首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhaled particulates such as pollutant particles, allergens, and microorganisms are rapidly cleared by alveolar macrophages (AMs). Methods for analysis of AM-particle interaction have been hindered by the lack of a convenient assay. Flow cytometry offers rapid, sensitive, and reproducible measurements of single cells in suspension. Multiple parameters can be measured in real time. Here we will review the application of flow cytometry to the study and characterization of AM receptors for unopsonized environmental particles. We will discuss the role of this technique in identifying a key AM receptor system involved in lung defense. Multiparametric flow cytometry to analyze intracellular functional parameters, though a powerful and unique tool, needs to be interpreted with caution. We will also discuss the advantages and limitations of flow cytometry in analysis of AM-particle interaction.  相似文献   

2.
We have compared the oxidative response of alveolar macrophages (AM) during opsonin-dependent and independent phagocytosis by using multiparameter flow cytometry. The respiratory burst of AM during phagocytosis was quantitated by the intracellular oxidation of the nonfluorescent precursors dichlorofluorescin diacetate (DCFH) or hydroethidine (HE, a reduced precursor of ethidium) to their fluorescent (oxidized) counterparts. After loading freshly isolated normal hamster AM with DCFH or HE, red or green fluorescent beads, respectively, were added to the shaking cell suspensions. Ingestion of opsonized particles by AM caused a marked increase in oxidation of both DCFH and HE proportional to the number of beads ingested. In contrast, uptake of one to three unopsonized particles per cell led to inhibition of oxidative activity compared to control cells incubated without particles. AM ingesting four or more unopsonized particles showed some increase in oxidative metabolism, but far less than that with identical numbers of particles in opsonin-dependent ingestion. Similar results were obtained using fluorescent labeled staphylococcal bacteria. Using three-color flow cytometry to study cells ingesting both types of particles, cells first ingesting unopsonized beads were also found to have an inhibited oxidative response to subsequently ingested opsonized particles. The mitochondrial poison antimycin inhibited most of the intracellular oxidative response to either type of phagocytosis. The remaining antimycin-insensitive, membrane derived respiratory burst of AM was also substantially diminished after phagocytosis of unopsonized particles vs similar numbers of opsonized particles. The greatly increased mitochondrial respiration in AM during phagocytosis of opsonized particles may be related to bactericidal mechanisms. Killing of ingested Staphylococcus by AM was markedly impaired in the presence of antimycin. The results suggest that AM may ingest the numerous, unopsonized inert particles that are inhaled without generation of potentially toxic oxygen metabolites, while retaining the capacity to undergo a respiratory burst after ingesting opsonized particles and bacteria. The mechanism(s) for this distinct response may include generation of an inhibitor of intracellular oxidative metabolism.  相似文献   

3.

Background

Scavenger receptors are important components of the innate immune system in the lung, allowing alveolar macrophages to bind and phagocytose numerous unopsonized targets. Mice with genetic deletions of scavenger receptors, such as SR-A and MARCO, are susceptible to infection or inflammation from inhaled pathogens or dusts. However, the signaling pathways required for scavenger receptor-mediated phagocytosis of unopsonized particles have not been characterized.

Methods

We developed a scanning cytometry-based high-throughput assay of macrophage phagocytosis that quantitates bound and internalized unopsonized latex beads. This assay allowed the testing of a panel of signaling inhibitors which have previously been shown to target opsonin-dependent phagocytosis for their effect on unopsonized bead uptake by human in vitro-derived alveolar macrophage-like cells. The non-selective scavenger receptor inhibitor poly(I) and the actin destabilizer cytochalasin D were used to validate the assay and caused near complete abrogation of bead binding and internalization, respectively.

Results

Microtubule destabilization using nocodazole dramatically inhibited bead internalization. Internalization was also significantly reduced by inhibitors of tyrosine kinases (genistein and herbimycin A), protein kinase C (staurosporine, chelerythrine chloride and Gö 6976), phosphoinositide-3 kinase (LY294002 and wortmannin), and the JNK and ERK pathways. In contrast, inhibition of phospholipase C by U-73122 had no effect.

Conclusion

These data indicate the utility of scanning cytometry for the analysis of phagocytosis and that phagocytosis of unopsonized particles has both shared and distinct features when compared to opsonin-mediated phagocytosis.  相似文献   

4.
Alveolar macrophages (AMs) avidly bind and ingest inhaled environmental particles and bacteria. To identify the particle binding receptor(s) on human AMs, we used functional screening of anti-human AM hybridomas and isolated a mAb, PLK-1, which inhibits AM binding of unopsonized particles (e.g., TiO2, latex beads; 63 +/- 5 and 67 +/- 4% inhibition, respectively, measured by flow cytometry; n = 11) and unopsonized bacteria ( approximately 84 and 41% inhibition of Escherichia coli and Staphylococcus aureus binding by mAb PLK-1, respectively). The PLK-1 Ag was identified as the human class A scavenger receptor (SR) MARCO (macrophage receptor with collagenous structure) by observing specific immunolabeling of COS cells transfected with human MARCO (but not SR-AI/II) cDNA and by immunoprecipitation by PLK-1 of a protein of appropriate molecular mass (approximately 70 kDa) from both normal human bronchoalveolar lavage cells (>90% AMs) and human MARCO-transfected COS cells. PLK-1 also specifically inhibited particle binding by COS cells, only after transfection with human MARCO cDNA. Immunostaining showed specific labeling of AMs within human lung tissue, bronchoalveolar lavage samples, as well as macrophages in other sites (e.g., lymph node and liver). Using COS transfectants with different truncated forms of MARCO, allowed epitope mapping for the PLK-1 Ab to MARCO domain V between amino acid residues 420 and 431. A panel of Abs to various SRs identified expression on AMs, but failed to inhibit TiO2 or S. aureus binding. The data support a dominant role for MARCO in the human AM defense against inhaled particles and pathogens.  相似文献   

5.
Alveolar macrophages (AMs) can phagocytose unopsonized pathogens such as S. aureus via innate immune receptors, such as scavenger receptors (SRs). Cytoskeletal events and signaling pathways involved in phagocytosis of unopsonized bacteria likely govern the fate of ingested pathogens, but are poorly characterized. We have developed a high-throughput scanning cytometry-based assay to quantify phagocytosis of S. aureus by adherent human blood-derived AM-like macrophages in a 96-well microplate format. Differential fluorescent labeling of internalized vs. bound bacteria or beads allowed automated image analysis of collapsed confocal stack images acquired by scanning cytometry, and quantification of total particles bound and percent of particles internalized. We compared the effects of the classic SR blocker polyinosinic acid, the cytoskeletal inhibitors cytochalasin D and nocodazole, and the signaling inhibitors staurosporine, Gö 6976, JNK Inhibitor I and KN-93, on phagocytosis of a panel of live unopsonized S. aureus strains, (Wood, Seattle 1945 (ATCC 25923), and RN6390), as well as a commercial killed Wood strain, heat-killed Wood strain and latex beads. Our results revealed failure of the SR inhibitor polyinosinic acid to block binding of any live S. aureus strains, suggesting that SR-mediated uptake of a commercial killed fluorescent bacterial particle does not accurately model interaction with viable bacteria. We also observed heterogeneity in the effects of cytoskeletal and signaling inhibitors on internalization of different S. aureus strains. The data suggest that uptake of unopsonized live S. aureus by human macrophages is not mediated by SRs, and that the cellular mechanical and signaling processes that mediate S. aureus phagocytosis vary. The findings also demonstrate the potential utility of high-throughput scanning cytometry techniques to study phagocytosis of S. aureus and other organisms in greater detail.  相似文献   

6.
Microglial cells are the resident phagocytic cells of the central nervous system (CNS). They possess a wide range of receptors allowing them to identify and internalize numerous pathogens. We will discuss here the role of the most important receptors of microglia involved in non-opsonin-dependent phagocytosis (mannose receptor, β-glucan receptor, scavenger receptor) and that of receptors involved in the opsonin-dependent phagocytosis, namely the complement 3 (CR3) and the Fcγ receptors (FcγR). First, the molecular and cellular mechanisms induced when these receptors are conducting a phagocytic event are presented. In the second part, we will discuss the role these receptors may play in multiple sclerosis and Alzheimer’s disease, in the elimination by phagocytosis of myelin and beta amyloid peptide respectively. The first two authors contributed equally to this work.  相似文献   

7.
The inflammatory response following particle inhalation is described as a key event in the development of lung diseases, e.g., fibrosis and cancer. The essential role of alveolar macrophages (AM) in the pathogenicity of particles through their functions in lung clearance and mediation of inflammation is well known. However, the molecular mechanisms and direct consequences of particle uptake are still unclear. Inhibition of different classic phagocytosis receptors by flow cytometry shows a reduction of the dose-dependent quartz particle (DQ12) uptake in the rat AM cell line NR8383. Thereby the strongest inhibitory effect was observed by blocking the FcgammaII-receptor (FcgammaII-R). Fluorescence immunocytochemistry, demonstrating FcgammaII-R clustering at particle binding sites as well as transmission electron microscopy, visualizing zippering mechanism-like morphological changes, confirmed the role of the FcgammaII-R in DQ12 phagocytosis. FcgammaII-R participation in DQ12 uptake was further strengthened by the quartz-induced activation of the Src-kinase Lyn, the phospho-tyrosine kinases Syk (spleen tyrosine kinase) and PI3K (phosphatidylinositol 3-kinase), as shown by Western blotting. Activation of the small GTPases Rac1 and Cdc42, shown by immunoprecipitation, as well as inhibition of tyrosine kinases, GTPases, or Rac1 provided further support for the role of the FcgammaII-R. Consistent with the uptake results, FcgammaII-R activation with its specific ligand caused a similar generation of reactive oxygen species and TNF-alpha release as observed after treatment with DQ12. In conclusion, our results indicate a major role of FcgammaII-R and its downstream signaling cascade in the phagocytosis of quartz particles in AM as well as in the associated generation and release of inflammatory mediators.  相似文献   

8.
Human alveolar macrophages (AMs) phagocytose Pneumocystis (Pc) organisms predominantly through mannose receptors, although the molecular mechanism mediating this opsonin-independent process is not known. In this study, using AMs from healthy individuals, Pc phagocytosis was associated with focal F-actin polymerization and Cdc42, Rac1, and Rho activation in a time-dependent manner. Phagocytosis was primarily dependent on Cdc42 and RhoB activation (as determined by AM transfection with Cdc42 and RhoB dominant-negative alleles) and mediated predominantly through mannose receptors (as determined by siRNA gene silencing of AM mannose receptors). Pc also promoted PAK-1 phosphorylation, which was also dependent on RhoGTPase activation. HIV infection of AMs (as a model for reduced mannose receptor expression and function) was associated with impaired F-actin polymerization, reduced Cdc42 and Rho activation, and markedly reduced PAK-1 phosphorylation in response to Pc organisms. In healthy AMs, Pc phagocytosis was partially dependent on PAK activation, but dependent on the Rho effector molecule ROCK. These data provide a molecular mechanism for AM mannose receptor-mediated phagocytosis of unopsonized Pc organisms that appears distinct from opsonin-dependent phagocytic receptors. Reduced AM mannose receptor-mediated Cdc42 and Rho activation in the context of HIV infection may represent a mechanism that contributes to the pathogenesis of opportunistic pneumonia.  相似文献   

9.
Phagocytosis of three types of fluorescein-labeled test particles by rat alveolar macrophages (AM) were studied: spherical silica (3.2 microm), heat-killed Candida albicans (3.8 microm), and heat-killed Cryptococcus neoformans (6.1 microm) opsonized with specific IgG. These particles should attach to scavenger, mannose, and Fc receptors, respectively. Both control AM and AM pretreated for 20 h with interferon-gamma (12.5 or 50 U/ml) were studied. The sum of the number of attached and ingested particles per AM (accumulated attachment) was used as a measure of the attachment process, and the number of ingested particles per AM divided by the accumulated attachment (ingested fraction) was used as a measure of the ingestion process. The average ingestion time (IT), which is also a measure of the ingestion process, was calculated from the experimental data. The ingestion process was independent of the attachment process. IT increased with the time of observation. This is explained by the fact that IT determined from observation times shorter than the whole distribution of IT for a certain particle results in a shorter IT than the real average IT. C. albicans (mannose receptor) had the fastest ingestion process, C. neoformans opsonized with specific IgG (Fc receptor) had ingestion that was nearly as fast, and the silica particles (scavenger receptors) had the slowest ingestion process. Treatment with interferon-gamma markedly impaired the attachment process for all three types of particles (and three types of receptors) but clearly impaired the ingestion process only for silica particles (scavenger receptors).  相似文献   

10.
In this paper, we aim to characterize fibrinogen-IgG interactions, and explore how fibrinogen alters IgG-mediated phagocytosis.Using enzyme-linked binding assays, we found that fibrinogen binding to IgG is optimized for surfaces coated with high levels of IgG. Using a similar method, we have shown that for an antigen unable to specifically bind fibrinogen, fibrinogen enhances binding of antibodies towards that antigen. For binding of IgG antibodies to cells expressing Fc receptors, we found a bimodal binding response, where low levels of fibrinogen enhance binding of antibody to Fc receptors and high levels reduce it. This corresponds to a bimodal effect on phagocytosis of IgG-coated particles, which is inhibited in the presence of excess IgG during coating of the particles with antibodies and fibrinogen.We conclude that fibrinogen can modulate phagocytosis of IgG-coated particles in vitro by changing IgG binding behavior, and that high fibrinogen levels could negatively affect phagocytosis.  相似文献   

11.
There is evidence that apoptotic cells and oxidized low density lipoprotein (oxLDL) particles have common ligands on their surface consisting of oxidized phospholipids which bind to scavenger receptors in macrophages leading to phagocytosis. Some effects of oxLDL binding to its receptor(s) were shown to be inhibited by Platelet Activating Factor (PAF)-receptor antagonists. Thus, we investigated the effect of PAF-receptor antagonists on the phagocytosis of apoptotic, necrotic and viable thymocytes by murine peritoneal macrophages. It was found that phagocytosis of altered cells is significantly increased compared to viable cells, a phenomenon reversed by pre-treatment of macrophages with PAF-receptor antagonists (WEB2170 and CV3988), PAF or oxLDL. Phagocytosis of altered cells induced negligible expression of cyclooxygenase-2 (COX-2) but strongly potentiated the LPS-induced expression of this enzyme. This phenomenon was restricted to altered cells and was reversed by pre-treatment of macrophages with PAF-receptor antagonists. These findings indicate that apoptotic and necrotic cells share common ligands with PAF and oxLDL and suggest the involvement of PAF-like receptors in the enhanced clearance of these cells.  相似文献   

12.
The pentraxins, serum amyloid P component (SAP) and C-reactive protein (CRP) are acute-phase serum proteins in mice and humans, respectively. Although SAP binds to DNA and chromatin and affects clearance of these autoantigens, no specific receptor for SAP has been identified. CRP is an opsonin, and we have shown that it binds to FcgammaR. Mice deficient in FcgammaR were used to assess the role of these receptors in phagocytosis by pentraxins using zymosan as a ligand. Phagocytosis of zymosan by bone marrow macrophages (BMM) was enhanced by opsonization with SAP or CRP. BMM from mice deficient in all three FcgammaR or in gamma-chain ingested unopsonized zymosan, but phagocytosis of SAP- or CRP-opsonized zymosan was not enhanced. SAP binding to BMM from gamma-chain-deficient mice was also greatly reduced, indicating little or no binding of SAP to FcgammaRII. SAP and CRP opsonized zymosan for phagocytosis by BMM from mice deficient in FcgammaRII or FcgammaRIII. SAP, but not CRP, opsonized zymosan for uptake by neutrophils that express only low levels of FcgammaRI. Together these results indicate that FcgammaRI and FcgammaRIII are receptors for SAP in the mouse. Opsonization of zymosan by CRP is mediated through FcgammaRI. Pentraxins are major proteins of the innate immune system and arose earlier in evolution than Igs. The use of FcgammaR by the pentraxins links innate and adaptive immunity and may have important consequences for processing, presentation, and clearance of the self-Ags to which these proteins bind.  相似文献   

13.
Macrophages from prototypical Th1 strains (e.g., C57BL/6) and Th2 strains (e.g., BALB/c) are classified as M-1 and M-2 phenotypes. We investigated the different phagocytic responses between M-1 and M-2 bronchoalveolar macrophages (BAMs) under resting and two various exercise conditions. At rest, M-1 BAMs showed higher phagocytic capacity of unopsonized particles, higher expression of MARCO (macrophage receptor with collagenous structure), and higher generation of NO than M-2 BAMs. Severe exercise, but not moderate exercise, significantly enhanced both phagocytosis of unopsonized particles and expression of MARCO in M-2 BAMs. In contrast, M-1 BAMs were unaffected by either exercise protocol. The phagocytosis of unopsonized particles was largely mediated by MARCO, especially in M-1 BAMs. Secreted products from cultured M-2 BAMs isolated after severe exercise, but not those from M-1 BAMs, enhanced BAM phagocytosis. The cultured M-1 BAMs secreted phagocytosis inhibitors, and this effect could be blocked by NO antagonists. Moreover, the extent of phagocytosis suppression induced by M-1 BAM-secreted products correlated with their production of nitrite/nitrate. Exogenous NO donors as well as NO derivatives, nitrite and nitrate, suppressed the BAM phagocytosis. We propose that while the severe exercise-enhanced phagocytosis in M-2 BAMs was largely mediated by MARCO up-regulation and secretion of stimulators, the lack of exercise effect in M-1 BAMs could be partially due to the constitutive secretion of NO-related suppressors. In conclusion, genetically different mice use different strategies in regulating BAM activity under resting conditions and in response to various exercise paradigms.  相似文献   

14.
Phagocytosis, a critically important process employed by leukocytes against invading pathogens, is an actin-dependent clathrin-independent process that results in the internalization of particles >0.5 microm in diameter. Phagocytosis consists of a number of stages, including the binding of particles to the cell surface via interaction with a receptor, engulfment of the particle by pseudopod extension, and fission and fusion reactions to form phago-lysosomes. Much remains to be learned concerning the molecular mechanisms that regulate particle internalization and phagosome maturation. Dictyostelium is a genetically tractable professional phagocyte that has proven useful in determining the molecular steps involved in these processes. We will summarize, in this chapter, what we currently understand concerning the molecular mechanisms that regulate the process of phagocytosis in Dictyostelium, and we will compare and contrast this body of information with that available describing phagocytosis in higher organisms. We will also present current information that suggests that macropinocytosis, a process morphologically similar to phagocytosis, utilizes a different signaling pathway than phagocytosis. Finally, we will discuss the process of maturation of phagosomes, which requires membrane trafficking events, and we will summarize data that support the use of Dictyostelium as a model to determine how intracellular pathogens survive.  相似文献   

15.
Phagocytosis of apoptotic cells is essential during development and tissue remodeling. Our previous study has shown that the P2X(7) receptor regulates phagocytosis of nonopsonized particles and bacteria. In this study, we demonstrate that P2X(7) also mediates phagocytosis of apoptotic lymphocytes and neuronal cells by human monocyte-derived macrophages under serum-free conditions. ATP inhibited this process to a similar extent as observed with cytochalasin D. P2X(7)-transfected HEK-293 cells acquired the ability to phagocytose apoptotic lymphocytes. Injection of apoptotic thymocytes into the peritoneal cavity of wild-type mice resulted in their phagocytosis by macrophages, but injection of ATP prior to thymocytes markedly decreased this uptake. In contrast, ATP failed to inhibit phagocytosis of apoptotic thymocytes in vivo by P2X(7)-deficient peritoneal macrophages. The surface expression of P2X(7) on phagocytes increased significantly during phagocytosis of either beads or apoptotic cells. A peptide screen library containing 24 biotin-conjugated peptides mimicking the extracellular domain of P2X(7) was used to evaluate the binding profile to beads, bacteria, and apoptotic cells. One peptide showed binding to all particles and cell membrane lipids. Three other cysteine-containing peptides uniquely bound the surface of apoptotic cells but not viable cells, whereas substitution of alanine for cysteine abolished peptide binding. Several thiol-reactive compounds including N-acetyl-L-cysteine abolished phagocytosis of apoptotic SH-SY5Y cells by macrophages. These data suggest that the P2X(7) receptor in its unactivated state acts like a scavenger receptor, and its extracellular disulphide bonds play an important role in direct recognition and engulfment of apoptotic cells.  相似文献   

16.
The role of the complement receptor type 3 (CR3) on thioglycollate-elicited peritoneal macrophages (TG-PM) in the destruction of opsonized particles was studied. We found that sheep red blood cells (E) that were opsonized with an IgM monoclonal anti-Forssman antibody and complement (E-IgM-C) were lysed by TG-PM, whereas there was little lysis of E pretreated with either the antibody or the complement source alone. Furthermore, this lysis could be inhibited by anti-CR3 monoclonal antibodies that had previously been shown to inhibit binding of E-IgM-C to the CR3. Kinetic studies of phagocytosis and lysis indicated that lysis of E-IgM-C occurs after phagocytosis, suggesting that lysis is an intracellular event. Further findings suggested that intra-cellular lysis was promoted by CR3 bound to the phagocytosed target, because a monoclonal anti-CR3 antibody decreased the rate of phagocytosis of E-IgM-C but not its magnitude, whereas the rate and extent of lysis were strikingly inhibited. Furthermore, TG-PM that had already internalized unopsonized E selectively lysed E-IgM-C that were added later. These data confirm that the interaction of the CR3 with its ligand on E-IgM-C promotes rapid phagocytosis, and further suggest that the CR3 facilitates degradation of the target particle once internalization has occurred.  相似文献   

17.
Macrophages express high levels of the myristoylated,alanine-rich, C kinase substrate (MARCKS), an actin cross-linkingprotein. To investigate a possible role of MARCKS in macrophagefunction, fetal liver-derived macrophages were generated from wild-type and MARCKS knockout mouse embryos. No differences between the wild-typeand MARCKS-deficient macrophages with respect to morphology (Wright'sstain) or actin distribution (staining with rhodamine-phalloidin, underbasal conditions or after treatment with phorbol esters, lipopolysaccharide, or both) were observed. We then evaluated phagocytosis mediated by different receptors: Fc receptors tested withIgG-coated sheep red blood cells, complement C3b receptors tested withC3b-coated yeast, mannose receptors tested with unopsonized zymosan,and nonspecific phagocytosis tested with latex beads. We also studiedfluid phase endocytosis in macrophages and mouse embryo fibroblasts byusing FITC-dextran to quantitate this process. In most cases, therewere no differences between the cells derived from wild-type andMARCKS-deficient mice. However, a minor but significant andreproducible difference in rates of zymosan phagocytosis at 45-60min was observed, with lower rates of phagocytosis in theMARCKS-deficient cells. Our data indicate that MARCKS deficiency maylead to slightly decreased rates of zymosan phagocytosis.

  相似文献   

18.
Rapid phagocytosis of non-opsonized particles including apoptotic cells is an important process that involves direct recognition of the target by multiple scavenger receptors including P2X7 on the phagocyte surface. Using a real-time phagocytosis assay, we studied the effect of serum proteins on this phagocytic process. Inclusion of 1-5% serum completely abolished phagocytosis of non-opsonized YG beads by human monocytes. Inhibition was reversed by pretreatment of serum with 1-10 mM tetraethylenepentamine, a copper/zinc chelator. Inhibitory proteins from the serum were determined as negatively charged glycoproteins (pI < 6) with molecular masses between 100 and 300 kDa. A glycoprotein-rich inhibitory fraction of serum not only abolished YG bead uptake but also inhibited phagocytosis of apoptotic lymphocytes or neuronal cells by human monocyte-derived macrophages. Three copper- and/or zinc-containing serum glycoproteins, ceruloplasmin, serum amyloid P-component, and amyloid precursor protein, were identified, and the purified proteins were shown to inhibit the phagocytosis of beads by monocytes as well as phagocytosis of apoptotic neuronal cells by macrophages. Human adult cerebrospinal fluid, which contains very little glycoprotein, had no inhibitory effect on phagocytosis of either beads or apoptotic cells. These data suggest for the first time that metal-interacting glycoproteins present within serum are able to inhibit the scavenger activity of mononuclear phagocytes toward insoluble debris and apoptotic cells.  相似文献   

19.
Receptor-mediated phagocytosis is a complex process that mediates the internalization, by a cell, of other cells and large particles; this is an important physiological event not only in mammals, but in a wide diversity of organisms. Of simple unicellular organisms that use phagocytosis to extract nutrients, to complex metazoans in which phagocytosis is essential for the innate defence system, as a first line of defence against invading pathogens, as well as for the clearance of damaged, dying or dead cells. Evolution has armed multicellular organisms with a range of receptors expressed on many cells that serve as the molecular basis to bring about phagocytosis, regardless of the organism or the specific physiological event concerned. Key to all phagocytic processes is the finely controlled rearrangement of the actin cytoskeleton, in which Ca(2+) signals play a major role. Ca(2+) is involved in cytoskeletal changes by affecting the actions of a number of contractile proteins, as well as being a cofactor for the activation of a number of intracellular signalling molecules, which are known to play important roles during the initiation, progression and resolution of the phagocytic process. In mammals, the requirement of Ca(2+) for the initial steps in phagocytosis, and the subsequent phagosome maturation, can be quite different depending on the type of cell and on the type of receptor that is driving phagocytosis. In this review we discuss the different receptors that mediate professional and non-professional phagocytosis, and discuss the role of Ca(2+) in the different steps of this complex process.  相似文献   

20.
Oxygen-radical production stimulated from rat polymorphonuclear leucocytes by either unopsonized latex particles (diameter = 1.01 microM) or chemotactic peptide (N-formyl-Met-Leu-Phe) was monitored by using luminol-dependent chemiluminescence. Azide inhibited by more than 80% the luminescence response induced by chemotactic peptide whether added before or after stimulation. However, the luminescence response to latex particles was progressively less susceptible to azide inhibition if the azide was added after the stimulus. Cytochalasin B, which was shown to abolish phagocytosis of the latex beads, also abolished the chemiluminescence response. However, the same cells showed a greatly enhanced response to chemotactic peptide. Cytochalasin B-treated cells secreted approx. 45% of total cellular myeloperoxidase in response to chemotactic peptide, but there was no detectable secretion in response to unopsonized latex particles. Microperoxidase equivalent to 20% of cellular peroxidase activity added to the cells before addition of the stimulus had no effect on the response to latex particles but increased approx. 2-fold the peak rate of chemiluminescence induced by chemotactic peptide. It was concluded that the unopsonized latex particles stimulated oxygen-radical production by the mechanism that involved endocytosis, whereas chemotactic peptide stimulated production by a mechanism that involved exocytosis of myeloperoxidase, the latter mechanism requiring an increase in intracellular free [Ca2+].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号