首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.

Background

Mouse mammary tumor virus (MMTV) encodes the Rem protein, an HIV Rev-like protein that enhances nuclear export of unspliced viral RNA in rodent cells. We have shown that Rem is expressed from a doubly spliced RNA, typical of complex retroviruses. Several recent reports indicate that MMTV can infect human cells, suggesting that MMTV might interact with human retroviruses, such as human immunodeficiency virus (HIV), human T-cell leukemia virus (HTLV), and human endogenous retrovirus type K (HERV-K). In this report, we test whether the export/regulatory proteins of human complex retroviruses will increase expression from vectors containing the Rem-responsive element (RmRE).

Results

MMTV Rem, HIV Rev, and HTLV Rex proteins, but not HERV-K Rec, enhanced expression from an MMTV-based reporter plasmid in human T cells, and this activity was dependent on the RmRE. No RmRE-dependent reporter gene expression was detectable using Rev, Rex, or Rec in HC11 mouse mammary cells. Cell fractionation and RNA quantitation experiments suggested that the regulatory proteins did not affect RNA stability or nuclear export in the MMTV reporter system. Rem had no demonstrable activity on export elements from HIV, HTLV, or HERV-K. Similar to the Rem-specific activity in rodent cells, the RmRE-dependent functions of Rem, Rev, or Rex in human cells were inhibited by a dominant-negative truncated nucleoporin that acts in the Crm1 pathway of RNA and protein export.

Conclusion

These data argue that many retroviral regulatory proteins recognize similar complex RNA structures, which may depend on the presence of cell-type specific proteins. Retroviral protein activity on the RmRE appears to affect a post-export function of the reporter RNA. Our results provide additional evidence that MMTV is a complex retrovirus with the potential for viral interactions in human cells.  相似文献   

4.
5.
6.
Viruses, including retroviruses like human immunodeficiency virus (HIV) and mouse mammary tumor virus (MMTV), are transmitted from mother to infants through milk. Lymphoid cells and antibodies are thought to provide mammary gland and milk-borne immunity. In contrast, little is known about the role of mammary epithelial cells (MECs). The APOBEC3 family of retroviral restriction factors is highly expressed in macrophages and lymphoid and dendritic cells. We now show that APOBEC3 proteins are also expressed in mouse and human MECs. Lymphoid cell-expressed APOBEC3 restricts in?vivo spread of MMTV to lymphoid and mammary tissue. In contrast, mammary gland-expressed APOBEC3 is packaged into MMTV virions and decreases the infectivity of milk-borne viruses. Moreover, APOBEC3G and other APOBEC3 genes are expressed in human mammary cells and have the potential to restrict viruses produced in this cell type. These data point to a role for APOBEC3 proteins in limiting infectivity of milk-transmitted viruses.  相似文献   

7.
S Y Le  J H Chen    J V Maizel 《Nucleic acids research》1989,17(15):6143-6152
RNA stem-loop structures situated just 3' to the frameshift sites of the retroviral gag-pol or gag-pro and pro-pol regions may make important contributions to frame-shifting in retroviruses. In this study, the thermodynamic stability and statistical significance of such secondary structural features relative to others in the sequence have been assessed using a newly developed method that combines calculations of the lowest free energy of formation of RNA secondary structures and the Monte Carlo simulations. Our results show that stem-loop structures situated just 3' to the frameshift sites are both highly stable and statistically significant relative to others in the gag-pol or gag-pro and pro-pol junction domains (both 300 nucleotides upstream and downstream from the possible frameshift sites are included) of Rous sarcoma virus (RSV), human immunodeficiency virus (HIV-1), bovine leukemia virus (BLV), human T-cell leukemia virus type II (HTLV-II), and mouse mammary tumor virus (MMTV). No other more stable, or significant folding regions are predicted in these domains.  相似文献   

8.
Proteasome inhibitors reduce the budding of human immunodeficiency virus types 1 (HIV-1) and 2, simian immunodeficiency virus, and Rous sarcoma virus. To investigate this effect further, we examined the budding of other retroviruses from proteasome inhibitor-treated cells. The viruses tested differed in their Gag organization, late (L) domain usage, or assembly site from those previously examined. We found that proteasome inhibition decreased the budding of murine leukemia virus (plasma membrane assembly, PPPY L domain) and Mason-Pfizer monkey virus (cytoplasmic assembly, PPPY L domain), similar to the reduction observed for HIV-1. Thus, proteasome inhibitors can affect the budding of a virus that assembles within the cytoplasm. However, the budding of mouse mammary tumor virus (MMTV; cytoplasmic assembly, unknown L domain) was unaffected by proteasome inhibitors, similar to the proteasome-independent budding previously observed for equine infectious anemia virus (plasma membrane assembly, YPDL L domain). Examination of MMTV particles detected Gag-ubiquitin conjugates, demonstrating that an interaction with the ubiquitination system occurs during assembly, as previously found for other retroviruses. For all of the cell lines tested, the inhibitor treatment effectively inactivated proteasomes, as measured by the accumulation of polyubiquitinated proteins. The ubiquitination system was also inhibited, as evidenced by the loss of monoubiquitinated histones from treated cells. These results and those from other viruses show that proteasome inhibitors reduce the budding of viruses that utilize either a PPPY- or PTAP-based L domain and that this effect does not depend on the assembly site or the presence of monoubiquitinated Gag in the virion.  相似文献   

9.
Mouse mammary tumor virus (MMTV) infects B lymphocytes and expresses a superantigen on the cell surface after integration of its reverse-transcribed genome. Superantigen-dependent B- and T-cell activation becomes detectable 2 to 3 days after infection. We show here that before this event, B cells undergo a polyclonal activation which does not involve massive proliferation. This first phase of B-cell activation is T cell independent. Moreover, during the first phase of activation, when only a small fraction of B cells is infected by MMTV(SW), viral DNA is detected only in activated B cells. Such a B-cell activation is also seen after injection of murine leukemia virus but not after injection of vaccinia virus, despite the very similar kinetics and intensity of the immune response. Since retroviruses require activated target cells to induce efficient infection, these data suggest that the early polyclonal retrovirus-induced target cell activation might play an important role in the establishment of retroviral infections.  相似文献   

10.

Background

Bone marrow stromal cell antigen 2 (BST-2) is a cellular factor that restricts the egress of viruses such as human immunodeficiency virus (HIV-1) from the surface of infected cells, preventing infection of new cells. BST-2 is variably expressed in most cell types, and its expression is enhanced by cytokines such as type I interferon alpha (IFN-??). In this present study, we used the beta-retrovirus, mouse mammary tumor virus (MMTV) as a model to examine the role of mouse BST-2 in host infection in vivo.

Results

By using RNA interference, we show that loss of BST-2 enhances MMTV replication in cultured mammary tumor cells and in vivo. In cultured cells, BST-2 inhibits virus accumulation in the culture medium, and co-localizes at the cell surface with virus structural proteins. Furthermore, both scanning electron micrograph (SEM) and transmission electron micrograph (TEM) show that MMTV accumulates on the surface of IFN??-stimulated cells.

Conclusions

Our data provide evidence that BST-2 restricts MMTV release from naturally infected cells and that BST-2 is an antiviral factor in vivo.  相似文献   

11.
Infection of cultured rat hepatoma cells by mouse mammary tumor virus.   总被引:18,自引:0,他引:18  
A continuous line of buffalo rat hepatoma (HTC) cells has been successfully infected with mouse mammary tumor virus (MMTV) produced by the GR mammary tumor cell line. Uniform infection required initial exposure of the HTC cells to greater than 10(5) MMTV particles per cell. The resultant chronically infected cell population was found to have stably acquired 20-30 copies of MMTV DNA. The infected cells contain viral RNA and express viral antigens; however, very few MMTV particles are released into the culture medium. In spite of the biochemical evidence for infection, we have not detected any alterations in the morphology or growth properties of the infected HTC cells. As is the case in mammary tumor cells, the intracellular concentration of viral RNA is strongly stimulated (50-150 fold) by the synthetic glucorcorticoid, dexamethasone. Thus it appears that the mechanisms by which glucorticoids regulate MMTV gene expression in mouse cells are maintained when this virus infects nonmurine cells.  相似文献   

12.
Regulation of human T cell leukemia virus expression   总被引:15,自引:0,他引:15  
P L Green  I S Chen 《FASEB journal》1990,4(2):169-175
Retroviruses of the type C morphology have been implicated in a wide variety of diseases in animals and humans. The human T cell leukemia viruses types I (HTLV-I) and II (HTLV-II), the prototypic human-type C retroviruses, have been identified as the causative agents of some forms of human leukemia and neurological disorders. The genetic structure and regulation of the HTLVs are more complex than their avian and murine leukemia virus counterparts. In addition to the gag, pol, and env genes that encode the characteristic virion proteins of all replication competent retroviruses, the genomes of HTLV encode the non-structural proteins, Tax and Rex, which are required for regulating viral gene expression. To understand what appears to be a complex mechanism of disease induction by HTLV, elucidating the regulation and function of the viral gene products and the interaction of these products with each other, as well as with cellular factors, will be critical. This review focuses primarily on regulation of HTLV gene expression in the infected human T lymphocyte, but also discusses analogous gene regulation by the human immunodeficiency virus (HIV). It concentrates specifically on the role these gene products play in virus replication and, ultimately, pathogenesis.  相似文献   

13.
14.
The human T-cell leukemia viruses (HTLV) are associated with T-cell malignancies in humans. The malignant transformation occurs after a long latency in some carriers, and its mechanism appears to be distinct from that of other classes of retroviruses which induce transformation through viral or cellular oncogenes. A widely postulated explanation is that the products of novel pX genes transactivate endogenous cellular genes which lead to tumor development in T cells. To directly examine the pathological effects of pX genes in vivo, we produced transgenic mice harboring the HTLV type I pX genes under several regulatory units: HTLV type I long terminal repeat, immunoglobulin enhancer-simian virus 40 promoter, and mouse mammary tumor virus long terminal repeat. Atrophy of the thymus was characteristic in these mice no matter which regulatory unit directed the expression of the genes.  相似文献   

15.
A retroviral insertional mutation, especially by mouse mammary tumor virus (MMTV), is a major cause of murine mammary tumorigenesis. Prompted by our previous finding that FGF8, an insertionally activated cellular oncogene, is highly expressed in androgen-dependent mouse mammary Shionogi carcinoma cells, we here investigated retroviral integration adjacent to the fgf8 locus in Shionogi carcinoma. In the genomic Southern blots for fgf8 and its 5'-upstream gene npm3, the hybridized fragments were identical to the host DD/Sio mice, the original Shionogi carcinoma 115 tumor, and a pair of cultured Shionogi carcinoma cell lines of SC-3 and SC-4, suggesting that no retroviral integration occurred around either loci. The genomic cloning for the fgf8 locus from SC-3 cells also confirmed no MMTV integration. In addition, npm3, which is usually coactivated with fgf8 by MMTV insertion,was not up-regulated by androgens in SC-3 cells. All these findings led us to conclude that no retroviral insertion was present at the common integration sites adjacent to the fgf8 locus in Shionogi carcinoma although we demonstrated in this study that multiple proviral sequences of MMTV, Moloney murine sarcoma virus and FBJ-murine sarcoma virus are integrated into SC-3 cells in association with their distinct promoter activity in SC-3 cells.  相似文献   

16.
17.
Mouse mammary tumor virus (MMTV) is a betaretrovirus that infects rodent cells and uses mouse transferrin receptor 1 for cell entry. To characterize the interaction of MMTV with its receptor, we aligned the MMTV envelope surface (SU) protein with that of Friend murine leukemia virus (F-MLV) and identified a putative receptor-binding domain (RBD) that included a receptor binding sequence (RBS) of five amino acids and a heparin-binding domain (HBD). Mutation of the HBD reduced virus infectivity, and soluble heparan sulfate blocked infection of cells by wild-type pseudovirus. Interestingly, some but not all MMTV-like elements found in primary and cultured human breast cancer cell lines, termed h-MTVs, had sequence alterations in the putative RBS. Single substitution of one of the amino acids found in an h-MTV RBS variant in the RBD of MMTV, Phe(40) to Ser, did not alter species tropism but abolished both virus binding to cells and infectivity. Neutralizing anti-SU monoclonal antibodies also recognized a glutathione S-transferase fusion protein that contained the five-amino-acid RBS region from MMTV. The critical Phe(40) residue is located on a surface of the MMTV RBD model that is distant from and may be structurally more rigid than the region of F-MLV RBD that contains its critical binding site residues. This suggests that, in contrast to other murine retroviruses, binding to its receptor may result in few or no changes in MMTV envelope protein conformation.  相似文献   

18.
We have used restriction endonucleases which cleave the DNA of mouse mammary tumor virus (MMTV) at one site (Eco RI) and several sites (Pst I, Sac I and Bam HI) to study infection and mammary tumorigenesis in mice. Proviruses acquired during infection of BALB/c mice foster-nursed by virus-producing C3H females can be distinguished from the MMTV proviruses endogenous to uninfected BALB/c mice by the nature of the fragments generated with Pst I and Bam HI. Using this assay, we show that lactating mammary glands as well as mammary tumors from BALB/cfC3H mice have acquired MMTV DNA, and that a minimum of approximately 10% of normal glandular cells can be infected. The new proviruses appear to be linked to cellular DNA of mammary tumors and infected lactating mammary glands within a limited region (0.2 x 10(6) daltons) of the viral DNA; the location of this region, based upon mapping studies with unintegrated MMTV DNA, suggests that the orientation of these proviruses is colinear with linear DNA synthesized in infected cells and thus approximately colinear with the viral RNA. Comparisons of many mammary tumors and studies of lactating mammary glands with a high proportion of independently infected cells indicate that a large number of sites in the cellular genome can accommodate a new provirus; the acquired proviruses are rarely, if ever, found in tandem with each other or with endogenous proviruses. We cannot, however, distinguish between random integration and integration into a large number of preferred sites in the host genome. Since Eco RI and Bam HI cleavage of DNA from each mammary tumor generates a unique set of viral-specific fragments, we propose that the tumors are composed principally of cells derived from a subset of the many infected cells in a mammary gland; this proposal is supported by our finding that Eco RI digestion of DNA from several transplants of a primary tumor yields the pattern characteristic of the primary tumor.  相似文献   

19.
Non-acute transforming retroviruses like mouse mammary tumor virus (MMTV) cause cancer, at least in part, through integration near cellular genes involved in growth control, thereby de-regulating their expression. It is well-established that MMTV commonly integrates near and activates expression of members of the Wnt and Fgf pathways in mammary tumors. However, there are a significant number of tumors for which the proviral integration sites have not been identified. Here, we used high through-put screening to identify common integration sites (CISs) in MMTV-induced tumors from C3H/HeN and BALB/c mice. As expected, members of both the Wnt and Fgf families were identified in this screen. In addition, a number of novel CISs were found, including Tcf7l2, Antxr1/Tem8, and Arhgap18. We show here that expression of these three putative oncogenes in normal murine mammary gland cells altered their growth kinetics and caused their morphological transformation when grown in three dimensional cultures. Additionally, expression of Tcf7l2 and Antxr1/Tem8 sensitized cells to exogenous WNT ligand. As Tcf7l2, Antxr1/Tem8, and Arhgap18 have been associated with human breast and other cancers, these data demonstrate that MMTV-induced insertional mutation remains an important means for identifying genes involved in breast cancer.  相似文献   

20.
The open reading frame (ORF) in the long terminal repeat (LTR) of mouse mammary tumor virus (MMTV) has recently been shown to encode multiple products including a negative acting factor (Naf) and a superantigen (Sag). Expression of superantigens from endogenous MMTV loci in the mouse results in the deletion of whole classes of T cells. In a PCR approach, with primers to the MMTV ORF and hybridization to MMTV specific probes, we have identified three human sequences. Direct sequencing of PCR products revealed that one of these products is related to a human autoantigen that is conserved among many species and is expressed in testes and sperm. The second sequence that we have identified is novel, and no evidence for expression of this sequence could be obtained. Finally, the third ORF-like sequence is a new member of a previously described family of human endogenous retroviruses (RTVL-I). This sequence is transcribed in several human cell lines, including B lymphoblastoid cells, and is thus the first demonstration that an RTVL-I-related sequence can be expressed. Taken together, these findings raise the intriguing possibility that the human genome contains superantigen-like sequences, some of which are also related to endogenous retroviruses, that may influence the T cell repertoire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号