

16.
17.
Mutations that abolish expression of an X-linked gene, FMR1, result in the pathogenesis of fragile X syndrome, the most common form of inherited mental retardation. To understand the normal function of the FMR1 protein, we have produced fly strains bearing deletions in a Drosophila homolog of FMR1 (dfmr1). Since fragile X patients show a number of abnormal behaviors including sleep problems, we investigated whether a loss-of-function mutation of dfmr1 affect circadian behavior. Here we show that under constant darkness (DD), a lack of dfmr1 expression causes arrhythmic locomotor activity, but in light:dark cycles, their behavioral rhythms appear normal. In addition, the clock-controlled eclosion rhythm is normal in DFMR1-deficient flies. These results suggest that DFMR1 plays a critical role in the circadian output pathway regulating locomotor activity in Drosophila.  相似文献   

18.
19.
The fragile X mental retardation 1 (FMR1) protein binds mRNA and acts as a negative regulator of translation. Lack of FMR1 causes the most common neurological disorder, fragile X syndrome, while its overexpression is associated with metastasis of breast cancer. Its activity has been well-studied in nervous tissue, but recent evidence as well as its role in cancer indicates that it also acts in other tissues. We have investigated the expression of FMR1 in brain and other tissues of mouse and examined its regulation. We detected expression of FMR1 in liver and heart tissues of mice as well as in brain tissue, supporting other contentions that it acts in non-nervous tissue. Expression of FMR1 inversely correlated with expression of the C-terminus of Hsc70-interacting protein (CHIP) and, based on the known activity of CHIP in protein homeostasis, we suggest that CHIP regulates expression of FMR1. CHIP ubiquitinated FMR1 for proteasomal degradation in a molecular chaperone-independent manner. FMR1 expression was reduced following treatment with okadaic acid, a phosphatase inhibitor, but not in CHIP-depleted cells. Also, a non-phospho FMR1 mutant was much less efficiently ubiquitinated by CHIP and had a longer half-life compared to either wild-type FMR or a phospho-mimic mutant. Taken together, our results demonstrate that CHIP regulates the levels of FMR1 as an E3 ubiquitin ligase in phosphorylation-dependent manner, suggesting that CHIP regulates FMR1-mediated translational repression by regulating the levels of FMR1.  相似文献   

20.
Recent data from a national survey highlighted a significant difference in obesity rates in young fragile X males (31%) compared to age matched controls (18%). Fragile X syndrome (FXS) is the most common cause of intellectual disability in males and the most common single gene cause of autism. This X-linked disorder is caused by an expansion of a trinucleotide CGG repeat (>200) on the promotor region of the fragile X mental retardation 1 gene (FMR1). As a result, the promotor region often becomes methylated which leads to a deficiency or absence of the FMR1 protein (FMRP). Common characteristics of FXS include mild to severe cognitive impairments in males but less severe cognitive impairment in females. Physical features of FXS include an elongated face, prominent ears, and post-pubertal macroorchidism. Severe obesity in full mutation males is often associated with the Prader-Willi phenotype (PWP) which includes hyperphagia, lack of satiation after meals, and hypogonadism or delayed puberty; however, there is no deletion at 15q11-q13 nor uniparental maternal disomy. Herein, we discuss the molecular mechanisms leading to FXS and the Prader-Willi phenotype with an emphasis on mouse FMR1 knockout studies that have shown the reversal of weight increase through mGluR antagonists. Finally, we review the current medications used in treatment of FXS including the atypical antipsychotics that can lead to weight gain and the research regarding the use of targeted treatments in FXS that will hopefully have a significantly beneficial effect on cognition and behavior without weight gain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号