首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluorescence of the lipophilic prbe N-phenyl-1-naphthylamine (NPN) bound to intact cells of Escherichia coli is quenched by the addition of glucose, succinate, -lactate, pyruvate, formate and glycerol. Partial recovery of fluorescence occurs on anaerobiosis. Use of mutants with defects in the ATP synthase or the respiratory chain show that quenching of fluorescence may be energized either by ATP hydrolysis or by substrate oxidation through the respiratory chain. Permeabilization of the outer membrane by treatment of intact cells with EDTA, or use of a mutant with an outer membrane permeable to lipophilic substances, results in a more rapid binding of NPN and in a decrease in quenching observed on substrate addition. NPN binds rapidly to everted membrane vesicles, but does not respond to membrane energization. It is proposed that inner membrane energization in intact cells alters the binding or environment of NPN in the outer membrane. The fluorescence recovery which occurs on anaerobiosis has two components. One component represents a reversal of the changes which occur on membrane energization. The other component of the fluorescence change is insensitive to the uncoupler CCCP and resembles the behaviour of NPN with everted membrane vesicles. It is suggested that a portion of the fluorescence events seen with NPN involves a response of the probe to changes in the inner membrane.  相似文献   

2.
E G Sedgwick  P D Bragg 《FEBS letters》1988,229(1):127-130
N-Phenyl-1-naphthylamine (NPN), a reagent which has been used previously to probe the fluidity or microviscosity of the membrane lipids of intact cells of Escherichia coli, was found to respond to the redox state of purified cytochrome o incorporated into lipid vesicles formed from purified or E. coli phospholipids. NPN was bound to the proteoliposomes to produce a steady-state level of fluorescence intensity. Addition of the substrate ascorbate, in the presence of phenazine methosulfate as an electron donor, did not alter the fluorescence. However, following complete removal of oxygen from the medium by oxidation of the substrate by molecular oxygen catalyzed by cytochrome o, there was an increase in the fluorescence of NPN. This coincided with the reduction of cytochrome o. Reoxidation of the cytochrome by addition of oxygen decreased the fluorescence to steady-state levels until the oxidant had been completely reduced. The fluorescence changes were dependent on the incorporation of cytochrome o into phospholipid vesicles but were insensitive to the state of energization of the vesicle membrane.  相似文献   

3.
1. ATP-dependent proton translocation and ATP-dependent quenching of the fluorescence of 9-aminoacridine were measured in inside-out vesicles derived from a cytochrome-deficient mutant of Escherichia coli. 2. ATP-dependent quenching of fluorescence was inhibited by nigericin gramicidin, NH4Cl, and carbonylcyanide-m-chlorophenylhydrazone. Inhibition was also produced by the ATPase inhibitors N,N'-dicyclohexylcarbodimide (DCCD) and diphenyl phosphorazidate (DPA), and by the respiratory chain inhibitors piericidin A, 2-heptyl-4-hydroxyquinoline N-oxide, and An2+. The inhibition of ATP-dependent fluorescence quenching by the ionophores, uncouplers, and respiratory chain inhibitors was not due to an effect on ATPase activity which was insensitive to these agents. 3. By use of the ATPase inhibitors DCCD and DPA, or by replacing ATP with GTP, ITP and CTP, a correlation between the ATPase activity and the rate of ATP-dependent membrane energization, as measured by fluorescence quenching, was obtained.  相似文献   

4.
Membrane vesicles isolated from Staphylococcus aureus cells by ultrasonication possess the NADH-, succinate-, and malate oxidase activities, contain cytochromes a and b and have the lipid/protein ratio of 0.12-0.24. Energized membrane vesicles absorb permeant anions of tetraphenylborate and phenyldicarbaundecaborane. This results in the electric field generation with a "plus" sign on the inner side of the membranes. The generation of the membrane potential occurs in response to the addition of a respiratory substrate (NADH, malate, or succinate) and is inhibited by electron transfer inhibitors, such as rotenone, 2-N-nonyl-4-oxyquinoline-N-oxide, cyanide and the protonophore uncoupler, M-chlorinecarbonylcyanidephenylhydrazonium. The generation of the membrane potential takes place during ATP hydrolysis and in the course of the transhydrogenase reaction. The data obtained suggest the similarity of energization systems of St. aureus and those of animal mitochondria.  相似文献   

5.
Ascorbate with phenazine methosulfate was able to energize the membrane of inside-out membrane vesicles from cytochrome-containing but not cytochrome-deficient cells of the E., coli, hem A? mutant SASX76 as measured by the quenching of the fluorescence of acridine dyes. This substrate could also energize vesicle membranes from the ubiquinone-deficient mutant E., coli AN59 in the absence of exogenous ubiquinone. These results suggest that there is site of membrane energization coupled to substrate oxidation in the respiratory chain of E., coli in the cytochrome region between ubiquinone and oxygen.  相似文献   

6.
ATP synthesis was studied in ADP + Pi-loaded, right-side-out membrane vesicles from Bacillus megaterium and its uncoupler-resistant mutant strain, C8. Upon energization with ascorbate/phenazine methosulfate, more ATP synthesis was observed in C8 vesicles than in those from the wild type. ATP synthesis by C8 vesicles was more resistant to low levels (0.5-1.0 microM) of carbonyl cyanide m-chlorophenylhydrazone than was synthesis by wild type vesicles, whereas synthesis by both preparations was completely inhibited by N,N'-dicyclohexylcarbodiimide. Upon energization by a valinomycin-induced potassium diffusion potential, vesicles from the wild type strain synthesized more ATP than vesicles from C8, but that synthesis was still lower than observed with electron donors. The results indicate that the characteristic bioenergetic properties exhibited by whole cells of C8 are retained in a vesicle system and thus cannot be attributed to a cytoplasmic, substrate level activity. Interestingly, lipophilic cations that were efficacious in measuring the transmembrane electrical potential of whole cells appeared to accurately measure artificially generated potentials across vesicle membranes, but were not taken up upon addition of ascorbate/phenazine methosulfate.  相似文献   

7.
Membrane vesicles of Escherichia coli can be produced by 2 different methods: lysis of intact cells by passage through a French pressure cell or by osmotic rupturing of spheroplasts. The membrane of vesicles produced by the former method is everted relative to the orientation of the inner membrane in vivo. Using NADH, D-lactate, reduced phenazine methosulfate, or ATP these vesicles produce protonmotive forces, acid and positive inside, as determined using flow dialysis to measured the distribution of the weak base methylamine and the lipophilic anion thiocyanate. The vesicles accumulate calcium using the same energy sources, most likely by a calcium/proton antiport. Calcium accumulation, therefore, is presumably indicative of a proton gradient, acid inside. The latter type of vesicle, on the other hand, exhibits D-lactate-dependent proline transport but does not accumulate calcium with D-lactate as an energy source. NADH oxidation or ATP hydrolysis, however, will drive the transport of calcium but not proline in these vesicles. Oxidation of NADH or hydrolysis of ATP simultaneous with oxidation of D-lactate does not result in either calcium or proline transport. These results suggest that the vesicles are a patchwork or mosiac, in which certain enzyme complexes have an orientation opposite to that found in vivo, resulting in the formation of electrochemical proton gradients with an orientation opposite to that found in the intact cell. Other complexes retain their original orientation, making it possible to set up simultaneous proton fluxes in both directions, causing an apparent uncoupling of energy-linked processes. That the vesicles are capable of generating protonmotive forces of the opposite polarity was demonstrated by measurements of the distribution of acetate and methylamine (to measure the ΔpH) and thiocyanate (to measure the Δψ).  相似文献   

8.
Membrane vesicles of Escherichia coli prepared by osmotic lysis of lysozyme ethylenediaminetetracetate (EDTA) spheroplasts have approximately 60% of the total membrane-bound reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase (ED 1.6.99.3) and Mg2+-adenosine triphosphatase (ATPase) (EC 3.6.1.3) activities exposed on the outer surface of the inner membrane. Absorption of these vesicles with antiserum prepared against the purified soluble Mg2+-ATPase resulted in agglutination of approximately 95% of the inner membrane vesicles, as determined by dehydrogenase activity, and about 50% of the total membrane protein. The unagglutinated vesicles lacked all dehydrogenase activity and may consist of outer membrane. Lysozyme-EDTA vesicles actively transported calcium ion, using either NADH or adenosine 5'-triphosphate (ATP) as energy source. However, neither D-lactate nor reduced phenazine methosulfate energized calcium uptake, suggesting that the observed calcium uptake was not due to a small population of everted vesicles. Transport of calcium driven by either NADH or ATP was inhibited by simultaneous addition of D-lactate or reduced phenazine methosulfate. Proline transport driven by D-lactate oxidation was inhibited by either NADH oxidation or ATP hydrolysis. These results suggest that the portion of the total population of vesicles capable of active transport, i.e., the inner membrane vesicles, are functionally a homogeneous population but cannot be categorized as either right-side-out or everted, since activities normally associated with only one side of the inner membrane can be found on both sides of the membrane of these vesicles. Moreover, the data indicate that oxidation of NADH or hydrolysis of ATP by externally localized NADH dehydrogenase or Mg2+-ATPase establishes a protonmotive force of the opposite polarity from that established through D-lactate oxidation.  相似文献   

9.
A new type of microfluorometer was applied to assess photosynthesis at the single-cell level by chlorophyll fluorescence using the saturation pulse method. A microscopy–pulse amplitude modulation (PAM) chlorophyll fluorometer was combined with a Zeiss Axiovert 25 inverted epifluorescence microscope for high-resolution measurements on single mesophyll and guard cells and the respective protoplasts. Available information includes effective quantum yield of photosystem II, relative electron transport rate and energization of the thylakoid membrane due to the transthylakoidal proton gradient. Dark–light induction curves of guard cell (GCPs) and mesophyll cell protoplasts (MCPs) displayed very similar characteristics, indicating similar functional organization of thylakoid membranes in both types of chloroplasts. Light response curves, however, revealed much earlier saturation of photosynthetic electron flow in GCPs than in MCPs. Under anaerobiosis, photosynthetic electron flow and membrane energization were severely suppressed. A similar effect was observed in guard cells when epidermal peels were incubated with the fungal toxin fusicoccin which activates the plasma membrane H+-ATPase and causes irreversible opening of stomata. The drop in electron transport rate was prevented by blocking ATP consumption of the H+ pump or by glucose addition. These results show that chlorophyll fluorescence quenching analysis allows profound insights into stomatal physiology.  相似文献   

10.
We have investigated the interactions with isolated mitochondria and intact cells of chloromethyltetramethylrosamine (CMTMRos), a probe (Mitotracker Orange) that is increasingly used to monitor the mitochondrial membrane potential (Deltapsi(m)) in situ. CMTMRos binds to isolated mitochondria and undergoes a large fluorescence quenching. Most of the binding is energy-independent and can be substantially reduced by sulfhydryl reagents. A smaller fraction of the probe is able to redistribute across the inner membrane in response to a membrane potential, with further fluorescence quenching. Within minutes, however, this energy-dependent fluorescence quenching spontaneously reverts to the same level obtained by treating mitochondria with the uncoupler carbonylcyanide-p-trifluoromethoxyphenyl hydrazone. We show that this event depends on inhibition of the mitochondrial respiratory chain at complex I and on induction of the permeability transition pore by CMTMRos, with concomitant depolarization, swelling, and release of cytochrome c. After staining cells with CMTMRos, depolarization of mitochondria in situ with protonophores is accompanied by changes of CMTMRos fluorescence that range between small and undetectable, depending on the probe concentration. A lasting decrease of cellular CMTMRos fluorescence associated with mitochondria only results from treatment with thiol reagents, suggesting that CMTMRos binding to mitochondria in living cells largely occurs at SH groups via the probe chloromethyl moiety irrespective of the magnitude of Deltapsi(m). Induction of the permeability transition precludes the use of CMTMRos as a reliable probe of Deltapsi(m) in situ and demands a reassessment of the conclusion that cytochrome c release can occur without membrane depolarization and/or onset of the permeability transition.  相似文献   

11.
F0F1-ATP synthases catalyse ATP formation from ADP and Pi by using the free energy supplied by the transmembrane electrochemical potential of the proton. The delta subunit of F1 plays an important role at the interface between the channel portion F0 and the catalytic portion F1. In chloroplasts it can plug the protonic conductance of CF0 and in Escherichia coli it is required for binding of EF1 to EF0. We wanted to know whether or not delta of one species was effective between F0 and F1 of the other species and vice versa. To this end the respective coupling membrane (thylakoids, everted vesicles from E. coli) was (partially) depleted of F1 and purified F1, F1(-delta), and delta were added in various combinations to the F1-depleted membranes. The efficiency or reconstitution was measured in thylakoids via the rate of phenazinemethosulfate-mediated cyclic photophosphorylation and in E. coli everted vesicles via the degree of 9-amino-6-chloro-2-methoxyacridine fluorescence quenching. Addition of CF1 to partially CF1-depleted thylakoid vesicles restored photophosphorylation to the highest extent. CF1(-delta)+chloroplast delta, EF1, EF1(-delta)+E. coli delta were also effective but to lesser extent. CF1(-delta)+E. coli delta and EF1(-delta)+chloroplast delta restored photophosphorylation to a small but still significant extent. With F1-depleted everted vesicles prepared by repeated EDTA treatment of E. coli membranes, addition of CF1, CF1 (-delta)+chloroplast delta and CF1(-delta)+E. coli delta gave approximately half the extent of 9-amino-6-chloro-2-methoxyacridine fluorescence quenching as compared to EF1 or EF1(-delta)+E. coli delta by energization of the vesicles with NADH, while Ef1(-delta)+chloroplast delta was ineffective. All 'mixed' combinations were probably reconstitutively active only by plugging the protonic leak through the exposed F0 (structural reconstitution) rather than by catalytic activity. Nevertheless, the cross-reconstitution is stunning in view of the weak sequence similarity between chloroplast delta and E. coli delta. It favors a role of delta as a conformational transducer rather than as a proton conductor between F0 and F1.  相似文献   

12.
1. The transduction of energy from the oxidation of substrates by the electron transport chain or from the hydrolysis of ATP by the Mg2+-ATPase was measured in everted membrane vesicles of Escherichia coli using the energy-dependent quenching of quinacrine fluorescence and the active transport of calcium. 2. Treatment of everted membranes derived from a wild-type strain with the chaotropic agents guanidine-HC1 and urea caused a loss of energy-linked functions and an increase in the permeability of the membrane to protons, as measured by the loss of respiratory-linked proton uptake. 3. The coupling of energy to the quenching of quinacrine fluorescence and calcium transport could be restored by treatment of the membranes with N,N'-dicyclohyexylcarbodiimide. 4. Chaotrope-treated membranes were found to lack Mg2+-ATPase activity. Binding of crude soluble Mg2+-ATPase to treated membranes restored energy-linked functions. 5. Membranes prepared from a wild-type strain grown under anaerobic conditions in the presence of nitrate retained respiration-linked quenching of quinacrine fluorescence and active transport of calcium after treatment with chaotropic agents. 6. Everted membrane vesicles prepared from an Mg2+-ATPase deficient strain lacked respiratory-driven functions when the cells were grown aerobically but were not distinguishable from membranes of the wild-type when both were grown under anaerobic conditions in the presence of nitrate. 7. It is concluded (a) that chaotropic agents solubilize a portion of the Mg2+-ATPase, causing an increase in the permeability of the membrane to protons and (b) that growth under anaerobic conditions in the presence of nitrate prevents the increase in proton permeability caused by genetic or chemical removal of the catalytic portion of the Mg2+-ATPase.  相似文献   

13.
The transport of glycolate and D-glycerate across the inner envelope membrane of intact chloroplasts is rapid and mediated by a translocator with proton/substrate symport activity. The true initial rate of glycolate or D-glycerate transport could not be measured by conventional methods. To resolve the initial rates of glycolate and D-glycerate transport, a stopped-flow fluorescence assay was developed that allows the indirect observation of transport from about 4 ms after mixing. Inner envelope vesicles from pea (Pisum sativum) or spinach (Spinacia oleracea) chloroplasts were loaded with the fluorescent pH indicator pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid) by a freeze-thaw sonication protocol. A rapid quenching of pyranine fluorescence was detected after mixing the vesicles with either glycolate or D-glycerate. This quenching was the result of acidification of the interior of the vesicles. D-Glycerate- or glycolate-induced acidification displayed saturation kinetics and was inhibited by pretreatment of the vesicles with N-ethylmaleimide. D-Glycerate was more effective than L-glycerate in causing the pH decrease. Also, L-mandelate inhibited D-glycerate-induced acidification much more strongly than D-mandelate. The glycolate/D-glycerate-induced pH decrease is consistent with glycolate/D-glycerate translocator activity. The assay was placed on a quantitative basis by converting fluorescence changes to pH and measuring the internal buffering capacity of the vesicles. The rates of transport across the inner envelope membrane were estimated to be as fast, if not faster, than those of transport in intact chloroplasts.  相似文献   

14.
Transmembrane distribution of sterol in the human erythrocyte   总被引:2,自引:0,他引:2  
The transbilayer cholesterol distribution of human erythrocytes was examined by two independent techniques, quenching of dehydroergosterol fluorescence and fluorescence photobleaching of NBD-cholesterol. Dehydroergosterol in conjunction with leaflet selective quenching showed that, at equilibrium, 75% of the sterol was localized to the inner leaflet of resealed erythrocyte ghosts. NBD-cholesterol and fluorescence photobleaching displayed two diffusion values in both resealed ghosts and intact erythrocytes. The fractional contribution of the fast and slow diffusion constants of NBD-labelled cholesterol represent its inner and outer leaflet distribution. At room temperature the plasma membrane inner leaflet of erythrocyte ghosts as well as intact erythrocytes cells contained 78% of the plasma membrane sterol. The erythrocyte membrane transbilayer distribution of sterol was independent of temperature. In conclusion, dehydroergosterol and NBD-cholesterol data are consistent with an enrichment of cholesterol in the inner leaflet of the human erythrocyte.  相似文献   

15.
Ting CS  Owens TG 《Plant physiology》1993,101(4):1323-1330
Nonphotochemical fluorescence quenching was found to exist in the dark-adapted state in the diatom Phaeodactylum tricornutum. Pretreatment of cells with the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) or with nigericin resulted in increases in dark-adapted minimum and maximum fluorescence yields. This suggests that a pH gradient exists across the thylakoid membrane in the dark, which serves to quench fluorescence levels nonphotochemically. The physiological processes involved in establishing this proton gradient were sensitive to anaerobiosis and antimycin A. Based on these results, it is likely that this energization of the thylakoid membrane is due in part to chlororespiration, which involves oxygen-dependent electron flow through the plastoquinone pool. Chlororespiration has been shown previously to occur in diatoms. In addition, we observed that cells treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea exhibited very strong nonphotochemical quenching when illuminated with actinic light. The rate and extent of this quenching were light-intensity dependent. This quenching was reversed upon addition of CCCP or nigericin and was thus due primarily to the establishment of a pH gradient across the thylakoid membrane. Preincubation of cells with CCCP or nigericin or antimycin A completely abolished this quenching. Cyclic electron transport processes around photosystem I may be involved in establishing this proton gradient across the thylakoid membrane under conditions where linear electron transport is inhibited. At steady state under normal physiological conditions, the qualitative changes in photochemical and nonphotochemical fluorescence quenching at increasing photon flux densities were similar to those in higher plants. However, important quantitative differences existed at limiting and saturating intensities. Dissimilarities in the factors that regulate fluorescence quenching mechanisms in these organisms may account for these differences.  相似文献   

16.
Energization of the pyridine nucleotide transhydrogenase in everted membrane vesicles from Escherichia coli JM83 was compared with the process in vesicles of the same strain transformed with the plasmid pDC21 overexpressing this enzyme. Proton translocation was assayed by the quenching of the fluorescence of the probe quinacrine. Agents able to discharge transmembrane proton gradients such as nigericin and the uncouplers 3,3',4',5-tetrachlorosalicylanilide and carbonyl cyanide m-chlorophenylhydrazone inhibited ATP-dependent transhydrogenation of NADP by NADH and discharged transmembrane proton gradients generated by transhydrogenation of AcNAD by NADPH, by oxidation of NADH, and by hydrolysis of ATP. This was observed in everted membrane vesicles of both strains JM83 and JM83pDC21. These strains differed significantly in the response of the NADH oxidation-dependent transhydrogenase. This reaction was inhibited by nigericin and uncouplers in membrane vesicles of JM83 but there was little inhibition or the reaction was stimulated in JM83pDC21, in spite of the discharge of the NADH oxidation-generated proton gradient measured by quinacrine fluorescence in the latter strain. It is proposed that the transhydrogenase is energized by direct or local (nonbulk phase) proton translocation in membranes of this strain. Uncouplers might facilitate these routes but would not discharge them. The generality of these observations was shown using other strains. NADH oxidase activity was severalfold lower in membrane vesicles of JM83pDC21 compared with JM83. The levels of ubiquinone and cytochromes, and the activities of NADH dehydrogenases I and II, and of cytochrome oxidase, were similar in the two strains. It is concluded that the NADH oxidase activity of JM83pDC21 is low because of the reduced rate of collision between electron-transferring complexes of the respiratory chain due to the large amount of transhydrogenase protein in the membranes of this strain. The large amount of transhydrogenase favors direct, nonbulk phase proton transfer. Transhydrogenase activity was stimulated by Ca2+, Mg2+, or Mn2+.  相似文献   

17.
A Carruthers 《Biochemistry》1986,25(12):3592-3602
Cytosolic adenosine 5'-triphosphate (ATP) modifies the properties of human red cell sugar transport. This interaction has been examined by analysis of substrate-induced sugar transporter intrinsic fluorescence quenching and by determination of Michaelis and velocity constants for D-glucose transport in red cell ghosts and inside-out vesicles lacking and containing ATP. When excited at 295 nm, human erythrocyte ghosts stripped of peripheral proteins display an emission spectrum characterized by a scattering peak and a single emission peak centered at about 333 nm. Addition of sugar transport substrate or cytochalasin B and phloretin (sugar transport inhibitors) reduces emission peak height by 10% and 5%, respectively. Cytochalasin B induced quenching is a simple saturable phenomenon with an apparent Kd (app Kd) of 60 nM and a capacity of 1.4 nmol of sites/mg of membrane protein. Quenching by D-glucose (and other transported sugars) is characterized by at least two (high and low) app Kd parameters. Inhibitor studies indicate that these sites correspond to sugar efflux and influx sites, respectively, and that both sites can exist simultaneously. ATP induces quenching of stripped ghost fluorescence with half-maximal effects at 20-30 microM ATP. ATP reduces the low app Kd and increases the high app Kd for sugar-induced fluorescence quenching. D-Glucose transport in intact red cells is asymmetric (Km and Vmax for influx less than Km and Vmax for efflux). In addition, two operational Km parameters for efflux are detected in zero- and infinite-trans efflux conditions. Protein-mediated sugar transport in ghosts and inside-out vesicles (IOVs) is symmetric with respect to Km and Vmax for entry and exit, and only one Km for exit is detected. Addition of millimolar levels of ATP to the interior of ghosts or to the exterior of IOVs restores both transport asymmetry and two operational Km parameters for native efflux. A model for red cell hexose transport is proposed in which ATP modifies the catalytic properties of the transport system. This model mimics the behavior of the sugar transport systems of intact cells, ghosts, and inside-out vesicles.  相似文献   

18.
Rhodamine 123 (RH-123) was used to monitor the membrane potential of mitochondria isolated from rat liver. Mitochondrial energization induces quenching of RH-123 fluorescence and the rate of fluorescence decay is proportional to the mitochondrial membrane potential. Exploiting the kinetics of RH-123 fluorescence quenching in the presence of succinate and ADP, when protons are both pumped out of the matrix driven by the respiratory chain complexes and allowed to diffuse back into the matrix through ATP synthase during ATP synthesis, we could obtain an overall quenching rate proportional to the steady-state membrane potential under state 3 condition. We measured the kinetics of fluorescence quenching by adding succinate and ADP in the absence and presence of oligomycin, which abolishes the ADP-driven potential decrease due to the back-flow of protons through the ATP synthase channel, F(0). As expected, the initial rate of quenching was significantly increased in the presence of oligomycin, and conversely preincubation with subsaturating concentrations of the uncoupler carbonyl cyanide p-trifluoro-metoxyphenilhydrazone (FCCP) induced a decreased rate of quenching. N,N'-dicyclohexylcarbodiimide (DCCD) behaved similarly to oligomycin in increasing the rate of quenching. These findings indicate that RH-123 fluorescence quenching kinetics give reliable and sensitive evaluation of mitochondrial membrane potential, complementing steady-state fluorescence measurements, and provide a mean to study proton flow from the mitochondrial intermembrane space to the matrix through the F(0) channel.  相似文献   

19.
W.A. Cramer  P.W. Postma  S.L. Helgerson 《BBA》1976,449(3):401-411
Colicin E1 and the uncoupler of oxidative phosphorylation, trifluoromethoxy-carbonylcyanidephenylhydrazone (FCCP), cause an increase in the fluorescence intensity of N-phenyl-1-naphthylamine bound to whole cells of Escherichia coli. It has been shown elsewhere that this fluorescence increase correlates well with de-energization. Addition of glucose causes a large cyanide-sensitive decrease of intensity, tentatively associated with energization, with the emission spectrum almost returning to the original trace with a peak at 417 nm. These data suggest that there may be a measurable competition between de-energization and energization of the cell membrane, and that the probe fluorescence intensity may be a general indicator of membrane energy level.

The conclusions reached about cellular energy level from measurements of the probe fluorescence intensity correlate partly (a, b below, not c) with the energy level assayed physiologically through rates of active transport: (a) FCCP is found to be a poor inhibitor of proline transport if cells are first incubated with glucose, showing either competition between the processes of energization and de-energization or an increase in the envelope permeability barrier to FCCP caused by glucose addition. (b) Cyanide blocks the fluorescence decrease caused by glucose and inhibits proline and serine transport, consistent with the decrease in probe fluorescence intensity indicating an increase in membrane energization. However, (c) it appears that the amplitude of the fluorescence intensity decrease caused by glucose addition in the presence of FCCP and colicin E1 greatly exaggerates the extent of real membrane energization. Glucose added after uncoupler can cause only a small increase, and after colicin, a negligible increase in the proline transport rate, indicating that the magnitude of the fluorescence intensity decrease after glucose addition is not a true measure of membrane energization, but rather seems to amplify this energization greatly. Glucose addition does not cause a decrease in fluorescence intensity in cells treated with EDTA to remove lipopolysaccharide and an apparent barrier to the probe.

The rotational relaxation time of the probe in intact cells appears to correlate somewhat better with the cellular energy level than does intensity.  相似文献   


20.
N-Phenylnaphthylamine (NPN) has been used previously to probe the fluidity or microviscosity of membrane lipids. We have shown (Sedgwick, E. G., and Bragg, P.D. (1988) FEBS Lett. 229, 127-130) that the fluorescence intensity of this probe abruptly increases upon depletion of the oxygen content of a medium by respiring cytochrome o of Escherichia coli that has been incorporated into soybean phospholipid vesicles. We now show that the pH probes pyranine and quinacrine behave similarly to NPN. The fluorescence change is not due to changes in the pH gradient across the membrane or to a change in the distribution of probe between the vesicles and the external medium. It is insensitive to uncouplers. The fluorescence change with pyranine and quinacrine occurs also with soluble cytochrome o in the absence of added phospholipid. The NPN response requires added phospholipid. Alteration of the redox state of cytochrome o with cyanide suggests that these probes respond to a change in the redox state of the cytochrome, either by alterations in binding of the probe to the cytochrome or by a change in the environment of the probe bound to the cytochrome. This behavior should be considered when pyranine or quinacrine are used to measure changes in the internal pH of membrane vesicles containing redox proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号