首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Pseudomonas aeruginosa-containing wastewater released by hospitals is treated by wastewater treatment plants (WWTPs), generating sludge, which is used as a fertilizer, and effluent, which is discharged into rivers. We evaluated the risk of dissemination of antibiotic-resistant P. aeruginosa (AR-PA) from the hospital to the environment via the wastewater network. Over a 10-week period, we sampled weekly 11 points (hospital and urban wastewater, untreated and treated water, sludge) of the wastewater network and the river upstream and downstream of the WWTP of a city in eastern France. We quantified the P. aeruginosa load by colony counting. We determined the susceptibility to 16 antibiotics of 225 isolates, which we sorted into three categories (wild-type, antibiotic-resistant and multidrug-resistant). Extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs) were identified by gene sequencing. All non-wild-type isolates (n = 56) and a similar number of wild-type isolates (n = 54) were genotyped by pulsed-field gel electrophoresis and multilocus sequence typing. Almost all the samples (105/110, 95.5%) contained P. aeruginosa, with high loads in hospital wastewater and sludge (≥3×106 CFU/l or/kg). Most of the multidrug-resistant isolates belonged to ST235, CC111 and ST395. They were found in hospital wastewater and some produced ESBLs such as PER-1 and MBLs such as IMP-29. The WWTP greatly reduced P. aeruginosa counts in effluent, but the P. aeruginosa load in the river was nonetheless higher downstream than upstream from the WWTP. We conclude that the antibiotic-resistant P. aeruginosa released by hospitals is found in the water downstream from the WWTP and in sludge, constituting a potential risk of environmental contamination.  相似文献   

2.
3.
Phycobilisomes isolated from Microcystis aeruginosa grown to midlog at high light (270 microeinsteins per square meter per second) or at low light intensities (40 microeinsteins per square meter per second) were found to be identical. Electron micrographs established that they have a triangular central core apparently consisting of three allophycocyanin trimers surrounded by six rods, each composed of two hexameric phycocyanin molecules. The apparent mass of a phycobilisome obtained by gel filtration is 2.96 × 106 daltons. The molar ratio of the phycobiliproteins per phycobilisome is 12 phycocyanin hexamers:9 allophycocyanin trimers. The electron microscopic observations combined with the phycobilisome apparent mass and the phycobiliprotein stoichiometry data indicate that M. aeruginosa phycobilisomes are composed of a triangular central core of three stacks of three allophycocyanin trimers and six rods each containing two phycocyanin hexamers. Adaptation of M. aeruginosa to high light intensity results in a decrease in the number of phycobilisomes per cell with no alteration in phycobilisome composition or structure.  相似文献   

4.
Antibiotics are often used to prevent sickness and improve production in animal agriculture, and the residues in animal bodies may enter tannery wastewater during leather production. This study aimed to use Illumina high-throughput sequencing to investigate the occurrence, diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in aerobic and anaerobic sludge of a full-scale tannery wastewater treatment plant (WWTP). Metagenomic analysis showed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria dominated in the WWTP, but the relative abundance of archaea in anaerobic sludge was higher than in aerobic sludge. Sequencing reads from aerobic and anaerobic sludge revealed differences in the abundance of functional genes between both microbial communities. Genes coding for antibiotic resistance were identified in both communities. BLAST analysis against Antibiotic Resistance Genes Database (ARDB) further revealed that aerobic and anaerobic sludge contained various ARGs with high abundance, among which sulfonamide resistance gene sul1 had the highest abundance, occupying over 20% of the total ARGs reads. Tetracycline resistance genes (tet) were highly rich in the anaerobic sludge, among which tet33 had the highest abundance, but was absent in aerobic sludge. Over 70 types of insertion sequences were detected in each sludge sample, and class 1 integrase genes were prevalent in the WWTP. The results highlighted prevalence of ARGs and MGEs in tannery WWTPs, which may deserve more public health concerns.  相似文献   

5.
The genetic basis of plasmid host range has been investigated by Tn7 insertion mutagenesis of the promiscuous plasmid R18 in Pseudomonas aeruginosa. Six mutants have been isolated on the basis of greatly reduced transferability into Escherichia coli C while retaining normal transferability within P. aeruginosa. Their physical mapping shows that two of them map at coordinate 11.72 ± 0.14 kb, in the region of the origin of plasmid replication (oriV) and one at 18.0 ± 0.3 kb, in the trans-acting gene essential for initiation of replication at oriV (trfA). Three map at 48.4 ± 0.5 kb in the region of the origin of plasmid transfer (oriT) and the site at which a single-strand nick is introduced in the plasmid DNA-protein relaxation complex (rlx). Consistent with the postulated defective replication of the oriV and trfA mutants was their inability to transform E. coli C or K12 while being able to transform P. aeruginosa. As expected the oriT/rlx mutants transformed both hosts as effectively as R18. Furthermore the trfA mutant was readily curable by mitomycin C in a DNA polymerase I-proficient P. aeruginosa and spontaneously lost from a polymerase-deficient mutant of P. aeruginosa suggesting a role of this polymerase in the replication of R18. Extensive transfer tests from P. aeruginosa into a range of enteric bacteria, other Pseudomonas species and into other Gram-negative bacteria indicated a complex host range pattern for these mutants. It appears that both plasmid replication and conjugation genes are responsible for host range in addition to the involvement of host gene products.  相似文献   

6.
Phosphorus loading plays an important role in the occurrence of cyanobacterial blooms and understanding how this nutrient affects the physiology of cyanobacteria is imperative to manage these phenomena. Microcystis aeruginosa and Raphidiopsis raciborskii are cyanobacterial species that form potentially toxic blooms in freshwater ecosystems worldwide. Blooms comprise numerous strains with high trait variability, which can contribute to the widespread distribution of these species. Here, we explored the intraspecific variability in response to phosphorus depleted conditions (P-) testing five strains of each species. Strains could be differentiated by cell volume or genetic profiles except for those of the same species, sampling location and date, though these presented differences in their response to (P-). Although differently affected by (P-) over 10 days, all strains were able to grow and maintain photosynthetic activity. For most M. aeruginosa and R. raciborskii strains growth rates were not significantly different comparing (P+) and (P-) conditions. After ten days in (P-), only one M. aeruginosa strain and two R. raciborskii strains showed reduction in biovolume yield as compared to (P+) but in most strains chlorophyll-a concentrations were lower in (P-) than in (P+). Reduced photosystem II efficiency was found for only one R. raciborskii strain while all M. aeruginosa strains were affected. Only two M. aeruginosa and one R. raciborskii strain increased alkaline phosphatase activity under (P-) as compared to (P+). Variation in P-uptake was also observed but comparison among strains yielded homogeneous groups comprised of representatives of both species. Comparing the response of each species as a whole, the (P-) condition affected growth rate, biovolume yield and chlorophyll yield. However, these parameters revealed variation among strains of the same species to the extent that differences between M. aeruginosa and R. raciborskii were not significant. Taken together, these results do not support the idea that R. raciborskii, as a species, can withstand phosphorus limitation better than M. aeruginosa and also point that the level of intraspecific variation may preclude generalizations based on studies that use only one or few strains.  相似文献   

7.
Pseudomonas aeruginosa and Staphylococcus aureus are the most prevalent pathogens in airway infections of cystic fibrosis (CF) patients. We studied how these pathogens coexist and interact with each other. Clinical isolates of both species were retrieved from adult CF patients. Culture supernatants from 63 P. aeruginosa isolates triggered a wide range of biofilm-stimulatory activities when added to the culture of a control S. aureus strain. The extent of biofilm formation by S. aureus was positively correlated to the levels of the 2-alkyl-4-(1H)-quinolones (AQs) Pseudomonas Quinolone Signal (PQS) and 2-heptyl-4-hydroxy quinoline N-oxide (HQNO) produced by the P. aeruginosa isolates. Supernatants from P. aeruginosa isogenic mutants deficient in PQS and HQNO production stimulated significantly less biofilm formation by S. aureus than that seen with the parental strain PA14. When studying co-isolated pairs of P. aeruginosa and S. aureus retrieved from patients showing both pathogens, P. aeruginosa supernatants stimulated less biofilm production by the S. aureus counterparts compared to that observed using the control S. aureus strain. Accordingly, some P. aeruginosa isolates produced low levels of exoproducts and also some of the clinical S. aureus isolates were not stimulated by their co-isolates or by PA14 despite adequate production of HQNO. This suggests that colonization of the CF lungs promotes some type of strain selection, or that co-existence requires specific adaptations by either or both pathogens. Results provide insights on bacterial interactions in CF.  相似文献   

8.
Stable isotopes (δ15N and δ13C) were used to assess the changes in exposure and assimilation of sewage-derived nutrients in an aquatic food web following changes in effluent quality over an 8 year period at two municipal wastewater treatment plants (WWTPs) that discharge to the Grand River, in southern Ontario. Upgrades at the Kitchener WWTP started in late 2012 to enhance nitrification, while the Waterloo WWTP had a series of construction issues at the plant that resulted in a deterioration of its effluent quality over the study period (2007–2014). Fish (rainbow darter, Etheostoma caeruleum) and primary consumers (benthic invertebrates) were sampled in the receiving waters associated with each outfall. Upgrades at the Kitchener WWTP resulted in improved effluent quality with total annual ammonia output dropping by nearly sixfold (583–100 t), while the Waterloo WWTP increased its total annual ammonia output by nearly fourfold (135–500 t) over the duration of the study. Downstream of the Kitchener WWTP, the reduction in total ammonia output negatively correlated with changes in δ15N of rainbow darter from being depleted (prior to the upgrade) to reflecting signatures similar to those at the upstream reference site. The biota downstream of the Waterloo WWTP showed the opposite trend, going from slightly enriched, to being depleted relative to the upstream reference sites. δ13C was consistently higher downstream of both WWTPs regardless of changing effluent quality, and annual variability in δ13C was associated with annual river discharge. In a laboratory based dietary switch study conducted with rainbow darter, the isotope half-life in muscle (29 days for δ15N and 33 days for δ13C) were determined and these rapid changes were consistent with responses in muscle of wild fish. This is a unique study that was able to contrast two WWTPs in the same watershed as they underwent major changes in treatment processes. Stable isotopes were very effective as a tool to trace the changes in aquatic biota due to changes in wastewater effluent quality, both improvements and deterioration over time.  相似文献   

9.
Recent isolation of Pseudomonas aeruginosa strains from the open ocean and subsequent pulsed-field gel electrophoresis analyses indicate that these strains have a unique genotype (N. H. Khan, Y. Ishii, N. Kimata-Kino, H. Esaki, T. Nishino, M. Nishimura, and K. Kogure, Microb. Ecol. 53:173-186, 2007). We hypothesized that ocean P. aeruginosa strains have a unique phylogenetic position relative to other strains. The objective of this study was to clarify the intraspecies phylogenetic relationship between marine strains and other strains from various geographical locations. Considering the advantages of using databases, multilocus sequence typing (MLST) was chosen for the typing and discrimination of ocean P. aeruginosa strains. Seven housekeeping genes (acsA, aroE, guaA, mutL, nuoD, ppsA, and trpE) were analyzed, and the results were compared with data on the MLST website. These genes were also used for phylogenetic analysis of P. aeruginosa. Rooted and unrooted phylogenetic trees were generated for each gene locus and the concatenated gene fragments. MLST data showed that all the ocean strains were new. Trees constructed for individual and concatenated genes revealed that ocean P. aeruginosa strains have clusters distinct from those of other P. aeruginosa strains. These clusters roughly reflected the geographical locations of the isolates. These data support our previous findings that P. aeruginosa strains are present in the ocean. It can be concluded that the ocean P. aeruginosa strains have diverged from other isolates and form a distinct cluster based on MLST and phylogenetic analyses of seven housekeeping genes.  相似文献   

10.
The last years of research have proposed that bacteria might be involved in and contribute to the lack of healing of chronic wounds. Especially it seems that Pseudomonas aeruginosa play a crucial role in the healing. At Copenhagen Wound Healing Centre it was for many years clinical suspected that once chronic venous leg ulcers were colonized (weeks or months preoperatively) by P. aeruginosa, the success rate of skin grafting deteriorated despite aggressive treatment. To investigate this, a retrospective study was performed on the clinical outcome of 82 consecutive patients with chronic venous leg ulcers on 91 extremities, from the 1st of March 2005 until the 31st of August 2006. This was achieved by analysing the microbiology, demographic data, smoking and drinking habits, diabetes, renal impairment, co-morbidities, approximated size and age of the wounds, immunosuppressive treatment and complicating factors on the clinical outcome of each patient. The results were evaluated using a Student T-test for continuous parameters, chi-square test for categorical parameters and a logistic regression analysis to predict healing after 12 weeks. The analysis revealed that only 33,3% of ulcers with P. aeruginosa, isolated at least once from 12 weeks prior, to or during surgery, were healed (98% or more) by week 12 follow-up, while 73,1% of ulcers without P. aeruginosa were so by the same time (p = 0,001). Smoking also significantly suppressed the outcome at the 12-week follow-up. Subsequently, a logistic regression analysis was carried out leaving P. aeruginosa as the only predictor left in the model (p = 0,001). This study supports our hypothesis that P. aeruginosa in chronic venous leg ulcers, despite treatment, has considerable impact on partial take or rejection of split-thickness skin grafts.  相似文献   

11.
Berberine, extracted from golden thread (Coptis chinensis Franch), is an allelochemical exhibiting inhibitory effects on the growth of Microcystis aeruginosa. Berberine-induced oxidative damage and antioxidant responses in M. aeruginosa cells were investigated to elucidate the mechanisms involved in berberine inhibition on algal growth. Malondialdehyde content in M. aeruginosa cells exposed to berberine increased with increased exposure concentration and the prolongation of exposure time. The same changes were observed in O2 activity of M. aeruginosa cells exposed to berberine. Berberine upregulated superoxide dismutase (SOD) activity at low concentrations while downregulating it at high concentrations. SOD activity transitioned from an increase to a decrease from 0 to 72 h exposure to 0.10% berberine. We observed that berberine exposure increased glutathione content in M. aeruginosa cells. The results suggested that berberine-induced oxidative damage might be at least partially responsible for berberine inhibition on M. aeruginosa growth.  相似文献   

12.
To gain insights into the effect of MexB gene under the short interfering RNA (siRNA), we synthesized 21 bp siRNA duplexes against the MexB gene. RT-PCR was performed to determine whether the siRNA inhibited the expression of MexB mRNA. Changes in antibiotic susceptibility in response to siRNA were measured by the E-test method. The efficacy of siRNAs was determined in a murine model of chronic P. aeruginosa lung infection. MexB-siRNAs inhibited both mRNA expression and the activity of P. aeruginosa in vitro. In vivo, siRNA was effective in reducing the bacterial load in the model of chronic lung infection and the P. aeruginosa-induced pathological changes. MexB-siRNA treatment enhanced the production of inflammatory cytokines in the early infection stage (P < 0.05). Our results suggest that targeting of MexB with siRNA appears to be a novel strategy for treating P. aeruginosa infections. [BMB Reports 2014; 47(4): 203-208]  相似文献   

13.
A colorimetric loop-mediated isothermal amplification (LAMP) assay with hydroxy naphthol blue was designed to amplify a region in the outer membrane lipoprotein (oprL) gene of Pseudomonas aeruginosa. The LAMP assay showed 100% specificity for the serogroup and other bacteria, and the sensitivity was 10-fold higher than that of the PCR assays. The LAMP assay could detect P. aeruginosa inoculated in mouse feces at 130 colony-forming units (CFU)/0.1 g feces (3.25 CFU/reaction). The assay was completed within 2 h from DNA extraction. In a field trial, the LAMP assay revealed that none of the 27 samples was obtained from 2 specific pathogen-free (SPF) mouse facilities that were monitoring infection with P. aeruginosa; 1 out of 12 samples from an SPF mouse facility that was not monitoring infection with P. aeruginosa and 2 out of 7 samples from a conventional mouse facility were positive for P. aeruginosa. In contrast, P. aeruginosa was not detected in any of the samples by a conventional culture assay. Thus, this colorimetric LAMP assay is a simple and rapid method for P. aeruginosa detection.  相似文献   

14.
In highly urbanized areas, wastewater treatment plant (WWTP) effluent can represent a significant component of freshwater ecosystems. As it is impossible for the composition of WWTP effluent to match the composition of the receiving system, the potential exists for effluent to significantly impact the chemical and biological characteristics of the receiving ecosystem. We assessed the impacts of WWTP effluent on the size, activity, and composition of benthic microbial communities by comparing two distinct field sites in the Chicago metropolitan region: a highly urbanized river receiving effluent from a large WWTP and a suburban river receiving effluent from a much smaller WWTP. At sites upstream of effluent input, the urban and suburban rivers differed significantly in chemical characteristics and in the composition of their sediment bacterial communities. Although effluent resulted in significant increases in inorganic nutrients in both rivers, surprisingly, it also resulted in significant decreases in the population size and diversity of sediment bacterial communities. Tag pyrosequencing of bacterial 16S rRNA genes revealed significant effects of effluent on sediment bacterial community composition in both rivers, including decreases in abundances of Deltaproteobacteria, Desulfococcus, Dechloromonas, and Chloroflexi sequences and increases in abundances of Nitrospirae and Sphingobacteriales sequences. The overall effect of the WWTP inputs was that the two rivers, which were distinct in chemical and biological properties upstream of the WWTPs, were almost indistinguishable downstream. These results suggest that WWTP effluent has the potential to reduce the natural variability that exists among river ecosystems and indicate that WWTP effluent may contribute to biotic homogenization.  相似文献   

15.
Antibiotic resistance represents a global health problem, requiring better understanding of the ecology of antibiotic resistance genes (ARGs), their selection and their spread in the environment. Antibiotics are constantly released to the environment through wastewater treatment plant (WWTP) effluents. We investigated, therefore, the effect of these discharges on the prevalence of ARGs and bacterial community composition in biofilm and sediment samples of a receiving river. We used culture-independent approaches such as quantitative PCR to determine the prevalence of eleven ARGs and 16S rRNA gene-based pyrosequencing to examine the composition of bacterial communities. Concentration of antibiotics in WWTP influent and effluent were also determined. ARGs such as qnrS, bla TEM, bla CTX-M, bla SHV, erm(B), sul(I), sul(II), tet(O) and tet(W) were detected in all biofilm and sediment samples analyzed. Moreover, we observed a significant increase in the relative abundance of ARGs in biofilm samples collected downstream of the WWTP discharge. We also found significant differences with respect to community structure and composition between upstream and downstream samples. Therefore, our results indicate that WWTP discharges may contribute to the spread of ARGs into the environment and may also impact on the bacterial communities of the receiving river.  相似文献   

16.
The opportunistic pathogen Pseudomonas aeruginosa commonly causes chronic and ultimately deadly lung infections in individuals with the genetic disease cystic fibrosis (CF). P. aeruginosa is metabolically diverse; it displays a remarkable ability to adapt to and successfully occupy almost any niche, including the ecologically complex CF lung. These P. aeruginosa lung infections are a fascinating example of microbial evolution within a “natural” ecosystem. Initially, P. aeruginosa shares the lung niche with a plethora of other microorganisms and is vulnerable to antibiotic challenges. Over time, adaptive evolution leads to certain commonly-observed phenotypic changes within the P. aeruginosa population, some of which render it resistant to antibiotics and apparently help it to out-compete the other species that co-habit the airways. Improving genomics techniques continue to elucidate the evolutionary mechanisms of P. aeruginosa within the CF lung and will hopefully identify new vulnerabilities in this robust and versatile pathogen.  相似文献   

17.

Background

Dodecapeptide SC4 is a broad-spectrum bactericidal agent that functions by disintegrating bacterial membranes and neutralizing endotoxins. For insight into which SC4 amino acids are functionally important, we assessed Gram-negative bactericidal effects in structure–activity relationship experiments. Subsequently, SC4 was tested in a murine bacteremia model to combine and compare the efficacy with Zosyn, a first-line antibiotic against Pseudomonas aeruginosa (P. aeruginosa).

Methods

SC4 alanine-scanning analogs and their activities on were tested on P. aeruginosa. Survival studies in P. aeruginosa challenged mice were executed to monitor overall efficacy of SC4 and Zosyn, as a single modality and also as combination treatment. ELISAs were used to measure blood serum levels of selected inflammatory cytokines during treatment.

Results

Cationic residues were found to play a crucial role in terms of bactericidal activity against P. aeruginosa. In vivo, while only 9% (3/34) of control animals survived to day two and beyond, 44% (12/27) to 41% (14/34) of animals treated with SC4 or Zosyn, respectively, survived beyond one week. Combination treatment of SC4 and Zosyn demonstrated improved survival, i.e. 60% (12/20). The TNFα, IL-1, and IL-6 serum levels were attenuated in each treatment group compared to the control group.

Conclusions

These data show that combination treatment of SC4 and Zosyn is most effective at killing P. aeruginosa and attenuating inflammatory cytokine levels in vivo.

General significance

Combination treatment of SC4 and Zosyn may be useful in the clinic as a more effective antibiotic therapy against Gram-negative infectious diseases.  相似文献   

18.
Global warming was believed to accelerate the expansion of cyanobacterial blooms. However, the impact of changes due to the allelopathic effects of cyanobacterial blooms with or without algal toxin production on the ecophysiology of its coexisting phytoplankton species arising from global warming were unknown until recently. In this study, the allelopathic effects of toxic and non-toxic Microcystis aeruginosa strains on the growth of green alga Chlorella vulgaris and photosynthesis of the co-cultivations of C. vulgaris and toxic M. aeruginosa FACHB-905 or non-toxic M. aeruginosa FACHB-469 were investigated at different temperatures. The growth of C. vulgaris, co-cultured with the toxic or non-toxic M. aeruginosa strains, was promoted at 20 °C but inhibited at temperatures ≥25 °C. The inhibitory effects of the toxic and non-toxic M. aeruginosa strains on of the co-cultivations (C. vulgaris and non-toxic M. aeruginosa FACHB-469 or toxic M. aeruginosa FACHB-905) also linearly increased with elevated temperatures. Furthermore, toxic M. aeruginosa FACHB-905 induced more inhibition toward growth of C. vulgaris or Pmax and Rd of the mixtures than non-toxic M. aeruginosa FACHB-469. C. vulgaris dominated over non-toxic M. aeruginosa FACHB-469 but toxic M. aeruginosa FACHB-905 overcame C. vulgaris when they were co-cultured in mesocosms in water temperatures from 20 to 25 °C. The results indicate that allelopathic effects of M. aeruginosa strains on C. vulgaris are both temperature- and species-dependent: it was stimulative for C. vulgaris at low temperatures such as 20 °C, but inhibitory at high temperatures (≥25 °C); the toxic strain was determined to be more harmful to C. vulgaris than the non-toxic one. This suggests that global warming may aggravate the ecological risk of cyanobacteria blooms, especially those with toxic species as the main contributors.  相似文献   

19.
20.
Dental care unit waterlines (DCUWs) consist of complex networks of thin tubes that facilitate the formation of microbial biofilms. Due to the predilection toward a wet environment, strong adhesion, biofilm formation, and resistance to biocides, Pseudomonas aeruginosa, a major human opportunistic pathogen, is adapted to DCUW colonization. Other nonfermentative Gram-negative bacilli, such as members of the genus Achromobacter, are emerging pathogens found in water networks. We reported the 6.5-year dynamics of bacterial contamination of waterlines in a dental health care center with 61 dental care units (DCUs) connected to the same water supply system. The conditions allowed the selection and the emergence of clones of Achromobacter sp. and P. aeruginosa characterized by multilocus sequence typing, multiplex repetitive elements-based PCR, and restriction fragment length polymorphism in pulsed-field gel electrophoresis, biofilm formation, and antimicrobial susceptibility. One clone of P. aeruginosa and 2 clones of Achromobacter sp. colonized successively all of the DCUWs: the last colonization by P. aeruginosa ST309 led to the closing of the dental care center. Successive dominance of species and clones was linked to biocide treatments. Achromobacter strains were weak biofilm producers compared to P. aeruginosa ST309, but the coculture of P. aeruginosa and Achromobacter enhanced P. aeruginosa ST309 biofilm formation. Intraclonal genomic microevolution was observed in the isolates of P. aeruginosa ST309 collected chronologically and in Achromobacter sp. clone A. The contamination control was achieved by a complete reorganization of the dental health care center by removing the connecting tubes between DCUs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号