首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Myosin has been purified from the following cultured cell lines: normal rat kidney fibroblast (NRK), HeLa-Rhino (HeLa), human choriocarcinoma, human acute lymphoblastic leukemia, rat hepatoma (HTC), monkey kidney (VERO), pigmented mouse melanoma, Y-1 rat adrenal cortex, and growth hormone-secreting GH-1. Myosin constitutes 0.5-5.4% of the protein of these cells. It was not detected in washed human erythrocytes or in two types of mouse plasmacytoma cells. Two methods for the purification of myosin from cultured cells have been employed. With Method I highly purified myosin was prepared by Sepharose 4B and DEAE-cellulose chromatography from 10(10) L-929 cells as well as from mouse uterus. Those myosins have similar molecular and subunit weights as well as ATPase activity but are immunologically distinct. Method II involving ultracentrifugation and Sepharose 4B chromatography, is suitable for the production of moderately pure myosin in good yield from as few as 5-10(7) cells (five 100-mm Petrie dishes).  相似文献   

3.
Huntingtin-associated protein 1 (HAP1) was originally found to be localized in neurons and is thought to play an important role in neuronal vesicular trafficking and/or organelle transport. Based on functional similarity between neuron and endocrine cell in vesicular trafficking, we examined the expression and localization of HAP1 in the rat endocrine system using immunohistochemistry. HAP1-immunoreactive cells are widely distributed in the anterior lobe of the pituitary, scattered in the wall of the thyroid follicles, or clustered in the interfollicular space of the thyroid gland, exclusively but diffusely distributed in the medullae of adrenal glands, and selectively located in the pancreas islets. HAP1-containing cells were also found in the mucosa of stomach and small intestine with a distributive pattern similar to that of gastrointestinal endocrine cells. However, no HAP1-immunoreactive cell was found in the cortex of the adrenal gland, the testis, and the ovary. In the posterior lobe of the pituitary, HAP1-immunoreactive products were not detected in the cell bodies but in many stigmoid bodies, one kind of non-membrane-bound cytoplasmic organelle with a central or eccentric electron-lucent core. HAP1-immunoreactive stigmoid bodies were also found in the cytoplasm of endocrine cells in the thyroid gland, the medullae of adrenal gland, the pancreas islets, the stomach, and small intestine. The present study demonstrates that HAP1 is selectively expressed in part of the small peptide-, protein-, and amino-acid analog and derivative-secreting endocrine cells but not in steroid hormone-secreting cells, suggesting that HAP1 is also involved in intracellular trafficking in certain types of endocrine cells.  相似文献   

4.
We have evaluated the relationship between the neuronal myc gene (NMYC) and class I major histocompatibility complex (MHC) expression in human neuroblastoma (NB) tumor cell lines. Class I MHC surface Ag expression in NB cell lines varied from nearly undetectable to levels nearly as high as in a lymphoblastoid cell line. Class I MHC mRNA levels in NMYC-amplified NB cell lines were lower than levels observed in single copy NMYC NB cell lines. However, considerable variation in class I MHC surface Ag and mRNA expression was evident in NMYC-amplified cell lines. To determine directly whether NMYC might modulate class I MHC expression in NB, we transfected a plasmid containing a recombinant NMYC gene into two tumor cell lines derived from a NB and a related neuroepithelioma tumor. Constitutive overexpression of the recombinant NMYC gene produced no consistent change in class I MHC surface Ag or mRNA levels. To determine whether class I MHC expression might be developmentally regulated in adrenal medullary cells, the precursor cells of adrenal NB tumors, beta 2-microglobulin expression was measured in fetal and adult adrenal glands. beta 2-Microglobulin expression was not evident in the neuroblasts of a 24-wk-old fetal adrenal gland, whereas beta 2-microglobulin expression was present in the adult adrenal medulla. These data suggest that variation in class I MHC expression among NB cells may reflect the developmental stage at which neuroblasts were arrested during tumorigenesis.  相似文献   

5.
We have examined the hypothesis that nonhematopoietic malignancies may contain cells corresponding to those which occur during the differentiation of tissue precursors. Neuroblastoma, an embryonal tumor of the adrenal medulla, was studied because of its well described ability to differentiate both in vivo and in vitro. We examined the expression of four genes during development of the human adrenal medulla: tyrosine hydroxylase, chromagranin A, pG2, and beta-2-microglobulin. The sequential expression of these genes by adrenal neuroblasts marks successive stages during maturation of the chromaffin lineage. We also observed a population of neuroblasts during adrenal medullary development that did not express any of these four genes, suggestive of adrenal medullary cells differentiating along nonchromaffin lineage(s). We then evaluated 27 neuroblastoma cell lines for the expression of these genes and found that 24 expressed chromaffin markers, with 19 of these mimicking the pattern of gene expression found during development. Three cell lines did not express tyrosine hydroxylase, chromogranin A, or pG2, consistent with either a very undifferentiated neural crest cell or maturation along a nonchromaffin lineage. These data indicate that neuroblastoma tumor cells correspond to adrenal neuroblasts arrested during morphogenesis of the adrenal medulla and raise the possibility that malignant transformation of cells at different stages of tissue maturation may contribute to the diversity that characterizes tumors of solid tissues.  相似文献   

6.
Four clonal adrenal tumor cell lines which exhibit biochemical lesions in the ACTH-stimulated steroidogenic pathway have been isolated. Two of these cell lines, designated Y-6 and OS3, appear to contain their lesions at points proximal to cyclic AMP formation in the ACTH-stimulated steroidogenic pathway. Growth of Y-6 and OS3 as tumors in isogenic mice results in a restoration of ACTH sensitivity in both cell lines by mechanisms which do not appear to involve selection or fulfillment of specific nutritional requirements. Growth of Y-6 and OS3 as tumors in heterogenic mice results in restoration of ACTH sensitivity in Y-6 but not in OS3, suggesting that the biochemical lesions in these cell lines are at different loci. Two other cell lines, designated OS1 and OS4, possess biochemical lesions in the steroidogenic pathway beyond the formation of cyclic AMP and before the formation of pregnenolone. Growth of OS1 and OS4 as tumors in isogenic mice results in the repair of the biochemical lesions in these cells distal to cyclic AMP formation in the ACTH-stimulated steroidogenic pathway. The four cell lines described are potentially useful in elucidating the mechanism of action of ACTH in adrenal cells as well as in determining the factors required for maintaining differentiated function in cultured cells.  相似文献   

7.
This report describes, for the first time to our knowledge, a possible steroidogenic activity in established murine embryonal carcinoma cell lines (PCC3, PCC4, F9), revealed by a 3 beta-hydroxysteroid dehydrogenase activity (revelation of NADH2 by staining, and RIA assessment of delta 4-androstenedione). The remarkable analogy between such totipotent cells and embryonal cells may suggest that this activity could be present before histologic organization of the embryonal testis. Nonmalignant embryonal cells such as fibroblasts (3/A/1/D-3) or myoblasts (T984) were also found to possess a 3 beta-hydroxysteroid dehydrogenase activity, thus suggesting that this enzyme is not specific to hormone-secreting cells, but the sign of a more general phenomenon.  相似文献   

8.
Chromaffin cells of the adrenal medulla are neural crest-derived cells of the sympathoadrenal lineage. Different lines of evidence suggest the existence of a subpopulation of proliferation-competent progenitor cells even in the adult state. The identification of sympathoadrenal progenitors in the adrenal would greatly enhance the understanding of adrenal physiology and their potential role in adrenal pathogenesis. Isolation and differentiation of these progenitor cells in culture would provide a tool to understand their development in vitro. Furthermore, due to the close relation to sympathetic neurons, these cells might provide an expandable source of cells for cell therapy in the treatment of neurodegenerative diseases. We therefore aim to establish protocols for the efficient isolation, enrichment and differentiation of chromaffin progenitor cells to dopaminergic neurons in culture.  相似文献   

9.
Endothelial cells store the multimeric adhesive glycoprotein von Willebrand factor (vWf), which promotes the formation of a platelet plug at the site of vessel injury. To investigate the packaging of vWf into the granules called Weibel-Palade bodies, we expressed pro-vWf cDNA and cDNA lacking the prosequence in a variety of cell lines. Storage granules formed only in cells that contain a regulated pathway of secretion. Furthermore, packaging required the prosequence. Pro-vWf, lacking the C-terminal region involved in interchain disulfide bonding, formed granules. We conclude that the signal for storage is universal in that an adhesive glycoprotein can be stored by a hormone-secreting cell; the storage of vWf is independent of its covalent multimeric structure; the unusual rod shape of Weibel-Palade bodies is due to vWf; and the vWf propolypeptide is necessary for the formation of vWf storage granules.  相似文献   

10.
11.
Summary Measurable amounts of the nervous-system specific S-100 protein were detected by microcomplement fixation assay both in the superior cervical ganglion and in the adrenal medulla of adult rats, though at a significantly higher concentration in the ganglion. By the unlabeled antibody PAP method, the antigen was localized at: he ultrastructural level in the Schwann cells and in the satellite cells of the ganglion, but not in neurons. Similarly, the protein was found in the Schwann cells of the adrenal medulla, but not in the chromaffin cells. Moreover, the S-100 immunolabeling allowed detection of a class of satellite cells closely enveloping the chromaffin cells. In the labeled cells of both organs the reaction product was diffusely distributed in the cytoplasmic matrix as well as in the nucleoplasm.The presence of the S-100 antigen in the satellite cells of the sympathetic ganglion and in satellite cells of the adrenal medulla suggests a possible homology for the two cell types, and one could hypothesize the presence in peptide hormone-secreting endocrine organs of glia-like cells exhibiting functional relationships with the secretory cells comparable to those of the glial cells with the neurons.  相似文献   

12.
The adrenal cortex of mammals has been known to consist of three morphologically and functionally distinct zones, i.e. the zona glomerulosa (zG), the zona fasciculata (zF) and the zona reticularis (zR), each of which secretes a specific corticosteroid different from those produced by the other two zones. We found previously, however, that an additional zone existed between zG and zF of adult rat adrenal cortex and that the cells in that zone were in a functionally undifferentiated state as an adrenocortical cell [Endocrinology 135, (1994) 431]: they were incapable of synthesizing highly active forms of corticosteroids, such as aldosterone and corticosterone, although they could produce their precursors. Hence, we named the zone as the undifferentiated cell zone (zU) of the adrenal cortex. Here we show that zU and its surroundings, i.e. the innermost portion of zG and the outermost portion of zF are the sites for cell replication in adult rat adrenal cortex and that the cells raised there migrate to other regions. Such cell replications in this region occur regardless of physiological conditions, such as the rise and fall of hormonal stimuli and circadian fluctuation of adrenocortical activities. On the bases of these and other findings previously described, we propose that zU is the stem cell zone of the adult rat adrenal cortex. Our recent success in isolating novel cell lines, which display an undifferentiated phenotype similar to that of zU cells, could facilitate the exploration of molecular mechanisms for the differentiation and development of the adrenocortical cells.  相似文献   

13.
Adrenal chromaffin cells have been successfully used to attenuate chronic pain when transplanted near the spinal cord, but primary cells are neither homogeneous nor practical for routine use in human therapy. Conditional immortalization with the temperature-sensitive allele of the large T antigen (tsTag) and creation of stable chromaffin cell lines would advance our understanding of both the use and limits of cell lines that contain this immortalization gene for such therapies. Cultures of embryonic day 17 rat adrenal and neonatal bovine adrenal cells were immortalized with the temperature-sensitive allele of SV40 tsTag and chromaffin cell lines established. The rat chromaffin line, RAD5.2, and the bovine chromaffin cell line, BADA.20, both expressed immunoreactivities (ir) for all the catecholamine enzymes: tyrosine hydroxylase (TH), the first enzyme in the synthetic pathway for catecholamines, dopa-beta-hydroxylase (DbetaH), and phenylethanolamine-N-methyltransferase (PNMT). At permissive temperature (33 degrees C), these chromaffin cells are proliferative, have a typical rounded chromaffinlike morphology, and contain detectable TH-, DbetaH-, and PNMT-ir. At nonpermissive temperature (39 degrees C), these cells stop proliferating, decrease Tag expression, and change the expression of TH-, DbetaH-, and PNMT-ir in vitro, suggesting increased differentiation at nonpermissive temperature. The chromaffin cell lines also express immunoreactivity for the opioid met-enkephalin (ENK) at permissive and nonpermissive temperatures. The expression of TH-ir in the bovine chromaffin cells is upregulated by the addition of dexamethasone (DEX) or forskolin during differentiation; TH-ir is not affected by the addition of DEX or forskolin in the rat chromaffin cells. The addition of forskolin during differentiation upregulates the expression of DbetaH-ir in the rat chromaffin cells. PNMT-ir is not affected by differentiation or agents in either cell line. However, catecholamine synthesis was not detectable by high-performance liquid chromatography, suggesting incomplete differentiation under current conditions, or influence by continued low levels of Tag expression. Both cell lines have been carried over many passages in vitro for more than 3 years and were repeatedly frozen and thawed. These data describe an initial step in the conditional immortalization of chromaffin cells that can maintain the phenotype of primary chromaffin cells in vitro over long periods. The use of such chromaffin cell lines that are able to deliver neuroactive molecules offers a novel approach to pain management.  相似文献   

14.
Transplantable tumors and cell lines have been developed from pheochromocytomas arising in mice with a heterozygous knockout mutation of the neurofibromatosis gene, Nf1. Nf1 encodes a ras-GTPase-activating protein, neurofibromin, and mouse pheochromocytoma (MPC) cells in primary cultures typically show extensive spontaneous neuronal differentiation that may result from the loss of the remaining wild-type allele and defective regulation of ras signaling. However, all MPC cell lines express neurofibromin, suggesting that preservation of the wild-type allele may be required to permit the propagation of MPC cells in vitro. MPC lines differ from PC12 cells in that they express both endogenous phenylethanolamine N-methyltransferase (PNMT) and full-length PNMT reporter constructs. PNMT expression is increased by dexamethasone and by cell-cell contact in suspension cultures. Mouse pheochromocytomas are a new tool for studying genes and signaling pathways that regulate cell growth and differentiation in adrenal medullary neoplasms and are a unique model for studying the regulation of PNMT expression.  相似文献   

15.
Treatment of mouse spleen cells with a rabbit anti-mouse brain (RAMB) antiserum markedly suppressed antibody-dependent cell-mediated cytotoxicity (ADCC) on trinitrophenyl-coupled sheep erythrocyte targets. This inhibitory activity of RAMB antiserum was complement independent, absorbable with mouse brain tissue, and appeared to be separable from the anti-Thy-1 activity of this serum. Absorption studies indicated that various T- and B-lymphocyte cell lines as well as macrophage-like cell lines are not able to absorb the inhibitory activity of RAMB antiserum. In contrast, thymocytes and spleen cells, as well as the neural cell line, PC12, a chromocytoma derived from rat adrenal medulla, were capable of absorbing the inhibitory activity to some extent, suggesting that antigens characteristic for ADCC effector cells can be found on these cell populations.  相似文献   

16.
17.
The effect of exogenously added adenylate cyclase from Bordetella pertussis (strain 114) has been investigated in Y-1 mouse adrenal tumor, chinese hamster ovary (CHO) and several other cells. A partially purified adenylate cyclase was found not to enter cells but, nevertheless, produced large amounts of cAMP in the medium. We could show that this resulted from release of ATP (and not larger molecules). The ATP released by the cells could be (1) directly measured and was replenished after each change of medium; (2) was reciprocally related to the cAMP produced; and (3) was competed for by ATPases present in added serum or by hexokinase and, less effectively, by exoenzymes on the cell surface. The extent of ATP leakage varied widely between different cell lines, being marked in CHO and Y-1 adrenal cells but negligible in transformed lymphocyte lines. The uncertainty of the origin of cAMP found in media of cultured cells requires separate analysis of cell and medium cAMP and an assessment of ATP leakage.  相似文献   

18.
The pituitary gland contains six distinct hormone-secreting cell types that are essential for basic physiological processes including fertility and responding to stress. Formation of hormone-secreting cells during development relies on Notch signaling to prevent progenitors from prematurely differentiating. The nature of the signal curtailing Notch signaling in the pituitary is unknown, but a good candidate is the endocytic adaptor protein NUMB. NUMB targets Notch for proteolytic degradation, but it also has a broad range of actions, including stabilizing adherens junctions through interactions with cadherins and influencing cell proliferation by stabilizing expression of the tumor suppressor protein p53. Here, we show that NUMB and its closely related homolog, NUMBLIKE, are expressed in undifferentiated cells during development and later in gonadotropes in the anterior lobe and melanotropes of the intermediate lobe. All four isoforms of NUMB, are detectable in the pituitary, with the shorter forms becoming more prominent after adolescence. Conditionally deleting Numb and Numblike in the intermediate lobe melanotropes with Pomc Cre mice dramatically alters the morphology of cells in the intermediate lobe, coincident with impaired localization of adherens junctions proteins including E-CADHERIN, N-CADHERIN, β-CATENIN, and α-CATENIN. Strikingly, the border between posterior and intermediate lobes is also disrupted. These mice also have disorganized progenitor cells, marked by SOX2, but proliferation is unaffected. Unexpectedly, Notch activity appears normal in conditional knockout mice. Thus, Numb is critical for maintaining cell-cell interactions in the pituitary intermediate lobe that are essential for proper cell placement.  相似文献   

19.
Expression of dopamine beta-monooxygenase (DBM), the enzyme that converts dopamine into norepinephrine, is limited to adrenal chromaffin cells and a small population of neurons. We studied DBM trafficking to regulated granules by stably expressing rat DBM in AtT-20 corticotrope tumor cells, which contain regulated granules, and in Chinese hamster ovary (CHO) cells, which lack regulated granules. The behavior of exogenous DBM in both cell lines was compared with endogenous DBM in adrenal chromaffin cells. CHO cells secreted active DBM, indicating that production of active enzyme does not require features unique to neuroendocrine cells. Pulse-chase experiments indicated that early steps in DBM maturation followed a similar time course in AtT-20, CHO, and adrenal chromaffin cells. Use of a conformation-sensitive DBM antiserum indicated that acquisition of a folded structure occurred with a similar time course in all three cell types. Cell type-specific differences in DBM trafficking became apparent only when storage in granules was examined. As expected, DBM was stored in secretory granules in chromaffin cells; CHO cells failed to store DBM. Despite the fact that AtT-20 cells have regulated granules, exogenous DBM was not stored in these granules. Thus storage of DBM in secretory granules requires cell type specific factors.  相似文献   

20.
We have reported previously that expression of the human apolipoprotein E (apoE) gene in mouse Y1 adrenocortical cells suppresses basal and adrenocorticotropin (ACTH)-stimulated steroidogenesis. To understand the mechanism of this suppression, we have examined the integrity of cAMP regulated events required for adrenal steroidogenesis. Both acute and chronic responses to ACTH or cAMP are suppressed in Y1 cells which express apoE (Y1-E cells) as compared with parental Y1 cells. Acute morphologic changes in response to cAMP and acute induction of steroidogenesis by cAMP are suppressed in the Y1-E cell lines. Constitutive expression of P450-cholesterol side chain cleavage enzyme mRNA, the rate-limiting enzyme in steroid hormone synthesis, is reduced up to 11-fold in the Y1-E cell lines. The level of mRNA encoding P450-cholesterol side chain cleavage correlates directly with the reduction in basal steroid production observed in the individual Y1-E cell lines. Expression of P450-11 beta-hydroxylase mRNA, although readily detectable in Y1 parent cells, is absent or reduced in the Y1-E cell lines. Inhibition of cAMP-regulated gene expression is not restricted to genes required for steroid synthesis, since cAMP induction of ornithine decarboxylase mRNA is also inhibited in the Y1-E cell lines. These data indicate that suppression of steroidogenesis in Y1-E cells is due, at least in part, to inhibition of cAMP-regulated gene expression. These effects are not due to a defective cAMP-dependent protein kinase, since kinase activity in vitro and activation in vivo are unaltered in the Y1-E cell lines. These results suggest that expression of apoE in Y1 cells blocks cAMP-mediated signal transduction at a point distal to activation of cAMP-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号