首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our hypothesis states that variceal pressure and wall tension increase dramatically during esophageal peristaltic contractions. This increase in pressure and wall tension is a natural consequence of the anatomy and physiology of the esophagus and of the esophageal venous plexus. The purpose of this study was to evaluate variceal hemodynamics during peristaltic contraction. A simultaneous ultrasound probe and manometry catheter was placed in the distal esophagus in nine patients with esophageal varices. Simultaneous esophageal luminal pressure and ultrasound images of varices were recorded during peristaltic contraction. Maximum variceal cross-sectional area and esophageal luminal pressures at which the varix flattened, closed, and opened were measured. The esophageal lumen pressure equals the intravariceal pressure at variceal flattening due to force balance laws. The mean flattening pressures (40.11 +/- 16.77 mmHg) were significantly higher than the mean opening pressures (11.56 +/- 25.56 mmHg) (P < or = 0.0001). Flattening pressures >80 mmHg were generated during peristaltic contractions in 15.5% of the swallows. Variceal cross-sectional area increased a mean of 41% above baseline (range 7-89%, P < 0.0001) during swallowing. The peak closing pressures in patients that experience future variceal bleeding were significantly higher than the peak closing pressures in patients that did not experience variceal bleeding (P < 0.04). Patients with a mean peak closing pressure >61 mmHg were more likely to bleed. In this study, accuracy of predicting future variceal bleeding, based on these criteria, was 100%. Variceal models were developed, and it was demonstrated that during peristaltic contraction there was a significant increase in intravariceal pressure over baseline intravariceal pressure and that the peak intravariceal pressures were directly proportional to the resistance at the gastroesophageal junction. In conclusion, esophageal peristalsis in combination with high resistance to blood flow through the gastroesophageal junction leads to distension of the esophageal varices and an increase in intravariceal pressure and wall tension.  相似文献   

2.
Eosinophilic esophagitis is characterized by increased infiltration and degranulation of eosinophils in the esophagus. Whether eosinophil-derived cationic proteins regulate esophageal sensory nerve function is still unknown. Using synthetic cationic protein to investigate such effect, we performed extracellular recordings from vagal nodose or jugular neurons in ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. Nerve excitabilities were determined by comparing action potentials evoked by esophageal distensions before and after perfusion of synthetic cationic protein poly-L-lysine (PLL) with or without pretreatment with poly-L-glutamic acid (PLGA), which neutralized cationic charges of PLL. Perfusion with PLL did not evoke action potentials in esophageal nodose C fibers but increased their responses to esophageal distension. This potentiation effect lasted for 30 min after washing out of PLL. Pretreatment with PLGA significantly inhibited PLL-induced mechanohyperexcitability of esophageal nodose C fibers. In esophageal nodose Aδ fibers, perfusion with PLL did not evoke action potentials. In contrast to nodose C fibers, both the spontaneous discharges and the responses to esophageal distension in nodose Aδ fibers were decreased by perfusion with PLL, which can be restored after washing out PLL for 30-60 min. Pretreatment with PLGA attenuated PLL-induced decrease in spontaneous discharge and mechanoexcitability of esophageal nodose Aδ fibers. In esophageal jugular C fibers, PLL neither evoked action potentials nor changed their responses to esophageal distension. Collectively, these data demonstrated that synthetic cationic protein did not evoke action potential discharges of esophageal vagal afferents but had distinctive sensitization effects on their responses to esophageal distension.  相似文献   

3.
Metabotropic glutamate receptors (mGluR) are classified into group I, II, and III mGluR. Group I (mGluR1, mGluR5) are excitatory, whereas group II and III are inhibitory. mGluR5 antagonism potently reduces triggering of transient lower esophageal sphincter relaxations and gastroesophageal reflux. Transient lower esophageal sphincter relaxations are mediated via a vagal pathway and initiated by distension of the proximal stomach. Here, we determined the site of action of mGluR5 in gastric vagal pathways by investigating peripheral responses of ferret gastroesophageal vagal afferents to graded mechanical stimuli in vitro and central responses of nucleus tractus solitarius (NTS) neurons with gastric input in vivo in the presence or absence of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP). mGluR5 were also identified immunohistochemically in the nodose ganglia and NTS after extrinsic vagal inputs had been traced from the proximal stomach. Gastroesophageal vagal afferents were classified as mucosal, tension, or tension-mucosal (TM) receptors. MPEP (1-10 microM) inhibited responses to circumferential tension of tension and TM receptors. Responses to mucosal stroking of mucosal and TM receptors were unaffected. MPEP (0.001-10 nmol icv) had no major effect on the majority of NTS neurons excited by gastric distension or on NTS neurons inhibited by distension. mGluR5 labeling was abundant in gastric vagal afferent neurons and sparse in fibers within NTS vagal subnuclei. We conclude that mGluR5 play a prominent role at gastroesophageal vagal afferent endings but a minor role in central gastric vagal pathways. Peripheral mGluR5 may prove a suitable target for reducing mechanosensory input from the periphery, for therapeutic benefit.  相似文献   

4.
Segments of silicone rubber tube were suspended between rigid pipes and subjected to slowly varying transmural pressure covering a range from slight distension to collapse with osculation. The local inside cross-sectional area at a chosen axial site was simultaneously measured via catheter by an electrical impedance method. Pressure-area relations were recorded thus at various axial sites, under varying conditions of axial tube wall tension, in tubes of two different wall thickness (0.3 and 0.4 of mean radius). Unsupported tube segment length was also varied by means of an insert device. The relations were used to calculate the variation of wave velocity with area according to Young's equation. First opposite wall contact during collapse was shown to occur at a smaller fraction of undistended circular cross-sectional area than in the thin-walled tubes investigated previously by others.  相似文献   

5.
The mandibular muscle receptor organ (Mand. M.R.O.) of Homarus gammarus (L) exhibits increased activity to receptor muscle (R.M.) contraction (decrease in length) and to stretch (increase in length).

The sensory units of this receptor differ in their threshold to R.M. tension and in the frequency change they exhibit for a given increment in tension. The units fire tonically during maintained tension once their threshold has been reached.

Both the number of active units and their frequency increase with R.M. tension. The Mand. M.R.O. is velocity sensitive and exhibits a higher degree of activity during rapid stretch. This dynamic response increases with rate of R.M. stretch.

The activity of the Mand. M.R.O. sensory neurones is compared with that of other M.R.O.’s and the authenticity of some aberrant units is discussed.  相似文献   

6.
Swallow and esophageal distension-induced relaxations of the lower esophageal sphincter (LES) are associated with an orad movement of the LES because of a concurrent esophageal longitudinal muscle contraction. We hypothesized that the esophageal longitudinal muscle contraction induces a cranially directed mechanical stretch on the LES and therefore studied the effects of a mechanical stretch on the LES pressure. In adult opossums, a silicon tube was placed via mouth into the esophagus and laparotomy was performed. Two needles with silk sutures were passed, 90 degrees apart, through the esophageal walls and silicon tube, 2 cm above the LES. The tube was withdrawn, and one end of each of the four sutures was anchored to the esophageal wall and the other end exited through the mouth to exert graded cranially directed stretch on the LES by using pulley and weights. A cranially directed stretch caused LES relaxation, and with the cessation of stretch there was recovery of the LES pressure. The degree an d duration of LES relaxation increased with the weight and the duration of stretch, respectively. The mean LES relaxation in all animals was 77.7 +/- 4.7%. The required weight to induce maximal LES relaxation differed in animals (714 +/- 348 g). N(G)-nitro-L-arginine, a nitric oxide inhibitor, blocked the axial stretch-induced LES relaxation almost completely (from 78 to 19%). Our data support the presence of an axial stretch-activated inhibitory mechanism in the LES. The role of axial stretch in the LES relaxation induced by swallow and esophageal distension requires further investigation.  相似文献   

7.
While a number of whole cell mechanical models have been proposed, few, if any, have focused on the relationship among plasma membrane tension, plasma membrane unfolding, and plasma membrane expansion and relaxation via lipid insertion. The goal of this communication is to develop such a model to better understand how plasma membrane tension, which we propose stimulates Na(+)-K(+)-ATPase activity but possibly also causes cell injury, may be generated in alveolar epithelial cells during mechanical ventilation. Assuming basic relationships between plasma membrane unfolding and tension and lipid insertion as the result of tension, we have captured plasma membrane mechanical responses observed in alveolar epithelial cells: fast deformation during fast cyclic stretch, slower, time-dependent deformation via lipid insertion during tonic stretch, and cell recovery after release from stretch. The model estimates plasma membrane tension and predicts Na(+)-K(+)-ATPase activation for a specified cell deformation time course. Model parameters were fit to plasma membrane tension, whole cell capacitance, and plasma membrane area data collected from the literature for osmotically swollen and shrunken cells. Predictions of membrane tension and stretch-stimulated Na(+)-K(+)-ATPase activity were validated with measurements from previous studies. As a proof of concept, we demonstrate experimentally that tonic stretch and consequent plasma membrane recruitment can be exploited to condition cells against subsequent cyclic stretch and hence mitigate stretch-induced responses, including stretch-induced cell death and stretch-induced modulation of Na(+)-K(+)-ATPase activity. Finally, the model was exercised to evaluate plasma membrane tension and potential Na(+)-K(+)-ATPase stimulation for an assortment of traditional and novel ventilation techniques.  相似文献   

8.
We studied spontaneous gastroesophageal reflux (GER)-induced esophageal distension using ultrasound imaging and its role in the genesis of esophageal symptoms before and during esomeprazole therapy. Ten controls and 10 GER disease (GERD) patients were studied by combined impedance, esophageal pH, manometry, and ultrasonography before and during esomeprazole therapy. Physiological data and symptoms were recorded for 2 h following a standardized meal. From ultrasound images, the esophageal cross-sectional area (CSA) at the peak of GER-induced distension was determined and compared between controls vs. patients, symptomatic vs. asymptomatic GER episodes, and before vs. during esomeprazole in GERD patients. The mean lumen CSA is greater in the patients than controls (271 +/- 71 mm(2) vs. 163 +/- 56 mm(2), P = 0.001) but not different among asymptomatic reflux episodes, and those associated with regurgitation (290 +/- 110 mm(2)) or heartburn (271 +/- 67 mm(2)). Eight chest pain episodes associated with reflux revealed a tendency toward larger mean esophageal distension (459 +/- 40 mm(2)) compared with asymptomatic reflux (268 +/- 70 mm(2), P = 0.058). Following esomeprazole treatment, most GER episodes were nonacidic and asymptomatic except in two patients in whom cyclical reflux was associated with large esophageal distensions. Esomeprazole did not alter the lumen CSA during GER. Esophageal distension is greater in the GERD subjects compared with controls; however, it is unlikely that the GER-induced distension of the esophagus plays a significant role in the genesis of heartburn sensation. Esomeprazole therapy does not alter the GER-induced distension of the esophagus.  相似文献   

9.
We investigated the mechanisms of esophageal distension-induced reflexes in decerebrate cats. Slow air esophageal distension activated esophago-upper esophageal sphincter (UES) contractile reflex (EUCR) and secondary peristalsis (2P). Rapid air distension activated esophago-UES relaxation reflex (EURR), esophago-glottal closure reflex (EGCR), esophago-hyoid distraction reflex (EHDR), and esophago-esophagus contraction reflex (EECR). Longitudinal esophageal stretch did not activate these reflexes. Magnitude and timing of EUCR were related to 2P but not injected air volume. Cervical esophagus transection did not affect the threshold of any reflex. Bolus diversion prevented swallow-related esophageal peristalsis. Lidocaine or capsaicin esophageal perfusion, esophageal mucosal layer removal, or intravenous baclofen blocked or inhibited EURR, EGCR, EHDR, and EECR but not EUCR or 2P. Thoracic vagotomy blocked all reflexes. These six reflexes can be activated by esophageal distension, and they occur in two sets depending on inflation rate rather than volume. EUCR was independent of 2P, but 2P activated EUCR; therefore, EUCR may help prevent reflux during peristalsis. All esophageal peristalsis may be secondary to esophageal stimulation in the cat. EURR, EHDR, EGCR, and EECR may contribute to belching and are probably mediated by capsaicin-sensitive, rapidly adapting mucosal mechanoreceptors. GABA-B receptors also inhibit these reflexes. EUCR and 2P are probably mediated by slowly adapting muscular mechanoreceptors. All six reflexes are mediated by vagal afferent fibers.  相似文献   

10.
The aims of this study were to evaluate gastric antral mechanical behavior and distension-induced sensorimotor responses in the human gastric antrum using transabdominal ultrasound scanning. Ten healthy volunteers underwent volume-controlled ramp inflation of a bag located in the antrum with volumes up to 125 ml. The active and passive circumferential tensions and stresses were calculated from measurements of pressure, diameter, and wall thickness before and during the administration of the anticholinergic drug butylscopolamine. The bag distensions elicited contractions in the antrum and sensory responses below the pain threshold. Butylscopolamine abolished the contractions and significantly reduced the sensory response. The length-tension diagram known from in vitro studies of smooth muscle strips could be reproduced as tension-volume diagrams in the human gastric antrum. The number of induced contractions and the contraction pressure amplitude (afterload) showed a parabolic behavior as function of the distension volume (preload), with maximum approximately at 70 ml. At the sensation threshold, the luminal circumference showed the lowest variation coefficient (13-25%), whereas the variation coefficient was more than 100% for the pressure, tensions, and stresses. We conclude that the muscle length-tension diagram and typical preload-afterload curves ad modem the Frank-Starling cardiac law can be obtained in the human gastric antrum. The sensory responses were most closely associated with the luminal circumference, indicating that the sensation during antral distension depends on deformation rather than on tension.  相似文献   

11.
In thirteen cats anesthetized with alpha-chloralose, we compared the cardiovascular and ventilatory responses to both static contraction and tendon stretch of a hindlimb muscle group, the triceps surae, with those to contraction and stretch of a forelimb muscle group, the triceps brachii. Static contraction and stretch of both muscle groups increased mean arterial pressure and heart rate, and the responses were directly proportional to the developed tension. The cardiovascular increases, however, were significantly greater (P < 0.05) when the triceps brachii muscles were contracted or stretched than when the triceps surae muscles were contracted or stretched, even when the tension developed by either maneuver was corrected for muscle weight. Likewise, the ventilatory increases were greater when the triceps brachii muscles were stretched than when the triceps surae muscles were stretched. Contraction of either muscle group did not increase ventilation. Our results suggest that in the anesthetized cat the cardiovascular responses to both static contraction and tendon stretch are greater when arising from forelimb muscles than from hindlimb muscles.  相似文献   

12.
The aim of this study was to determine the role of the superior laryngeal nerve (SLN) in the following esophageal reflexes: esophago-upper esophageal sphincter (UES) contractile reflex (EUCR), esophago-lower esophageal sphincter (LES) relaxation reflex (ELIR), secondary peristalsis, pharyngeal swallowing, and belch. Cats (N = 43) were decerebrated and instrumented to record EMG of the cricopharyngeus, thyrohyoideus, geniohyoideus, and cricothyroideus; esophageal pressure; and motility of LES. Reflexes were activated by stimulation of the esophagus via slow balloon or rapid air distension at 1 to 16 cm distal to the UES. Slow balloon distension consistently activated EUCR and ELIR from all areas of the esophagus, but the distal esophagus was more sensitive than the proximal esophagus. Transection of SLN or proximal recurrent laryngeal nerves (RLN) blocked EUCR and ELIR generated from the cervical esophagus. Distal RLN transection blocked EUCR from the distal cervical esophagus. Slow distension of all areas of the esophagus except the most proximal few centimeters activated secondary peristalsis, and SLN transection had no effect on secondary peristalsis. Slow distension of all areas of the esophagus inconsistently activated pharyngeal swallows, and SLN transection blocked generation of pharyngeal swallows from all levels of the esophagus. Slow distension of the esophagus inconsistently activated belching, but rapid air distension consistently activated belching from all areas of the esophagus. SLN transection did not block initiation of belch but blocked one aspect of belch, i.e., inhibition of cricopharyngeus EMG. Vagotomy blocked all aspects of belch generated from all areas of esophagus and blocked all responses of all reflexes not blocked by SLN or RLN transection. In conclusion, the SLN mediates all aspects of the pharyngeal swallow, no portion of the secondary peristalsis, and the EUCR and ELIR generated from the proximal esophagus. Considering that SLN is not a motor nerve for any of these reflexes, the role of the SLN in control of these reflexes is sensory in nature only.  相似文献   

13.
The pathogenesis of achalasia involves the degeneration of enteric and autonomic nervous systems with resultant effects on esophageal motility. The neural degeneration could affect visceral sensation in achalasia. The aim of this study was to examine mechanosensitivity and chemosensitivity in patients with achalasia. Perceptual responses to esophageal distension and acid perfusion were assessed in nine achalasia patients and nine healthy subjects. Mechanosensitivity was evaluated using a barostat with a double-random staircase distension protocol. Responses were graded as follows: 0, no sensation; 1, initial sensation; 2, mild discomfort; 3, moderate discomfort; and 4, pain. Chemosensitivity was graded along a visual analog scale after perfusion of saline and 0.1 N HCl. Barostat pressure-volume relationships were used to report esophageal body compliance. Barostat pressures for initial sensation and mild discomfort were not significantly different for patients and controls. The pressures for moderate discomfort (37.9 +/- 3.5 vs. 25.7 +/- 2.4 mmHg; P < 0.05) and pain (47.8 +/- 2.3 vs. 32.2 +/- 3.5 mmHg; P = 0.002) were significantly higher in achalasics than controls. Seven of the eight achalasia patients never reached pain thresholds at the maximum distension pressure (50 mmHg). Sensation to acid perfusion was significantly lower in achalasics compared with controls (2.2 +/- 1.2 vs. 6.7 +/- 1.7 cm; P < 0.05). Compliance was significantly increased in patients with achalasia compared with controls. We conclude that both mechanosensitivity and chemosensitivity are significantly diminished in achalasia patients compared with controls. Also, initial sensation and pain sensation are differentially affected in achalasics. These findings suggest that neuropathic defects in achalasia may manifest themselves in visceral sensory and motor dysfunction.  相似文献   

14.
The aims of this study were to investigate gastric antral geometry and stress-strain properties by using transabdominal ultrasound scanning during volume-controlled distensions in the human gastric antrum. Seven healthy volunteers underwent stepwise inflation of a bag located in the antrum with volumes up to 60 ml. The stretch ratio and Cauchy stress and strain were calculated from measurements of pressure, diameter, and wall thickness. A second distension series was conducted in three volunteers during administration of the anticholinergic drug butylscopolamine. Analysis of stretch ratios demonstrated positive strain in the circumferential direction, negative strain in the radial direction, and no strain in the longitudinal direction. The stress-strain relation was exponential and did not differ without or with the administration of butylscopolamine. The wall stress was decomposed into its active and passive components. The well-known length-tension diagram from in vitro studies of smooth muscle strips was reproduced. The maximum active tension appeared at a volume of 50 ml, corresponding to a stretch ratio of 1.5. We conclude that the method provides measures of antral biomechanical wall properties and can be used to reproduce the muscle length-tension diagram in humans.  相似文献   

15.
The parabrachial nucleus (PBN) is regarded as an important locus for the processing and integration of sensory inputs from oral, gastrointestinal, and postabsorptive receptor sites and is thus thought to play an important role in regulating food intake. Gastric distension is an important satiation cue; however, such responses have been qualitatively characterized only over a limited area of the PBN. To more fully characterize gastric distension responses throughout the PBN, the responses of single units to gastric distension were tested using computer-controlled balloon inflation (3-18 ml air) in pentobarbital sodium- and/or urethan-anesthetized male rats. Distension-responsive neurons were indeed distributed throughout the nucleus from rostral areas typically considered to be visceral to more caudal areas associated with gustatory function, providing further anatomical support for the hypothesis that the PBN integrates taste and visceral signals that control feeding. Most PBN neurons had thresholds of 6 ml or less, similar to vagal afferent fibers. However, in contrast to the periphery, there were both excitatory and inhibitory responses. Increases in volume were associated with two distinct effects. First, as volume increased, the response rate increased; second, the duration of the response increased. In fact, in a subset of cells, responses to gastric distension lasted well beyond the stimulation period, particularly at larger volumes. Prolonged gastric distension responses are not common in the periphery and may constitute a central mechanism that contributes to satiation processes.  相似文献   

16.
The present study compared the responses of rib cage and abdominal expiratory muscles to chemical and mechanical stimuli. In pentobarbital-anesthetized spontaneously breathing dogs, electromyograms (EMG) were recorded from the triangularis sterni (TS) and transverse abdominis (TA) muscles using bipolar intramuscular wire electrodes. During resting oxygen breathing, both muscles were electrically active during expiration. Progressive hyperoxic hypercapnia significantly augmented the expiratory activity of both the TA and the TS. However, the mean percent increases in electrical activity in response to CO2 were substantially greater for the TA than for the TS at all PCO2 levels greater than 50 Torr (P less than 0.01). Occlusion of the airway at end inspiration significantly delayed the onset of TS EMG (from 0.35 +/- 0.07 to 3.35 +/- 0.67 sec; P less than 0.002) and decreased TS EMG rate of rise (P less than 0.002), but did not significantly alter these parameters for the TA. Esophageal distension increased TS EMG in all dogs (by mean of 220 +/- 64%; P less than 0.01), but in contrast decreased TA EMG in all dogs (by a mean of 63 +/- 12%; P less than 0.001). The response to esophageal distention occurred in a graded manner and appeared to be mediated predominantly via vagal afferents. We concluded that expiratory muscles of the rib cage and abdomen manifest substantial differences in their electrical responses to chemoreceptor, pulmonary stretch receptor, and esophageal mechanoreceptor stimuli.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Gastric distension is a potent stimulus of transient lower esophageal sphincter (LES) relaxation. To investigate the time effect of prolonged gastric distension on the rate of transient LES relaxations, LES pressure, and the motor and sensory functions of the proximal stomach, we performed a continuous isobaric distension of the proximal stomach at the 75% threshold pressure for discomfort for 2 h in seven healthy subjects. A multilumen assembly incorporating a sleeve and an electronic barostat was used. The rate of transient LES relaxations (n/30 min) was constant during the first hour [4.1 +/- 1.2 (0-30 min) and 5.4 +/- 1.1 (30-60 min)] but markedly decreased (P < 0.05) in the second hour [2.1 +/- 0.5 (60-90 min) and 2.3 +/- 0.9 (90-120 min)], whereas LES pressure, baseline volume and volume waves within the gastric bag, hunger, and fullness did not change throughout the experiment. It is concluded that the rate of transient LES relaxations decreases with time during prolonged gastric distension, thus suggesting that this type of stimulus should not be used in sequential experimental conditions.  相似文献   

18.
Distension of the esophagus can cause heartburn and chest pain; however, none of the available techniques to study the esophagus measure esophageal distension. We evaluated the technique of high-frequency intraluminal ultrasound probe (HFIUS) to measure the esophageal cross-sectional area (CSA) during gastroesophageal reflux (GER). The following methods were used: 1) the CSA of agarose gel tubes of known dimensions were measured using ultrasound probes; 2) seven normal subjects were studied to evaluate the esophageal CSA during different bolus volumes (1, 5, 10, 15, and 20 ml) of water swallows (WS); and 3) simultaneous pressures, pH, and ultrasound images of the esophagus were recorded in healthy subjects. In vitro studies showed that the HFIUS measured the CSA of the tubes accurately. The maximal CSA of the distal esophagus during WS with boluses of 1, 5, 10, 15, and 20 ml were 54, 101, 175, 235, and 246 mm(2), respectively. Esophageal contents during 62 episodes of transient lower esophageal sphincter relaxations, 29 pH positive, and 33 pH negative GER episodes revealed that reflux of air into the esophagus occurred more frequently than liquid. The median CSA and estimated diameter of the esophagus during liquid GER was 44.1 mm(2) and 7.5 mm, respectively. We conclude that HFIUS is a valid technique to measure the CSA of the esophagus in vivo during GER. Distension of the esophagus during physiological GER is relatively small.  相似文献   

19.
BACKGROUND AND AIMS: the neural mechanisms of distension-induced esophagoupper esophageal sphincter (UES) reflexes have not been explored in humans. We investigated the modulation of these reflexes by mucosal anesthesia, acid exposure, and GABA(B) receptor activation. In 55 healthy human subjects, UES responses to rapid esophageal air insufflation and slow balloon distension were examined before and after pretreatment with 15 ml of topical esophageal lidocaine, esophageal HCl infusion, and baclofen 40 mg given orally. In response to rapid esophageal distension, UES can variably relax or contract. Following a mucosal blockade by topical lidocaine, the likelihood of a UES relaxation response was reduced by 11% (P < 0.01) and the likelihood of a UES contractile response was increased by 14% (P < 0.001) without alteration in the overall UES response rate. The UES contractile response to rapid esophageal air insufflation was also increased by 8% (P < 0.05) following sensitization by prior mucosal acid exposure. The UES contractile response, elicited by balloon distension, was regionally dependent (P < 0.05) (more frequent and of higher amplitude with proximal esophageal distension), and the response was attenuated by topical lidocaine (P < 0.05). Baclofen (40 mg po) had no effect on these UES reflexes. Abrupt gaseous esophageal distension activates simultaneously both excitatory and inhibitory pathways to the UES. Partial blockade of the mucosal mechanosensitive receptors permits an enhanced UES contractile response mediated by deeper esophageal mechanoreceptors. Activation of acid-sensitive esophageal mucosal chemoreceptors upregulates the UES contractile response, suggestive of a protective mechanism.  相似文献   

20.
Acute changes in blood glucose concentration have major effects on gastrointestinal motor function. Patients with diabetes mellitus have an increased prevalence of gastroesophageal reflux. Transient lower esophageal sphincter (LES) relaxation (TLESR) is the most common sphincter mechanism underlying reflux. The aim of this study was to investigate the effect of acute hyperglycemia on triggering TLESRs evoked by gastric distension in healthy volunteers. TLESRs were stimulated by pressure-controlled and volume-controlled (500 ml) gastric distension using an electronic barostat and performed on separate days. On each day, esophageal manometry was performed in the sitting position during gastric distension for 1 h under euglycemia (5 mM), and either marked hyperglycemia (15 mM) or physiological hyperglycemia (8 mM) in randomized order was maintained by a glucose clamp. Marked hyperglycemia doubled the rate of TLESRs in response to both pressure-controlled [5 (3-10.5, median or interquartile range) to 10 (9.5-14.5) per hour, P < 0.02] and volume-controlled [4 (2.5-7.5) to 10.5 (7-12.5) per hour, P < 0.02] gastric distension but had no effect on basal LES pressure. Physiological hyperglycemia had no effect on the triggering of TLESRs or basal LES pressure. In healthy human subjects, marked hyperglycemia increases the rate of TLESRs. Increase in the rate of TLESRs is independent of proximal gastric wall tension. Mechanisms underlying the effect remain to be determined. Hyperglycemia may be an important factor contributing to the increased esophageal acid exposure in patients with diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号