首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
Public databases are essential to the development of multi-omics resources. The amount of data created by biological technologies needs a systematic and organized form of storage, that can quickly be accessed, and managed. This is the objective of a biological database. Here, we present an overview of human databases with web applications. The databases and tools allow the search of biological sequences, genes and genomes, gene expression patterns, epigenetic variation, protein-protein interactions, variant frequency, regulatory elements, and comparative analysis between human and model organisms. Our goal is to provide an opportunity for exploring large datasets and analyzing the data for users with little or no programming skills. Public user-friendly web-based databases facilitate data mining and the search for information applicable to healthcare professionals. Besides, biological databases are essential to improve biomedical search sensitivity and efficiency and merge multiple datasets needed to share data and build global initiatives for the diagnosis, prognosis, and discovery of new treatments for genetic diseases. To show the databases at work, we present a a case study using ACE2 as example of a gene to be investigated. The analysis and the complete list of databases is available in the following website <https://kur1sutaru.github.io/fantastic_databases_and_where_to_find_them/>.  相似文献   

3.
    
Associating phenotypic traits and quantitative trait loci (QTL) to causative regions of the underlying genome is a key goal in agricultural research.InterStoreDB is a suite of integrated databases designed to assist in this process.The individual databases are species independent and generic in design,providing access to curated datasets relating to plant populations,phenotypic traits,genetic maps,marker loci and QTL,with links to functional gene annotation and genomic sequence data.Each component database provides access to associated metadata,including data provenance and parameters used in analyses,thus providing users with information to evaluate the relative worth of any associations identified.The databases include CropStoreDB,for management of population,genetic map,QTL and trait measurement data,SeqStoreDB for sequence-related data and AlignStoreDB,which stores sequence alignment information,and allows navigation between genetic and genomic datasets.Genetic maps are visualized and compared using the CMAP tool,and functional annotation from sequenced genomes is provided via an EnsEMBL-based genome browser.This framework facilitates navigation of the multiple biological domains involved in genetics and genomics research in a transparent manner within a single portal.We demonstrate the value of InterStoreDB as a tool for Brassica research.InterStoreDB is available from:http://www.interstoredb.org  相似文献   

4.
EBI databases and services   总被引:2,自引:0,他引:2  
The EMBL Outstation-European Bioinformatics Institute (EBI) is a center for research and services in bioinformatics. It serves researchers in molecular biology, genetics, medicine, and agriculture from academia, and the agricultural, biotechnology, chemical, and pharmaceutical industries. The Institute manages and makes available databases of biological data including nucleic acid, protein sequences, and macromolecular structures. It provides to this community bioinformatics services relevant to molecular biology free of charge over the Internet. Some of these databases and services are described in this review. For more information, visit the EBI Web server at http://www.ebi.ac.uk/.  相似文献   

5.
Microarray technology has been widely adopted by researchers who use both home-made microarrays and microarrays purchased from commercial vendors. Associated with the adoption of this technology has been a deluge of complex data, both from the microarrays themselves, and also in the form of associated meta data, such as gene annotation information, the properties and treatment of biological samples, and the data transformation and analysis steps taken downstream. In addition, standards for annotation and data exchange have been proposed, and are now being adopted by journals and funding agencies alike. The coupling of large quantities of complex data with extensive and complex standards require all but the most small-scale of microarray users to have access to a robust and scaleable database with various tools. In this review, we discuss some of the desirable properties of such a database, and look at the features of several freely available alternatives.  相似文献   

6.
Bioinformatics software resources   总被引:1,自引:0,他引:1  
This review looks at internet archives, repositories and lists for obtaining popular and useful biology and bioinformatics software. Resources include collections of free software, services for the collaborative development of new programs, software news media and catalogues of links to bioinformatics software and web tools. Problems with such resources arise from needs for continued curator effort to collect and update these, combined with less than optimal community support, funding and collaboration. Despite some problems, the available software repositories provide needed public access to many tools that are a foundation for analyses in bioscience research efforts.  相似文献   

7.
    
Michael Witting 《Proteomics》2023,23(23-24):2300032
  相似文献   

8.
Whereas genomics describes the study of genome, mainly represented by its gene expression on the DNA or RNA level, the term proteomics denotes the study of the proteome, which is the protein complement encoded by the genome. In recent years, the number of proteomic experiments increased tremendously. While all fields of proteomics have made major technological advances, the biggest step was seen in bioinformatics. Biological information management relies on sequence and structure databases and powerful software tools to translate experimental results into meaningful biological hypotheses and answers. In this resource article, I provide a collection of databases and software available on the Internet that are useful to interpret genomic and proteomic data. The article is a toolbox for researchers who have genomic or proteomic datasets and need to put their findings into a biological context.  相似文献   

9.
The requirements for bioinformatics resources to support genome research in farm animals is reviewed.The resources developed to meet these needs are described. Resource databases and associated tools have been developed to handle experimental data. Several of these systems serve the needs of multinational collaborations. Genome databases have been established to provide contemporary summaries of the status of genome maps in a range of farm and domestic animals along with experimental details and citations. New resources and tools will be required to address the informatics needs of emerging technologies such as microarrays. However, continued investment is also required to maintain the currency and utility of the current systems, especially the genome databases.  相似文献   

10.
11.
12.
Multiple sequence alignments are powerful tools for understanding the structures, functions, and evolutionary histories of linear biological macromolecules (DNA, RNA, and proteins), and for finding homologs in sequence databases. We address several ontological issues related to RNA sequence alignments that are informed by structure. Multiple sequence alignments are usually shown as two-dimensional (2D) matrices, with rows representing individual sequences, and columns identifying nucleotides from different sequences that correspond structurally, functionally, and/or evolutionarily. However, the requirement that sequences and structures correspond nucleotide-by-nucleotide is unrealistic and hinders representation of important biological relationships. High-throughput sequencing efforts are also rapidly making 2D alignments unmanageable because of vertical and horizontal expansion as more sequences are added. Solving the shortcomings of traditional RNA sequence alignments requires explicit annotation of the meaning of each relationship within the alignment. We introduce the notion of “correspondence,” which is an equivalence relation between RNA elements in sets of sequences as the basis of an RNA alignment ontology. The purpose of this ontology is twofold: first, to enable the development of new representations of RNA data and of software tools that resolve the expansion problems with current RNA sequence alignments, and second, to facilitate the integration of sequence data with secondary and three-dimensional structural information, as well as other experimental information, to create simultaneously more accurate and more exploitable RNA alignments.  相似文献   

13.
14.
Since the publication of the human genome, two key points have emerged. First, it is still not certain which regions of the genome code for proteins. Second, the number of discrete protein-coding genes is far fewer than the number of different proteins. Proteomics has the potential to address some of these postgenomic issues if the obstacles that we face can be overcome in our efforts to combine proteomic and genomic data. There are many challenges associated with high-throughput and high-output proteomic technologies. Consequently, for proteomics to continue at its current growth rate, new approaches must be developed to ease data management and data mining. Initiatives have been launched to develop standard data formats for exchanging mass spectrometry proteomic data, including the Proteomics Standards Initiative formed by the Human Proteome Organization. Databases such as SwissProt and Uniprot are publicly available repositories for protein sequences annotated for function, subcellular location and known potential post-translational modifications. The availability of bioinformatics solutions is crucial for proteomics technologies to fulfil their promise of adding further definition to the functional output of the human genome. The aim of the Oxford Genome Anatomy Project is to provide a framework for integrating molecular, cellular, phenotypic and clinical information with experimental genetic and proteomics data. This perspective also discusses models to make the Oxford Genome Anatomy Project accessible and beneficial for academic and commercial research and development.  相似文献   

15.
Being a relatively new addition to the 'omics' field, metabolomics is still evolving its own computational infrastructure and assessing its own computational needs. Due to its strong emphasis on chemical information and because of the importance of linking that chemical data to biological consequences, metabolomics must combine elements of traditional bioinformatics with traditional cheminformatics. This is a significant challenge as these two fields have evolved quite separately and require very different computational tools and skill sets. This review is intended to familiarize readers with the field of metabolomics and to outline the needs, the challenges and the recent progress being made in four areas of computational metabolomics: (i) metabolomics databases; (ii) metabolomics LIMS; (iii) spectral analysis tools for metabolomics and (iv) metabolic modeling.  相似文献   

16.
Proteomic studies involve the identification as well as qualitative and quantitative comparison of proteins expressed under different conditions, and elucidation of their properties and functions, usually in a large-scale, high-throughput format. The high dimensionality of data generated from these studies will require the development of improved bioinformatics tools and data-mining approaches for efficient and accurate data analysis of biological specimens from healthy and diseased individuals. Mining large proteomics data sets provides a better understanding of the complexities between the normal and abnormal cell proteome of various biological systems, including environmental hazards, infectious agents (bioterrorism) and cancers. This review will shed light on recent developments in bioinformatics and data-mining approaches, and their limitations when applied to proteomics data sets, in order to strengthen the interdependence between proteomic technologies and bioinformatics tools.  相似文献   

17.
Velo-cardio-facial syndrome (VCFS) is mostly associated with deletions of chromosome 22q11, and is thought to be characterized by an increased frequency of major psychiatric disorders. Sixteen patients adults with VCFS and psychiatric symptoms were evaluated using a semi-structured investigation of history, symptoms, signs and behaviour. All available data were used in consensus meetings to obtain a classifiable diagnostic category. In contrast to other reports, no categorical diagnosis could be established. Instead, a quite specific psychological, behavioural and psychopathological constellation emerged that should most adequately be denominated as a VCFS-psychiatric syndrome. It is concluded that VCFS is associated with a specific psychopathological syndrome.  相似文献   

18.
  总被引:1,自引:0,他引:1  
Gene co‐expression analysis has emerged in the past 5 years as a powerful tool for gene function prediction. In essence, co‐expression analysis asks the question ‘what are the genes that are co‐expressed, that is, those that show similar expression profiles across many experiments, with my gene of interest?’. Genes that are highly co‐expressed may be involved in the biological process or processes of the query gene. This review describes the tools that are available for performing such analyses, how each of these perform, and also discusses statistical issues including how normalization of gene expression data can influence co‐expression results, calculation of co‐expression scores and P values, and the influence of data sets used for co‐expression analysis. Finally, examples from the literature will be presented, wherein co‐expression has been used to corroborate and discover various aspects of plant biology.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号