首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous animal studies simulating liver injury have demonstrated that interleukin-6 (IL-6) exerts a protective effect. This study was designed to further analyze the molecular mechanisms underlying the protective role of IL-6 in a rat model of liver ischemia/reperfusion injury. We show that IL-6: (i) at high doses reduces cell damage which occurs in ischemic-reperfused liver, while at low doses displays only a limited protective capacity, (ii) anticipates and enhances hepatocyte compensatory proliferation seen in ischemic-reperfused liver also at a low, more pharmacologically acceptable dose, (iii) sustains the acute phase response which is dampened in ischemic-reperfused liver, (iv) strengthens the heat shock-stress response shown by ischemic-reperfused liver and (v) overcomes the dysfunctions of the unfolding protein response found in ischemic-reperfused liver. We also show that IL-6-enhanced STAT3 activation probably plays a crucial role in the potentiation of the different protective pathways activated in ischemic-reperfused liver. Our data confirm that IL-6 is a potential therapeutic in liver injury of different etiologies and reveal novel mechanisms by which IL-6 sustains liver function after ischemia/reperfusion injury.  相似文献   

2.
Hepatic Ischemia and Reperfusion Injury (IRI) is a major cause of liver damage during liver surgery and transplantation. Ischemic preconditioning and postconditioning are strategies that can reduce IRI. In this study, different combined types of pre- and postconditioning procedures were tested in a murine warm hepatic IRI model to evaluate their protective effects. Proanthocyanidins derived from grape seed was used before ischemia process as pharmacological preconditioning to combine with technical preconditioning and postconditioning. Three pathways related to IRI, including reactive oxygen species (ROS) generation, pro-inflammatory cytokines release and hypoxia responses were examined in hepatic IRI model. Individual and combined pre- and postconditioning protocols significantly reduce liver injury by decreasing the liver ROS and cytokine levels, as well as enhancing the hypoxia tolerance response. Our data also suggested that in addition to individual preconditioning or postconditioning, the combination of these two treatments could reduce liver ischemia/reperfusion injury more effectively by increasing the activity of ROS scavengers and antioxidants. The utilization of grape seed proanthocyanidins (GSP) could improve the oxidation resistance in combined pre- and postconditioning groups. The combined protocol also further increased the liver HIF-1 alpha protein level, but had no effect on pro-inflammatory cytokines release compared to solo treatment.  相似文献   

3.
Liver hypoxia still represents an important cause of liver injury during shock and liver transplantation. We have investigated the protective effects of beta-alanine against hypoxic injury using isolated perfused rat livers and isolated rat hepatocyte suspensions. Perfusion with hypoxic Krebs-Henseleit buffer increased liver weight and caused a progressive release of lactate dehydrogenase (LDH) in the effluent perfusate. The addition of 5 mmol/l beta-alanine to the perfusion buffer completely prevented both weight increase and LDH leakage. These findings were confirmed by histological examinations showing that beta-alanine blocked the staining by trypan blue of either liver parenchymal and sinusoidal cells. Studies performed in isolated hepatocytes revealed that beta-alanine exerted its protective effects by interfering with Na+ accumulation induced by hypoxia. The addition of gamma-amino-butyric acid, which interfered with beta-alanine uptake by the hepatocytes or of Na+/H+ ionophore monensin, reverted beta-alanine protection in either hepatocyte suspensions or isolated perfused livers. We also observed that liver receiving beta-alanine were also protected against LDH leakage and weight increase caused by the perfusion with an hyposmotic (205 mosm) hypoxic buffer obtained by decreasing NaCl content from 118 to 60 mmol/l. This latter effect was not reverted by blocking K+ efflux from hepatocyte with BaCl(2) (1mmol/l). Altogether these results indicated that beta-alanine protected against hypoxic liver injury by preventing Na+ overload and by increasing liver resistance to osmotic stress consequent to the impairment of ion homeostasis during hypoxia.  相似文献   

4.
The objective of this study was to determine how expression and functionality of the cytoskeletal linker protein moesin is involved in hepatic hypothermic preservation injury. Mouse livers were cold stored in University of Wisconsin (UW) solution and reperfused on an isolated perfused liver (IPL) device for one hour. Human hepatocytes (HepG2) and human or murine sinusoidal endothelial cells (SECs) were cold stored and rewarmed to induce hypothermic preservation injury. The cells were transfected with: wild type moesin, an siRNA duplex specific for moesin, and the moesin mutants T558D and T558A. Tissue and cell moesin expression and its binding to actin were determined by Western blot. Liver IPL functional outcomes deteriorated proportional to the length of cold storage, which correlated with moesin disassociation from the actin cytoskeleton. Cell viability (LDH and WST-8) in the cell models progressively declined with increasing preservation time, which also correlated with moesin disassociation. Transfection of a moesin containing plasmid or an siRNA duplex specific for moesin into HepG2 cells resulted in increased and decreased moesin expression, respectively. Overexpression of moesin protected while moesin knock-down potentiated preservation injury in the HepG2 cell model. Hepatocytes expressing the T558A (inactive) and T558D (active) moesin binding mutants demonstrated significantly more and less preservation injury, respectively. Cold storage time dependently caused hepatocyte detachment from the matrix and cell death, which was prevented by the T558D active moesin mutation. In conclusion, moesin is causally involved in hypothermic liver cell preservation injury through control of its active binding molecular functionality.  相似文献   

5.
Journal of Physiology and Biochemistry - Alcoholic liver disease (ALD) is a common and serious threat to human health worldwide. In this study, the hepatoprotective effect of gastrodin against...  相似文献   

6.
7.
Sumioka I  Matsura T  Kai M  Yamada K 《Life sciences》2004,74(20):2551-2561
The aim of the present study was to assess the contribution of the level of expression of heat shock protein 25 (HSP25), 60 (HSP60), 70 (HSC70) and 70i (HSP70i) in mouse livers after a lethal dose of acetaminophen (APAP) to their survival. We examined changes in survival ratio, plasma APAP level and alanine aminotransferase (ALT) activity, and hepatic reduced glutathione (GSH), HSP25, HSP60, HSC70 and HSP70i levels following treatment of mice with APAP (500 mg/kg, p.o.). The plasma APAP level increased rapidly, and reached a maximum 0.5 h after APAP treatment. Hepatic GSH decreased rapidly, and was almost completely depleted 1 h after APAP treatment. Plasma ALT activity, an index of liver injury, significantly increased from 3 h onwards after APAP treatment. The survival ratios 9 h, 24 h and 48 h after APAP treatment were 96%, 38% and 36%, respectively. We found a remarkable difference in the patterns of hepatic HSP25 and HSP70i induction in mice that survived after APAP treatment. HSP70i levels increased from 1 h onwards after APAP treatment in a time-dependent manner, and reached a maximum at 9 h. In contrast, HSP25 could be detected just 24 h after APAP treatment, and maximal accumulation was observed at 48 h. Other HSPs examined were unchanged. Notably, the survival ratio dropped by only 2% after HSP25 expression. Recently, a novel role for HSP25 as an anti-inflammatory factor was suggested. We have already shown that 48-h treatment with APAP induces severe centrilobular necrosis with inflammatory cell infiltration in mouse livers. Taken together, the level of expression of hepatic HSP25 may be a crucial determinant of the fate of mice exposed to APAP insult.  相似文献   

8.
Stearoyl-CoA desaturase 1 (SCD1) is a delta-9 fatty acid desaturase that catalyzes the synthesis of mono-unsaturated fatty acids (MUFA). SCD1 is a critical control point regulating hepatic lipid synthesis and β-oxidation. Scd1 KO mice are resistant to the development of diet-induced non-alcoholic fatty liver disease (NAFLD). Using a chronic-binge protocol of ethanol-mediated liver injury, we aimed to determine if these KO mice are also resistant to the development of alcoholic fatty liver disease (AFLD).Mice fed a low-fat diet (especially low in MUFA) containing 5% ethanol for 10 days, followed by a single ethanol (5 g/kg) gavage, developed severe liver injury manifesting as hepatic steatosis. This was associated with an increase in de novo lipogenesis and inflammation. Using this model, we show that Scd1 KO mice are resistant to the development of AFLD. Scd1 KO mice do not show accumulation of hepatic triglycerides, activation of de novo lipogenesis nor elevation of cytokines or other pro-inflammatory markers. Incubating HepG2 cells with a SCD1 inhibitor induced a similar resistance to the effect of ethanol, confirming a role for SCD1 activity in mediating ethanol-induced hepatic injury.Taken together, our study shows that SCD1 is a key player in the development of AFLD and associated deleterious effects, and suggests SCD1 inhibition as a therapeutic option for the treatment of this hepatic disease.  相似文献   

9.
Antioxidants are likely potential pharmaceutical agents for the treatment of alcoholic liver disease. Metallothionein (MT) is a cysteine-rich protein and functions as an antioxidant. This study was designed to determine whether MT confers resistance to acute alcohol-induced hepatotoxicity and to explore the mechanistic link between oxidative stress and alcoholic liver injury. MT-overexpressing transgenic and wild-type mice were administrated three gastric doses of alcohol at 5 g/kg. Liver injury, oxidative stress, and ethanol metabolism-associated changes were determined. Acute ethanol administration in the wild-type mice caused prominent microvesicular steatosis, along with necrosis and elevation of serum alanine aminotransferase. Ultrastructural changes of the hepatocytes include glycogen and fat accumulation, organelle abnormality, and focal cytoplasmic degeneration. This acute alcohol hepatotoxicity was significantly inhibited in the MT-transgenic mice. Furthermore, ethanol treatment decreased hepatic-reduced glutathione, but increased oxidized glutathione along with lipid peroxidation, protein oxidation, and superoxide generation in the wild-type mice. This hepatic oxidative stress was significantly suppressed in the MT-transgenic mice. However, MT did not affect the ethanol metabolism-associated decrease in NAD(+)/NADH ratio or increase in cytochrome P450 2E1. In conclusion, MT is an effective agent in cytoprotection against alcohol-induced liver injury, and hepatic protection by MT is likely through inhibition of alcohol-induced oxidative stress.  相似文献   

10.
Chronic helminth infections such as filariasis in human hosts can be life long, since parasites are equipped with a repertoire of immune evasion strategies. In many areas where helminths are prevalent, other infections such as malaria are co-endemic. It is still an ongoing debate, how one parasite alters immune responses against another. To dissect the relationships between two different parasites residing in the same host, we established a murine model of co-infection with the filarial nematode Litomosoides sigmodontis and the malaria parasite Plasmodium berghei (ANKA strain). We found that filarial infection of BALB/c mice leads to protection against a subsequent P. berghei sporozoite infection in one-third of co-infected mice, which did not develop blood-stage malaria. This finding did not correlate with adult worm loads, however it did correlate with the presence of microfilariae in blood. Interestingly, protection was abrogated in IL-10-deficient mice. Thus, murine filariasis, in particular when it is a patent infection, is able to modify the immunological balance to induce protection against an otherwise deadly Plasmodium infection and is therefore able to influence the course of malaria in favour of the host.  相似文献   

11.
Thrombin-activatable fibrinolysis inhibitor (TAFI), also known as carboxypeptidase R, has been implicated as an important negative regulator of the fibrinolytic system. In addition, TAFI is able to inactivate inflammatory peptides such as complement factors C3a and C5a. To determine the role of TAFI in the hemostatic and innate immune response to abdominal sepsis, TAFI gene-deficient (TAFI-/-) and normal wild-type mice received an i.p. injection with Escherichia coli. Liver TAFI mRNA and TAFI protein concentrations increased during sepsis. In contrast to the presumptive role of TAFI as a natural inhibitor of fibrinolysis, TAFI-/- mice did not show any difference in E. coli-induced activation of coagulation or fibrinolysis, as measured by plasma levels of thrombin-anti-thrombin complexes and D-dimer and the extent of fibrin depositions in lung and liver tissues. However, TAFI-/- mice were protected from liver necrosis as indicated by histopathology and clinical chemistry. Furthermore, TAFI-/- mice displayed an altered immune response to sepsis, as indicated by an increased neutrophil recruitment to the peritoneal cavity and a transiently increased bacterial outgrowth together with higher plasma TNF-alpha and IL-6 levels. These data argue against an important part for TAFI in the regulation of the procoagulant-fibrinolytic balance in sepsis and reveals a thus far unknown role of TAFI in the occurrence of hepatic necrosis.  相似文献   

12.
The present study was undertaken to investigate the effect of the new formyl peptide receptor 2/lipoxin A4 receptor agonist BML-111 on acetaminophen (APAP)-induced liver injury in mice and explore its possible mechanism(s). Male Swiss albino mice were intraperitoneally injected with BML-111 (1 mg/kg) twice daily for five consecutive days prior to a single intraperitoneal injection of APAP (500 mg/kg). Results have shown that APAP injection caused liver damage as indicated by significant increase in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). Liver histopathological examination revealed marked necrosis and inflammation. Additionally, APAP decreased activities of hepatic glutathione (GSH) and superoxide dismutase (SOD) with significant increase in the hepatic malondialdehyde (MDA) content. Furthermore, APAP increased serum nitrite/nitrate (NO2 ?/NO3 ? ) level and hepatic tumor necrosis factor alpha (TNF-α). Pretreatment with BML-111 significantly reversed all APAP-induced pathological changes. BML-111 prevented the increase of AST, ALT, and ALP. Also, BML-111 markedly attenuated APAP-induced necrosis and inflammation. It decreased MDA with increase in SOD and GSH. Importantly, BML-111 decreased NO2 ?/NO3 ? level and TNF-α. These findings suggest that BML-111 has hepatoprotective effects against APAP-induced liver injury in mice. Its protective effect may be attributed to its ability to counteract the inflammatory ROS generation and regulate cytokine effects.  相似文献   

13.
Cockayne syndrome and other segmental progerias with inborn defects in DNA repair mechanisms are thought to be due in part to hypersensitivity to endogenous oxidative DNA damage. The accelerated aging-like symptoms of this disorder include dysmyelination within the central nervous system, progressive sensineuronal hearing loss and retinal degeneration. We tested the effects of congenital nucleotide excision DNA repair deficiency on acute oxidative stress sensitivity in vivo . Surprisingly, we found mouse models of Cockayne syndrome less susceptible than wild type animals to surgically induced renal ischemia reperfusion injury, a multifactorial injury mediated in part by oxidative damage. Renal failure-related mortality was significantly reduced in Csb−/– mice, kidney function was improved and proliferation was significantly higher in the regenerative phase following ischemic injury. Protection from ischemic damage correlated with improved baseline glucose tolerance and insulin sensitivity and a reduced inflammatory response following injury. Protection was further associated with genetic ablation of a different Cockayne syndrome-associated gene, Csa . Our data provide the first functional in vivo evidence that congenital DNA repair deficiency can induce protection from acute stress in at least one organ. This suggests that while specific types of unrepaired endogenous DNA damage may lead to detrimental effects in certain tissues, they may at the same time elicit beneficial adaptive changes in others and thus contribute to the tissue specificity of disease symptoms.  相似文献   

14.
目的:研究肢体缺血预处理对大鼠肝缺血/再灌注损伤是否具有保护作用。方法:雄性SD大鼠32只,随机分为对照组(S组);缺血/再灌注组(I/R组);经典缺血预处理组(IPC组);肢体缺血预处理组(远端缺血预处理组,RPC组)。S组仅行开腹,不作其他处理;IPC组以肝缺血5min作预处理;RPC组以双后肢缺血5min,反复3次作预处理,2个预处理组及I/R组均行肝缺血1h再灌注3h。取血用于血清谷丙转氨酶(ALT)与血清谷草转氨酶(AST)检测。切取肝组织用于测定湿干比(W/D)、中性粒细胞(PMN)计数及观察显微、超微结构的变化。结果:与I/R组比较,IPC组,RPC组ALT,AST,W/D值,及PMN计数均明显降低(P〈0.01),肝脏的显微及超微结构损伤减轻。结论:肢体缺血预处理对大鼠肝脏I/R损伤有明显的保护作用,强度与经典缺血预处理相当,其机制可能与抑制肝脏炎症反应、减轻肝脏水肿、改善肝组织微循环有关。  相似文献   

15.
祁平  樊惠  刘林  林军 《蛇志》2012,24(1):5-7,10
日的研究4一羟基苯并恶唑-2-酮(4-hydroxy-2-benzoxazolone,HBOA)对四氯化碳所致小鼠急性肝损伤的保护作用,并探讨其疗效机制。方法采用腹腔注射四氯化碳(carbonte trachloride,cch)制备小鼠急性肝损伤模型,HBOA灌胃给药,检测小鼠血清中的乳酸脱氢酶(LDH)活性以及肝组织中过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)含量,并用免疫组化法观察肿瘤坏死因子(TNF-a)的表达情况。结果HBOA能明显降低CCh致急性肝损伤小鼠血清LDH活性,同时升高肝组织中CAT、GSH-Px的活性并降低肝组织中TNF-a的表达。结论HBOA对CCh所致小鼠急性肝损伤有一定的保护作用。  相似文献   

16.
Lu XX  Wang SQ  Zhang Z  Xu HR  Liu B  Huangfu CS 《生理学报》2012,64(3):313-320
The purpose of the present study was to investigate the effect of sodium nitrite (SN) on alcohol-induced acute liver injury in mice. Forty male C57bL/6 mice were randomly divided into 4 groups. Acute alcohol-induced liver injury group were injected intraperitoneal (ip) with alcohol (4.5 g/kg); SN preconditioning group were pretreated with SN (16 mg/kg, ip) for 12 h, and received alcohol (4.5 g/kg, ip) injection; Control and SN groups were treated with saline and SN, respectively. After the treatments, liver index (liver/body weight ratio) was determined. Colorimetric technique was performed to measure the serum alanine transaminase (ALT), aspartate transaminase (AST), liver superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) activities, as well as malondialdehyde (MDA) content. The pathological index of liver tissue was assayed by HE and TUNEL fluorometric staining. Using Western blot and immunohistochemistry staining, the expression of hypoxia-inducible factor-1α (HIF-1α) protein was detected. The results showed that, compared with acute alcohol-induced liver injury group, pretreatment with low doses of SN decreased liver index and serum levels of ALT and AST, weakened acute alcohol-induced hepatocyte necrosis, improved pathological changes in liver tissue, increased live tissue SOD, GSH-Px and CAT activities, reduced MDA content and apoptosis index of hepatocytes, and up-regulated HIF-1α protein level in liver tissue. These results suggest that the pretreatment of SN can protect hepatocytes against alcohol-induced acute injury, and the protective mechanism involves inhibition of oxidative stress and up-regulation of HIF-1α protein level.  相似文献   

17.
硒与金属硫蛋白及对小鼠肝损伤的防护作用研究   总被引:1,自引:0,他引:1  
应用蛋白质芯片和RT-PCR技术研究硒对小鼠肝脏金属硫蛋白(Metallothionein, MT)的诱导表达;以蛋白质芯片技术为主要实验手段研究CCl4诱导的小鼠肝脏损伤后血清及肝脏蛋白质图谱变化,寻找小鼠血清及肝脏组织损伤标志物,同时观察有机硒(麦硒康,Organ-Se)对损伤的防护作用,结果表明与对照组相比给予有机硒后的小鼠肝脏MT表达明显;比较肝损伤组及用药组(Organ-Se)组的血清及组织蛋白质表达图谱变化,发现血清中存在3个具有统计学意义的标志物:5062.5Da 、5566.5Da、6358.5Da;肝脏组织中有4个具有统计学意义的标志物:5449.6Da、7131.5Da、9903.2Da和10767.3Da;与损伤组相比预先保护组(Organ-Se)的血清及肝脏标志物的表达水平接近正常组。本实验表明非金属元素硒,尤其是有机硒同金属元素(如锌)一样,能够有效诱导MT的表达,为今后进一步开展硒代金属硫蛋白的机制研究奠定了基础;同时在对小鼠肝损伤保护的研究中发现,有机硒具有明显的肝损伤保护作用,是一种较有前途的值得开发的肝损伤防护药。  相似文献   

18.

Background

We investigated the benefit of two different techniques for resuscitating marginally preserved liver grafts, unexpectedly subjected to long storage times.

Methods

Rat livers were cold-stored for 22 h (CS22). Some grafts were subsequently subjected to 90 min of hypothermic reconditioning by venous systemic oxygen persufflation (VSOP) or oxygenated hypothermic machine perfusion (HMP). Livers stored for only 6 h (CS6) served as reference. Viability of the livers was assessed thereafter by warm reperfusion in vitro.

Results

VSOP and HMP significantly increased endischemic tissue energy charge, and abrogated cellular enzyme loss upon reperfusion even significantly below control values. Ammonia clearance and bile production were more than 3-fold improved to similar values as CS6. Hypothermic reconditioning by both techniques induced mitochondrial chaperone expression (HSP70 family) and significantly improved early resumption of oxygen utilisation upon reperfusion.

Conclusion

Viability of long preserved liver grafts can be augmented by transient hypothermic reconditioning using either machine perfusion or gaseous oxygen persufflation, both preventing initial mitochondrial dysfunction and subsequent tissue injury.  相似文献   

19.
Olanzapine is effective to treat for schizophrenia and other mood disorders, but limited by side effects such as weight gain, dyslipidemia, and liver injury. Obesity in the US is at epidemic levels, and is a significant risk factor for drug-induced liver injury. Obesity incidence in the psychiatric population is even higher than in the US population as a whole. The purpose of this study was to test the hypothesis that obesity worsens olanzapine-induced hepatic injury, and to investigate the potential protective effects of sulforaphane. 8-week old female C57BL/6 mice were fed either a high-fat or low-fat control diet (HFD and LFD). Mice also received either olanzapine (8 mg/kg/d) or vehicle by osmotic minipump for 4 weeks. A subset of mice in the HFD + olanzapine group was administered sulforaphane, a prototypical Nrf2 inducer (90 mg/kg/d). Olanzapine alone increased body weight, without a commensurate increase in food consumption. Olanzapine also caused hepatic steatosis and injury. Combining olanzapine and HFD caused further dysregulation of glucose and lipid metabolism. Liver damage from concurrent HFD and olanzapine was worse than liver damage from high-fat diet or olanzapine alone. Sulforaphane alleviated many metabolic side effects of olanzapine and HFD. Taken together, these data show that olanzapine dysregulates glucose and lipid metabolism and exacerbates hepatic changes caused by eating a HFD. Activation of the intrinsic antioxidant defense pathway with sulforaphane can partially prevent these effects of olanzapine and may represent a useful strategy to protect against liver injury.  相似文献   

20.
Non-heart-beating donors sustain an ischemic insult of unknown severity and duration, which can compromise the viability of the graft. This preliminary study aimed to assess whether electrical bioimpedance monitoring of cold preserved organs could be useful to identify kidneys that have suffered previous warm ischemia (WI). Two rat groups were studied during 24 h of preservation in University of Wisconsin solution (UW): a control cold ischemia group and another group subjected previously to 45 min of WI. Multi-frequency bioimpedance was monitored during preservation by means of a miniaturized silicon probe and the results were modeled according to the Cole equation. Tissular ATP content, lactate dehydrogenase in UW solution and histological injury were assessed. Renal function and cell injury, evaluated during 3 h of ex vivo reperfusion using the isolated perfused rat kidney model, demonstrated differences between groups. Bioimpedance results showed that the time constant and the high frequency resistivity parameters derived from the Cole equation were able to discriminate between groups at the beginning of the preservation (Deltatau approximately 78%, DeltaRinfinity approximately 36%), but these differences tended to converge as preservation time advanced. Nevertheless, another of the Cole parameters, alpha, showed increasing significant differences until 24 h of preservation (Deltaalpha approximately 15%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号