首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The time of replication during the S phase in a murine erythroleukemia (MEL) cell line was determined for immunoglobulin heavy chain constant region C alpha, C gamma 2b and C mu sequences whose boundaries are defined by EcoR1 restriction endonuclease sites (EcoR1 segments). Logarithmically growing cultures of MEL cells with an S phase of about 7.5 hours were pulse labelled with 20 micrograms/ml of 5-bromodeoxyuridine (BUdR). The cells were then fractionated by centrifugal elutriation into 10-12 distinct populations containing cells in different stages of the cell cycle. Flow microfluorimetric (FMF) analysis of DNA content, measurements of cell volume and autoradiography after 3H-thymidine pulse labelling were used to determine position in the cell cycle. Fractions were pooled to represent four selected intervals of S in which BU-DNA was synthesized for 2.5 hrs or less. Newly replicated DNA which had incorporated BUdR into one strand was isolated, cleaved with EcoR1, and separated on neutral Cs2S04 gradients. Equal amounts of BU-DNA replicated during these four intervals of S were electrophoresed in 0.8% agarose gels, transferred to diazotized aminobenzyloxymethyl paper and hybridized with 32p probes containing the C alpha, C gamma 2b and C mu genes and flanking sequences. The relative amounts of segments replicated were assessed by quantitation of the appropriate bands on the autoradiograms by microdensitometry. The results indicate that the 2.8 kb C alpha, 6.6 kb C gamma 2b and 12 kb C mu EcoR1 segments in these MEL cells replicated during defined intervals of the first half of the S phase. The order of replication of these EcoR1 segments as the cells proceeded through S was C alpha, C gamma 2b, C mu, corresponding to the linear order of the genes determined by restriction endonuclease mapping.  相似文献   

2.
Synchronized myogenic cell cultures have been used to demonstrate differential sensitivity to BUdR during segments of the S period. Synchronization of the cells was achieved by two methods. First, cells were initiated in medium containing FUdR, an inhibitor of DNA synthesis. Following FUdR blockade reversal with TdR after 19 hr in vitro, the synchronized cells were allowed to replicate their DNA with BUdR for periods corresponding to early and late S. Determinations of percentage labeled cells during synchronization with FUdR indicate that about 90% of the cycling population of cells accumulates at the G1/S interface of the cell-cycle and that the duration of the S period following blockade reversal with TdR is not altered. Since BUdR is pulsed to these cultures immediately after the point of synchronization, a high degree of synchrony is obtained. In the second method of synchrony, cohorts of cells which had been in G2, late S, or early S during a BUdR pulse were collected in metaphase arrest with Colcemid and selectively removed from the cultures. With the mitotic selection method the point of synchronization occurred several hours after the BUdR pulse. In both methods the cells were allowed to resume myogenesis and scored for percentage fused nuclei after approx 50 hr in vitro. With both methods of synchrony, BUdR incorporation into early replicating DNA results in a striking decline in myoblast fusion, whereas incorporation into late replicating DNA is without effect. The results cannot be attributed to a disproportionate uptake of nucleotide during early S. Further fractionation of the 4-hr S phase into 1-hr periods indicates that the BUdR sensitive target is replicated during the second hr of DNA synthesis.  相似文献   

3.
Newly synthesized DNA was separated from the bulk of the DNA by pulse-labeling with BUdR and centrifugation in an alkaline CsCl buoyant density gradient. The content of histone gene in the newly synthesized DNA was determined by DNA dot hybridization. The gene contents in DNA replicated during the early half of S phase and during the whole S phase were compared. Results showed that histone genes were replicated during the first half of the S phase in embryos in the early cleavage stage.  相似文献   

4.
A new method, utilizing selective photodegradation of 5-bromo-deoxyuridine (BUdR)-substituted DNA and flow cytometry, has been developed for analyzing the timing of replication of specific DNA sequences. Chemically synchronized Chinese hamster ovary cells were given a pulse of the deoxythymidine analogue, BUdR, at different times during S phase, and flow sorted according to DNA content, before DNA isolation. Newly-replicated, unifilarly BUdR-substituted DNA was selectively degraded by treatment with 33258 Hoechst plus near UV light followed by S1 nuclease digestion; the resistant DNA was analyzed for its content of 18s and 28s rDNA or dihydrofolate reductase (DHFR) sequences via Southern blot analysis. Both the rDNA and DHFR sequences were found to replicate almost entirely during the first quarter of S phase. The approach described should have general utility for analyzing replication kinetics of specific DNA sequences in mammalian cells.  相似文献   

5.
Fluorodeoxyuridine (FUdR)-synchronized mouse L cells were allowed to incorporate 5-bromodeoxyuridine (BUdR) at restricted intervals in the S phase and the effects of the selective incorporation of BUdR in DNA on the activities of seven randomly chosen enzymes (five dehydrogenases and two phosphatases) were analysed. Reductions to 56.9 and 83.3 % of the control levels were noted for glucose-6-phosphate dehydrogenase (G6PD) and alcohol dehydrogenase (ADH) activities respectively, when cells were exposed to BUdR during the 1st h of S. Acid phosphatase (AcP) activity was reduced to 81.9% of the control level following exposure to the analogue during the 3rd h of S. Exposure of cells to BUdR for the entire S period failed to increase the magnitude of the reductions in activity for any of these three enzymes. Alternately, when cells were allowed to synthesize DNA in the presence of thymidine for the 1st h of S and the remainder in the presence of BUdR, the activities of G6PD and ADH were comparable to those found in untreated cells. Exposure of cells to thymidine for the 3rd h of S, combined with exposure to BUdR for the preceding and subsequent hours of S, provided complete protection against the BUdR-mediated reduction in AcP activity. The activities of lactate dehydrogenase (LDH), 6-phosphogluconate dehydrogenase (6pGD), isocitrate dehydrogenase (IDH) and alkaline phosphatase (A1P) were found to be insensitive to treatment with BUdR, even when the period of analogue exposure encompassed the entire S period.Additional investigations carried out with G6PD for characterization of the nature of the BUdR effects suggest that the BUdR-mediated reductions in enzyme activities are not caused by the increased rates of degradation of the enzymes, formation of enzyme inhibitors or by the disproportionate replication of A-T base pairs during BUdR treatment. The alterations of enzyme activities appear to result from decreased rates of synthesis of enzymes in BUdR-treated cells. The results of the present study clearly suggest that pulse labelling of cells with BUdR at various intervals of the S phase may provide a useful approach for determining temporal localization of replication time of DNA segments that are critical for the synthesis or regulation of specific gene products.  相似文献   

6.
Either aphidicolin- or thymidine-synchronized human HL-60 cells were used to study the replication pattern of a family of human repetitive DNA sequences, the Eco RI 340 bp family (alpha RI-DNA), and of the ladders of fragments generated in total human DNA after digestion with XbaI and HaeIII (alpha satellite sequences). DNAs replicated in early, middle-early, middle-late and late S periods were labelled with BUdR or with [3H]thymidine. The efficiency of the cell synchronization procedure was confirmed by the transition from a high-GC to a high-AT average base composition of the DNA synthesized going from early to late S periods. By hybridizing EcoRI 340 bp repetitive fragments to BUdR-DNAs it was found that this family of sequences is replicated throughout the entire S period. Comparing fluorograph densitometric scans of [3H]DNAs to the scans of ethidium bromide patterns of total HL-60 DNA digested with XbaI and HaeIII, it was observed that DNA synthesized in different S periods is characterized by approximately the same ladder of fragments, while the intensity of each band may vary through the S phase; in particular, the XbaI 2.4 kb fragment becomes undetectable in late S.  相似文献   

7.
Effects of bromodeoxyuridine (BUdR) substitutions in phage T4 DNA on the initial stages of DNA replication were investigated. Electron microscope studies of partially replicated, light (thymidine-containing) T4 DNA revealed the presence of multiple loops and forks. These DNA preparations had no BUdR in either parental or newly synthesized DNA, and the observations thus show that multiple initiation of DNA replication is a normal event in T4 development and is not caused by the presence of BUdR. A comparison of early replicative stages of light and heavy (BUdR-containing) DNA in cells mixedly infected with light and heavy T4 phage showed that early DNA synthesis occurs preferentially on the light template. Heavy and light parental DNA became associated with the protein complex of replicative DNA with equal efficiency, and there was no effect of BUdR on the net rate of DNA synthesis after infection. Newly synthesized DNA from heavy templates sedimented more slowly through alkaline sucrose gradients than did newly synthesized DNA from light templates and appeared to represent fewer replicative regions per molecule. These data indicate that BUdR substitutions in the DNA caused a slight delay in initiation but that replication of heavy DNA proceeded normally once initiated.  相似文献   

8.
Cell-suspension cultures of soybean (Glycine max (L.) Merr., line SB-1) have been used to study DNA replication. Cells or protoplasts incorporate either radioactive thymidine or 5-bromodeoxyuridine (BUdR) into DNA. The DNA has been extracted as large molecules which can be visualized by autoradiography. Nuclei were isolated and lysed on slides thus avoiding degradation of DNA by a cytoplasmic endonuclease. The autoradiograms demonstrated that DNA synthesis occurs at several sites tandemly arranged on single DNA molecules separated by center to center distances ranging from 10 to 30 m. Velocity sedimentations through alkaline gradients confirm the lengths of the replicated regions seen in autoradiograms. By using velocity sedimentation it also has been possible to demonstrate that replication proceeds by the synthesis of very small (4–6S) DNA intermediates which join to form the larger, replicon-size pieces seen in autoradiograms. Both small (4–6S) and large (20–30S) intermediates are observed in synchronized and exponential cultures. However, after synchronization with fluorodeoxyuridine (FUdR) the rate of DNA synthesis is reduced. Since the size of intermediates is not reduced by FUdR treatment, it is concluded that the slower rate of replication results from a reduction in the number of tandem replication units but not in the rate at which they are elongated. After FUdR treatment, the density analogue of thymidine, BUdR, can be substituted for almost all of the thymidine residue in DNA, resulting in a buoyant density increase (in CsCl) from 1.694 to 1.747 g/cm3. Using this density analogue it is possible to estimate the amount of template DNA attached to new replication sites. When this is done, it can be shown that synchronized cells initiate replication at about 5,000 different sites at the beginning of S. (Each such site will replicate to an average length of 20 m.) Use of BUdR also substantiates that at early stages of replication, very small replicated regions (<8S) exist which are separated by unreplicated segments of DNA which replicate at a later time. Most of these conclusions agree with the pattern of DNA replication established for animal cells. However, a major difference appears to be that after prolonged inhibition of soybean cell replication with FUdR, very small, as well as replicon-size intermediates accumulate when replication is restored. This indicates that regulation of replication in these cells may be different from animal cells.Abbreviations BUdR 5-Bromodeoxyuridine - FUdR 5-Fluorodeoxyuridine  相似文献   

9.
Populations of Tetrahymena pyriformis were grown in a chemically defined medium containing the thymidine analogue 5-bromodeoxyuridine (BUdR). About 65% of the thymidine sites in DNA were substituted by BUdR. During the first generation in the presence of BUdR, all DNA became hybrid. After the following cell division, in about 80% of the cells the second DNA replication round was initiated but no further cell division took place. The cells could be rescued by removing BUdR and adding thymidine. New replication took place before the first cell division. However, although the cells contained double heavy as well as hybrid DNA, only the hybrid DNA was replicated. After a full replication of the hybrid DNA, normal growth was restored. Melting profiles of normal, hybrid, and double heavy DNA indicated a structural change of the double heavy DNA.  相似文献   

10.
The kinetics of DNA replication were analyzed in the second S phase following UV irradiation of Chinese hamster ovary cells synchronized at the beginning of S phase. The cells were synchronized by treating cells selected in mitosis with hydroxyurea for 9 h. Following UV irradiation, the cells were allowed to progress until the next mitosis; at which time they were resynchronized at the beginning of the second S phase by the same procedure. The kinetics of DNA replication were determined by measuring the proportion of DNA which achieved hybrid buoyant density on CsCl density gradients as a function of the time of incubation in the presence of 5-bromodeoxyuridine.The results of these experiments showed that even though the rate of DNA replication is substantially depressed during the first S phase following UV irradiation with a fluence of 5 J/m2, the rate has recovered to the extent that it is indistinguishable from the unirradiated control by the time the cells have entered their second S phase. It was concluded from these observations that the lesions in DNA which caused the rate of DNA replication to be initially depressed during the first S phase have been either removed or modified such that they no longer are able to cause a reduction in the rate of DNA replication in the second S phase following UV irradiation.  相似文献   

11.
We have studied the role of the nuclear matrix in DNA replication in a naturally synchronized eucaryote, Physarum polycephalum. When P. polycephalum. When P. polycephalum macroplasmodia were pulse labeled with 3H-thymidine, the DNA remaining tightly associated with the matrix was highly enriched in newly synthesized DNA. This enrichment was found both in nuclei that had just initiated DNA replication as well as in nuclei isolated later during S phase. Pulse chase experiments showed that the association of newly replicated DNA with the matrix is transient, since most of the newly replicated DNA could be chased from the matrix by incubating pulse labeled macroplasmodia in media containing unlabeled thymidine. Studies measuring the size distribution of the matrix DNA supported the hypothesis that replication forks are attached to the nuclear matrix. Reconstitution controls indicated that these results were unlikely to be due to preferential, nonspecific binding of nascent DNA to the matrix during the extraction procedures. These results with P. polycephalum in combination with previous studies in non-synchronized rodent cells, suggest that the association of newly replicated DNA with the nuclear matrix may be a general feature of eucaryotic DNA replication.  相似文献   

12.
Replication of the single-stranded DNA parvovirus H-1 involves the synthesis of a double-stranded DNA replicative form (RF). In this study, the metabolism of RF DNA was examined in parasynchronous hamster embryo cells. The initiation of RF DNA replication was found to occur late in S phase, as was the synthesis of the DNA upon which subsequent viral hemagglutinin synthesis is dependent. Evidence is presented which indicates that initiation of RF replication requires proteins synthesized in late S phase, but that concomittant protein synthesis is not required for the continuation of RF replication. The data also suggest a requirement for viral protein(s) for progeny strand synthesis. Incorporation of 5-bromo-2'-deoxyuridine (BUdR) into viral DNA resulted in an "all-or-none" inhibition of viral hemagglutinin and viral antigen synthesis. BUdR inactivation of viral protein function was used to explore the time of synthesis of viral DNA serving as template for viral RNA synthesis and the effect of viral protein on RF replication and progeny strand synthesis. Results of this study suggest that parental RF DNA is synthesized shortly after infection, and that viral mRNA is transcribed from only a few copies of the viral genome in each cell. They also support the conclusion that viral protein is inhibitory to RF DNA replication. Density labeling of RF DNA with BUdR, allowing separation of viral strand DNA (V) from viral complementary strand (C), provided additional data in support of the above findings.  相似文献   

13.
H E Varmus  T Padgett  S Heasley  G Simon  J M Bishop 《Cell》1977,11(2):307-319
We have used two experimental strategies to test the role of cellular functions in the synthesis and integration of virus-specific DNA in cells infected by avian sarcoma virus.First, quail embryo fibroblasts, placed in stationary phase (G0) by prolonged serum starvation, did not support the efficient synthesis of viral DNA during the first 24–48 hr after infection. Synthesis of viral DNA was impaired according to at least two parameters: the amount of DNA was diminished, particularly the amount of the plus-strand DNA (identical in polarity to the viral genome); and the length of both minus and plus strands was reduced in the stationary cells. In parallel cultures fed with fresh serum, over two thirds of the cells were able to reenter the cell cycle within 24 hr, and viral DNA of normal size was synthesized.Second, density labeling of viral and cellular DNA with BUdR was used to determine whether cellular DNA synthesis was required for integration of viral DNA. In both quail embryo fibroblasts released from G0 by serum replacement and randomly growing duck embryo fibroblasts, viral DNA was integrated only into cellular DNA replicated during the infection.Our results indicate that serum-starved cells lack a factor (or factors) required for the efficient and complete synthesis of ASV-specific DNA. We have not been able to establish whether such factor(s) are present in growing cells only during S phase. Integration of viral DNA appears to require cellular DNA synthesis; this may be due to a requirement for a factor (or factors) present in adequate concentration only during S phase or to a requirement for the structural changes in cellular DNA that accompany replication.  相似文献   

14.
Heterochromatin is characteristically the last portion of the genome to be replicated. In polytene cells, heterochromatic sequences are underreplicated because S phase ends before replication of heterochromatin is completed. Truncated heterochromatic DNAs have been identified in polytene cells of Drosophila and may be the discontinuous molecules that form between fully replicated euchromatic and underreplicated heterochromatic regions of the chromosome. In this report, we characterize the temporal pattern of heterochromatic DNA truncation during development of polytene cells. Underreplication occurred during the first polytene S phase, yet DNA truncation, which was found within heterochromatic sequences of all four Drosophila chromosomes, did not occur until the second polytene S phase. DNA truncation was correlated with underreplication, since increasing the replication of satellite sequences with the cycE(1672) mutation caused decreased production of truncated DNAs. Finally, truncation of heterochromatic DNAs was neither quantitatively nor qualitatively affected by modifiers of position effect variegation including the Y chromosome, Su(var)205(2), parental origin, or temperature. We propose that heterochromatic satellite sequences present a barrier to DNA replication and that replication forks that transiently stall at such barriers in late S phase of diploid cells are left unresolved in the shortened S phase of polytene cells. DNA truncation then occurs in the second polytene S phase, when new replication forks extend to the position of forks left unresolved in the first polytene S phase.  相似文献   

15.
Synchronized hepatoma tissue culture (HTC) cells, accumulated at the G1/S boundary with aminopterin, were released into S phase with either thymidine or 5-bromodeoxyuridine (BUdR). Tyrosine aminotransferase (TAT) activity was found to be unaffected by BUdR over the initial 3 h of S phase, but then to rapidly decline to a new basal level of 40% of control by 9 h. There was no corresponding response in the activities of alcohol dehydrogenase, malate dehydrogenase, acid phosphatase, and alkaline phosphatase, or in the rate of protein and RNA synthesis. If BUdR incorporation was restricted to limited periods of S phase, TAT was found to be maximally suppressed by incorporation into the initial 40% of the DNA. Incorporation of the analogue into the latter 60% of DNA synthesized during S phase had no effect on TAT. This is the first report that the effect of BUdR on TAT in HTC cells is associated with incorporation of the analog into DNA synthesized during a specific interval of S phase.  相似文献   

16.
Gene replication in the presence of aphidicolin   总被引:1,自引:0,他引:1  
DNA replication in the nucleus of eukaryotic cells is restricted to the S phase of the cell cycle, and different genes are duplicated at specific times, according to a well-defined temporal order. We have investigated whether activation of initiation sites, in proximity to genes that are replicated in different portions of the S phase, could be detected when synchronized 10T1/2 cells were maintained in aphidicolin (APC), an inhibitor of DNA polymerases alpha and delta. Cells released from confluence arrest into medium containing 2 micrograms/mL APC progressed into the S phase, and nascent DNA accumulated during incubations of 24 and 32 h. Exposure to APC for 40 or 48 h resulted in growth of the radiolabeled DNA into larger molecules. Replicating DNA was isolated in CsCl gradients and probed with 32P-labeled gene probes for early-replicating genes (e.g., Ha-ras, mos, and myc) and a late-replicating gene (VH Ig). DNA replicated during the 24-h incubation in APC was enriched in Ha-ras gene sequences. The VH Ig gene did not replicate in cells incubated for as long as 56 h with APC. The myc and the mos genes were detected after 32 and 40 h in APC, respectively. The myc gene is replicated in 10T1/2 cells after Ha-ras but before mos. Therefore, the order of activation of these genes was conserved in the presence of APC. The delay in replication of myc and mos correlated well with the slowing of DNA replication by APC.  相似文献   

17.
The fission yeast cdc21 protein belongs to the MCM family, implicated in the once per cell cycle regulation of chromosome replication. In budding yeast, proteins in this family are eliminated from the nucleus during S phase, which has led to the suggestion that they may serve to distinguish unreplicated from replicated DNA, as in the licensing factor model. We show here that, in contrast to the situation in budding yeast, cdc21 remains in the nucleus after S phase, as is found for related proteins in mammalian cells. We suggest that regulation of nuclear import of these proteins may not be an essential aspect of their function in chromosome replication. To determine the function of cdc21+, we have analysed the phenotype of a gene deletion. cdc21+ is required for entry into S phase and, unexpectedly, a proportion of cells depleted of the gene product are able to enter mitosis in the absence of DNA replication. These results are consistent with the view that individual proteins in the MCM family are required for all initiation events, and defective initiation may impair the coordination between mitosis and S phase.  相似文献   

18.
We have examined the timing of replication of the amplified dihydrofolate reductase genes in the methotrexate-resistant Chinese hamster ovary cell line CHOC 400 using two synchronization procedures. DNA replicated in the presence of 5-bromodeoxyuridine was collected from cells of various times during the DNA synthesis phase and the extent of replication for defined sequences was determined by Southern blotting analysis of CsCl density gradient fractions. We report that under these conditions the DHFR gene replicates throughout the course of S phase in a mode similar to the bulk of the replicated genomic DNA. This contrasts with previous data that shows the non-amplified DHFR gene replicates during the first quarter of S phase. Therefore, we conclude that gene amplification alters the replication timing of the DHFR gene in CHOC 400 cells.  相似文献   

19.
The infection of secondary cultures of Chinese hamster cells with simian virus 40 (SV40) induces the appearance of cells with polyploid deoxyribonucleic acid (DNA) content or chromosomal component within one cell generation. The mechanism of this phenomenon was studied by the use of 5-bromodeoxyuridine (BUdR) incorporation as a DNA density marker. When cultures were treated with (14)C-BUdR and colcemide and harvested at 48 hr postinfection, only hybrid and light DNA molecules were found in control cultures, whereas in infected cultures there were also heavy molecules. The proportion of heavy DNA synthesized during the experimental period varied from 13 to 25%. It was determined by DNA-DNA hybridization that the heavy DNA consisted of cellular DNA. In radioautographic experiments, it was shown that, under the conditions used, a fraction of the infected cell population twice replicated its complete DNA content. Analysis of the kinetics indicated that the heavy DNA resulted from the reinitiation of DNA synthesis after the initial replication of the entire cell DNA. It was concluded that, after infection with SV40, a fraction of the Chinese hamster cell population undergoes two cycles of DNA synthesis without intervening mitosis.  相似文献   

20.
The addition of thymidine (TdR) to cells growing in a medium containing 5-bromodeoxyuridine (BUdR) at the end of the first replication cycle results in the incorporation of TdR into the late replicating DNA regions. These sites can be visualized by staining the metaphase chromosomes with the fluorescent dye "33258 Hoechst" or a "33258 Hoechst" Giemsa procedure. A sequence of late replication patterns has been established in metaphase chromosomes of cultured human peripheral lymphocytes. The patterns are in agreement with those obtained by the standard autoradiographic procedures, but are more accurate. As is known from autoradiography, late replicating bands are in the position of G or Q bands. The "33258 Hoechst" Giemsa staining procedure of chromosomes which have replicated in the presence of BUdR first and in TdR for the last 2 hrs of the S phase is preferable to the currently used Giemsa banding techniques: the method yields very well banded metaphases in all preparations examined, as the chromosome structure is not disrupted by the pretreatment. The bands are very distinct, even in the "difficult" chromosomes (e.g. No. 4, 5, 8 and X). In female cells the late replicating X chromosome can be identified by its size and staining pattern. In addition to the replication asynchrony, the sequence of replication within both X chromosomes in female cells is not absolutely identical. The phenomenon of a phase difference in replication between the homologues is not a peculiarity of the X chromosome, but can be found in all autosomes as well as in homologous positions on the chromatids of individual chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号