首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the study was to compare the physico‐chemical parameters of milt from sea trout (Salmo trutta m. trutta), brook trout (Salvelinus fontinalis) and rainbow trout (Oncorhynchus mykiss). Milt was collected by stripping and spermatozoa concentrations, were determined and compared with sperm motility and spermatocrit values along with seminal plasma indices (pH, osmolality, sodium, potassium, chlorine, calcium, magnesium, glucose and protein concentrations). The highest spermatozoa concentration of 22.3 ± 6.7 × 109 ml?1 was found in the sea trout milt, and was significantly different of those observed in brook trout (11.9 ± 3.3 × 109 ml?1) and rainbow trout (10.7 ± 4.4 × 109 ml?1). The values for pH and K+ did not differ significantly among species. The mean pH was 8.0 in the milt of each species and the K+ concentrations ranged from 24.8 ± 7.2 to 30.5 ± 7.6 mm L?1. Considerable differences were determined for the Ca2+ ions concentrations. The highest value was found in sea trout (1.7 ± 0.3 mm L?1), while in the rainbow trout it was 0.7 ± 0.5 and in the brook trout 0.4 ± 0.1 mm L?1. The most pronounced differences were found in the glucose concentration cause of its unnaturally low concentration in rainbow trout of the mean value of 6.0 ± 15.2 mg L?1. The mean value in sea trout and brook trout was 185.0 ± 172.4 and 231.2 ± 148.4 mg L?1 respectively. For all species, protein mean values were below 1.3 g L?1. The mean osmolality was between 230.6 ± 98.6 and 272.0 ± 26.4 mOsm kg?1 in the species studied. No correlation was found between any components determined in milt and the spermatozoa motility (P > 0.05). The sperm concentration was positively correlated with the protein content in the milt of the three species studied, other less exhibited correlation was found.  相似文献   

2.
  1. The brown trout Salmo trutta is characterised by both anadromous (sea trout) and resident populations, naturally occurring in Atlantic and Ponto-Caspian rivers. Sea trout are currently considered absent from rivers of the Mediterranean area, probably because of the non-optimal chemical–physical characteristics of the Mediterranean Sea. However, the occasional bycatch of smoltified S. trutta in the Adriatic Sea is well known among fishermen and the biological explanation of this phenomenon is still controversial. The aim of this study was to compare the genetic diversity of freshwater and marine brown trout to try to understand the factors underlying the presence of putative anadromous brown trout in the Adriatic Sea.
  2. In this study, we analysed the genetic diversity of: (1) wild brown trout collected from the Esino River (central Italy); (2) a domestic strain of brown trout used for stocking the study area; and (3) a sample of Adriatic sea trout collected near the outlet of the Esino River. Together with genetic analysis, we carried out scale analysis in order to track the freshwater/marine stages of the life cycle in the sea trout samples. The genetic characterisation was carried out by polymerase chain reaction–restriction fragment length polymorphism analysis of the mtDNA fragment ND-5/6 and the nuclear locus LDH-C1* and by genotyping 15 microsatellite loci. The genetic polymorphism obtained was used to investigate intra- and inter-population genetic diversity, rates of genetic introgression between wild and domestic samples and the origin of sea trout specimens by using assignment tests.
  3. Our genetic analyses demonstrated that the sea trout analysed in this study are from the domestic strain of Atlantic origin used in central Italy for stocking activities. The level of genetic introgression between native and domestic samples is high in the Esino River. The populations more resilient to introgressive hybridisation appeared to be those living in the portion of the river network dominated by carbonate rocks. Assignment tests (GeneClass) suggest the existence of a link between stocking efforts and the freshwater origin of the sea trout. In addition, data obtained from the analysis of scales, size measurement, and sex determination showed a pattern of smolt age, size, and sex ratio very similar to those observed in other anadromous populations.
  4. In conclusion, the present study highlighted that sea trout from the central Adriatic Sea originated from brown trout of Atlantic origin inhabiting the Esino River. Their seaward migratory behaviour could represent a consequence of an active migration instead of a passive displacement by water flow. Our results also showed that traditional stocking practices represent a negative activity for the conservation of the last Mediterranean native S. trutta populations.
  相似文献   

3.
Testicular development was followed in juvenile sea trout (Salmo trutta morpha trutta L.) stocked in a river near Szczecin, Poland in 1992. Fish age was between 3 and 6.5 months post‐hatch. Fish were sampled monthly. Sex‐dependent differences in gonad structure and timing of their differentiation were observed after dissection under light microscope. In 3‐month‐old fry, when female gonads were differentiating (morphologically and cytologically), gonads of potential males remained undifferentiated. Development of a gonad into a male was primarily indicated by the formation of seminiferous tubules (lobules). In the sea trout under study, the lobules formed between the fourth and fifth month post‐hatch (July–August) (fork length >5.6 cm). There were no significant differences in body fork length between fish with and without lobules, although mean length of the former was higher. Early spermatogenesis began once the type B spermatogonia appeared. The timing of their appearance differed widely among individuals. Type B spermatogonia were found for the first time in a 5‐month‐old male (late August). Spermatocytes and cells of subsequent stages appeared in an incompletely matured 6.5‐month‐old male as ‘attempted spermatogenesis’ (fork length = 8.8 cm). Most examined males remained immature, their germ cells not having passed the type A spermatogonium level. In 6.5‐month‐old alevins, no significant differences in fish size between individuals beginning spermatogenesis (stage II) and those at stage I were detected, although those at stage II were longer. As the male gonad structures were forming, the quantitative gonad parameters were gradually increasing, even when referring to the unit area; only the gonocyte size gradually decreased. Generally, each observed monthly or bimonthly difference was statistically significant (P < 0.05).  相似文献   

4.
The supportive breeding programme for sea trout (Salmo trutta) in the River Dalälven, Sweden, is based on a sea‐ranched hatchery stock of local origin that has been kept ‘closed’ to the immigration of wild genes since the late 1960s (about seven generations). In spite of an apparent potential for substantial uni directional gene flow from sea‐ranched to wild (naturally produced) trout, phenotypic differences with a presumed genetic basis have previously been observed between the two ‘stocks’. Likewise, two previous studies of allozyme and mitochondrial DNA variation based on a single year of sampling have indicated genetic differentiation. In the present study we used microsatellite and allozyme data collected over four consecutive years, and tested for the existence of overall genetic stock divergence while accounting for temporal heterogeneity. Statistical analyses of allele frequency variation (F‐statistics) and multilocus genotypes (assignment tests) revealed that wild and sea‐ranched trout were significantly different in three of four years, whereas no overall genetic divergence could be found when temporal heterogeneity among years within stocks was accounted for. On the basis of estimates of effective population size in the two stocks, and of FST between them, we also assessed the level of gene flow from sea‐ranched to wild trout to be ≈ 80% per generation (with a lower confidence limit of ≈ 20%). The results suggest that the reproductive success of hatchery and naturally produced trout may be quite similar in the wild, and that the genetic characteristics of the wild stock are largely determined by introgressed genes from sea‐ranched fish.  相似文献   

5.
Aarestrup  Kim  Nielsen  Christian  Koed  Anders 《Hydrobiologia》2002,483(1-3):95-102
The downstream migration of Atlantic salmon (Salmo salarL.) and sea trout smolt (S. trutta L.) was investigated using radio telemetry in the spring of 1999 and 2000. Forty wild sea trout smolts, 20 F1 sea trout smolts, 20 hatchery salmon smolts and 20 salmon smolts from river stockings were radio tagged and released in the Danish River Lilleaa. The downstream migration of the different groups of fish was monitored by manual tracking and by three automatic listening stations. The downstream migration of radio tagged smolts of both species occurred concurrently with their untagged counterparts. The diel migration pattern of the radio tagged smolts was predominantly nocturnal in both species. Wild sea trout smolt migrated significantly faster than both the F1 trout and the introduced salmon. There was no correlation between net ground speed, gill Na+,K+-ATPase activity or fish length in any of the different groups. The migration speed of wild sea trout smolts was positively correlated with water discharge in both years. In F1 sea trout smolts, migration speed was positively correlated with temperature in 1999. The migration speed of salmon smolts did not correlate to any of the investigated parameters.  相似文献   

6.
Anadromous brown trout (sea trout), Salmo trutta, is currently in decline throughout its range, largely due to anthropogenic stressors in freshwater and marine habitats. Acoustic telmetry was utilized to study the marine migration of sea trout post-smolts from three populations in a relatively pristine subarctic fjord system. While at sea, the sea trout spent a substantial part of their time close to their natal river, preferred near shore over pelagic habitats and were strongly surface oriented. Despite a fidelity towards local areas, the sea trout utilized various parts of the fjord system, with maximum dispersion >30 km and total migration distance >300 km. Almost half of the sea trout (44%) migrated between river outlets, indicating that a metapopulation approach may be appropriate when managing neighbouring sea trout populations at high latitudes. Furthermore, the different populations displayed different migratory behaviours in terms of distance migrated, dispersion from origin and the likelihood of leaving their home area. This variation in migratory behaviour is likely influenced by spatiotemporal differences in habitat quality between sites, indicating that local habitat variations may promote population-specific behavioural responses even in relatively confined fjord systems.  相似文献   

7.
The extent to which no‐take marine reserves can benefit anadromous species requires examination. Here, we used acoustic telemetry to investigate the spatial behavior of anadromous brown trout (sea trout, Salmo trutta) in relation to a small marine reserve (~1.5 km2) located inside a fjord on the Norwegian Skagerrak coast. On average, sea trout spent 42.3 % (±5.0% SE) of their time in the fjord within the reserve, a proportion similar to the area of the reserve relative to that of the fjord. On average, sea trout tagged inside the reserve received the most protection, although the level of protection decreased marginally with increasing home range size. Furthermore, individuals tagged outside the reserve received more protection with increasing home range size, potentially opposing selection toward smaller home range sizes inflicted on fish residing within reserves, or through selective fishing methods like angling. Monthly sea trout home ranges in the marine environment were on average smaller than the reserve, with a mean of 0.430 (±0.0265 SE) km2. Hence, the reserve is large enough to protect the full home range of some individuals residing in the reserve. Synthesis and applications: In general, the reserve protects sea trout to a varying degree depending on their individual behavior. These findings highlight evolutionary implications of spatial protection and can guide managers in the design of marine reserves and networks that preserve variation in target species' home range size and movement behavior.  相似文献   

8.
Introduced and allopatric populations of brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss were sampled in Slovenia for stable isotope analysis to assess dietary niche shifts through ontogeny and estimate the propensity for cannibalism. Both S. trutta and O. mykiss are cannibals, with higher average relative contribution of conspecific assimilated energy for S. trutta (27·9%) compared with O. mykiss (7·7%). The smallest cannibal was 166 mm in the S. trutta population and 247 mm in the O. mykiss population.  相似文献   

9.
In their life cycle, especially at early life stages, fishes pass through distinct growth stanzas with different length‐weight relationship patterns. Salmonid fish fry emergence from the redd gravel is a crucial moment in their life history. This study presents an ontogenic change in allometric length–weight relationship scaling of sea trout Salmo trutta at the time of emergence from the natural redds in a small lowland stream of western Lithuania. The paper also gives shrinkage rates and correction factors for emergent Salmo trutta fry after protracted formalin preservation.  相似文献   

10.
The aim of this study was to test the hypothesis that hatchery brown trout Salmo trutta smolts, with 50% reduced or no feeding over the last 5 months before release, were more likely to migrate to the sea than individuals with standard feeding ratios. The juvenile fish were divided into three groups 176 days before release: (A) with no feeding, (B) with 50% and (C) with 100% feeding. To study their seaward migration, 40 fish from each feeding group were tagged with acoustic transmitters and tracked by automatic listening stations in the River Nidelva, Trondheim, Norway, its estuary and in the nearest marine environment. At the time of release, mean condition factor was significantly lower in group A and the fish from groups A and B had higher levels of Na+, K+‐ATPase. Significantly more fish from group A migrated to the sea, but the rate of downstream progression from release to the estuary did not differ between the three groups. In conclusion, the S. trutta smolts with no access to food in the last 176 day before release were more likely to migrate to the sea. Fish from all three feeding groups, however, appeared to smoltify and had the same rate of downstream progression to the estuary. This indicates that differences in migratory behaviour between individuals from the three feeding groups begin from the time when the fish reach saline waters. It is suggested that feeding in hatcheries has to be greatly reduced (by 50% or more) over several months to have a pronounced effect on the migratory behaviour in S. trutta.  相似文献   

11.
When rehabilitating and reintroducing trout Salmo trutta in rivers, it is a goal that as many as possible survive, home and form self-sustaining populations. Hatchery-reared, anadromous S. trutta have significant lower ability to return to the area where they were raised if (a) transported in a closed tank to sea and released 5 km from the River Imsa, relative to those that were (b) transported when swimming in a partly submerged tank with sea water run-through, while being slowly towed by a boat the same distance or (c) released at the outlet of the River Imsa. Thus, if deprived from environmental cues during part of the way, they lose their ability to home.  相似文献   

12.
Radio tagged wild Atlantic salmon Salmo salar(n = 30) and sea trout Salmo trutta(n = 19) were simultaneously released from a sea pen outside the mouth of the River Lærdalselva and their migration to spawning areas was recorded. The distance from the river mouth to a position held at spawning ranged from 2 to 24 km and did not differ between the species (mean ± s .d . 15·9 ± 4·3 and 14·9 ± 5·2 km for Atlantic salmon and sea trout, respectively). The duration of the migration phase, however, was significantly shorter for Atlantic salmon than for sea trout (8–12 days, respectively). All Atlantic salmon migrated straight to an area near the spawning ground, whereas 50% of the sea trout had a stepwise progression with one or more periods with erratic movements before reaching the spawning area. After the migration phase, a distinct search phase with repeated movements up‐ and downstream at or close to the position held at spawning was identified for the majority of the fishes (75%, both species). This search phase was significantly shorter for Atlantic salmon than for sea trout (mean 13–31 days, respectively). Mean ± s .d . length of the river stretch used during the search phase was larger for sea trout (3·3 ± 2·5 km) than for Atlantic salmon (1·2 ± 0·9 km). A distinct holding phase, with no movements until spawning, was also observed in the majority of the Atlantic salmon (80%, mean duration 22 days) and sea trout (65%, mean duration 12 days). For both species, a weak, non‐significant trend was observed in the relationship between time spent on the migration phase, and time spent on the search (r2 = 0·43) and holding phase (r2 = 0·24). There was a highly significant decrease, however, in the duration of the holding phase with an increase in the time spent on the search phase (r2 = 0·67).  相似文献   

13.
The post spawning behaviour of sea trout Salmo trutta was studied over a 2 year period in the river and estuary of the River Fowey, south‐west England. Forty‐five sea trout kelts were trapped immediately after spawning in December and intraperitoneally tagged with miniature acoustic transmitters. The subsequent emigration into coastal waters was monitored using acoustic receivers deployed throughout the river catchment. The levels of gill Na+K+ATPase activity in sea trout kelts sampled at the same time as the tagged fish were within the range of 2·5 to 4·5 μmol Pi per mg protein per h indicating that the post‐spawning fish were not physiologically adapted to salt water. The tagged kelts were resident in fresh water between 4 and 70 days before entering the estuary. Sixty two per cent of the tagged kelts subsequently migrated successfully into coastal waters, with a higher success rate for male fish (75%) than females (58%). There was a significant size related difference in the run‐timing of the kelts with the larger fish moving more quickly into coastal waters after spawning than smaller fish. Seaward migration within fresh water was predominantly nocturnal and generally occurred in conjunction with increasing river discharge and rising water temperature. Migration through the estuary continued to be predominantly nocturnal and occurred during an ebbing tide. Residency within the estuary varied amongst individuals although it was invariably short, with most fish moving out into coastal waters within one to two tidal cycles. Five tagged kelts returned from the coastal zone and re‐entered fresh water during April and June. Marine residence time varied between 89 and 145 days (mean 118 days) and the minimum estimated marine survival was c. 18%. One of these sea trout was subsequently recaptured after successfully spawning in the vicinity where it had been previously tagged demonstrating a degree of spawning site fidelity.  相似文献   

14.
Sea trout (Salmo trutta) is an anadromous form of brown trout, a commercially important salmonid species in Europe. Stocking has been used to compensate for the decrease of natural populations and maintenance of fishery and angling catches. Over 1.5 million smolts and 4.5 million alevins are released to Polish coastal rivers each year. Variation at 7 microsatellite loci (Ssa197, Ssa171, Ssa85, Str15, Str73, Str591, and Str543) was used to study genetic polymorphism of spawners returning to 6 rivers. Application of distance method for comparison of pairs of populations based on number of different alleles (F ST) revealed significant differences between Vistula and Wieprza, and Parseta as well as between Drweca and Wieprza, and Slupia. The level of heterozygosity was similar between most of the studied sea trout populations; considerable differences were found only for Str591. Differences in frequencies of a few alleles between populations were observed. An exact test of sample differentiation based on allele frequencies confirmed lack of significance of differentiation between the 6 pairs of populations (F ST and R ST). No admixture was observed in the studied populations. Possible effects of stocking on the genetic polymorphism of the sea trout populations in wild with implications for biotechnology are discussed.  相似文献   

15.
Survival rates and growth parameters of hatchery‐reared sea trout (Salmo trutta trutta L.) fry were determined after stocking in the wild. The larvae were hatchery‐reared for 12 weeks in two groups: fry were fed either on live zooplankton and live chironomidae larvae (LFG), or fed a pellet diet (PFG). The survival rate and specific growth rates were higher in the LFG than in the PFG group. Most effective for hatchery‐reared fish intended for stocking was the natural, live feed. The mean number of chironomid larvae found in the stomachs of fish that were initially captured in the wild was significantly higher in the LFG than in the PFG group. The live diet supplied in the rearing period had a positive impact on the foraging skills of the sea trout fry and their survival in the wild after their release on 24 April 2010.  相似文献   

16.
Acoustic telemetry was utilized to track 49 brown trout (Salmo trutta) and 37 Arctic charr (Salvelinus alpinus) first-time migrants of wild origin [post-smolts; mean LF (fork length): 169 and 172 mm] in a large fjord in northern Norway. The S. trutta were registered at sea for more than twice the time of the S. alpinus (medians of 54 and 22 days, respectively). Both species were mostly detected near river mouths (>80% of detections) and almost exclusively spent their time (>95%) within the interior 18 km of the fjord. They were surface oriented, with most detections at <1 m depth and S. trutta deeper on average (median mean depths of 0.7 and 0.5 m, respectively). This study concludes that post-smolts of both species stay closer to the surface and to river mouths than larger veteran migrants. This study emphasizes the importance of river mouths and upper water layers for the survival of both species during their first marine migration.  相似文献   

17.
The early migration and habitat use of brown trout Salmo trutta post‐smolts tagged with acoustic transmitters (n = 50) were investigated in a fjord system in central Norway from 30 April to 26 November 2014. The main aims were to investigate return rate, marine residence time and spatial use of the fjord system. Median seaward migration and return to fresh water dates were 22 May and 4 July, respectively. Of the 40 seaward migrating smolts, 26 returned to fresh water, giving a minimum return rate to fresh water of 65%. Entrance to the fjord from the river occurred mainly at night (80% of the S. trutta), however, no such diurnal pattern was observed during the return migration. Mean marine residence time was 38 days, but with large individual variation (22–99 days). The innermost parts of the study area were more utilized than the outer part of the fjord system during the sea residency, and with more use of the near shore habitat than the open, pelagic areas. Many post‐smolts also utilized the outer part of the fjord system, however, and 94% of the post‐smolts were recorded at least 14 km from the home river mouth. Marine survival and distribution in the fjord were size dependent with the largest individuals utilizing outer fjord areas and having higher return rates to fresh water. As far as is known, this is the first published study on temporal and spatial behaviour in the marine environment of first‐time S. trutta migrants during the full course of their first trip to sea.  相似文献   

18.
This study describes otolith marking of brown trout (Salmo trutta L.) larvae by immersion in different solutions of alizarin red S (ARS). The best results were obtained after marking with ARS at a concentration of 150 mg L?1. To evaluate the efficiency of stocking with brown trout fry, 10 000 20‐day‐old larvae were marked in years 2002 and 2003 with ARS and released 2 weeks later into sections of a river with natural brown trout reproduction. Electro‐fishing surveys carried out 2 months after stocking in 2002 revealed that only 4.8% of all caught young‐of‐the‐year trout originated from stocking; in 2003 the percentage was 8.9%. Based on the substantial natural reproduction and the low ratio of stocked to wild trout, it was recommended to discontinue stocking.  相似文献   

19.
Anadromous trout Salmo trutta exhibits sexual size dimorphism (SSD); females were larger than males in populations where male mean total length (LT) at maturity was below 49 cm and females were smaller than males when mean male LT was above 49 cm, the slope of the regression of female on male LT was 0·59. In streams with mean annual discharge below 41 m3 s?1, flow added significantly to a model with SSD as the dependent variable and male mean LT at maturity as the first predictor variable. There was a slight increase in SSD with increasing latitude, which may result from an increase in male size with increasing latitude.  相似文献   

20.
The vertical behaviour of 44 veteran sea trout Salmo trutta (275–580 mm) in different marine fjord habitats (estuary, pelagic, near shore with and without steep cliffs) was documented during May–February by acoustic telemetry. The swimming depth of S. trutta was influenced by habitat, time of day (day v. night), season, seawater temperature and the body length at the time of tagging. Mean swimming depth during May–September was 1·7 m (individual means ranged from 0·4 to 6·4 m). Hence, S. trutta were generally surface oriented, but performed dives down to 24 m. Mean swimming depth in May–September was deeper in the near‐shore habitats with or without steep cliffs (2·0 m and 2·5 m, respectively) than in the pelagic areas (1·2 m). May–September mean swimming depth in all habitats was slightly deeper during day (1·9 m) than at night (1·2 m), confirming that S. trutta conducted small‐scale diel vertical movements. During summer, S. trutta residing in near‐shore habitat progressively moved deeper over the period May (mean 1·1 m) to August (mean 4·0 m) and then reoccupied shallower areas (mean 2·3 m) during September. In winter (November and February), individuals residing in the innermost part of the fjords were found at similar average depths as they occupied during the summer (mean 1·3 m). The swimming depths of S. trutta coincide with the previously known surface orientation of salmon lice Lepeophtheirus salmonis. Combined with previous studies on horizontal use of S. trutta, this study illustrates how S. trutta utilize marine water bodies commonly influenced by anthropogenic factors such as aquaculture, harbours and marine constructions, marine renewable energy production or other human activity. This suggests that the marine behaviour of S. trutta and its susceptibility to coastal anthropogenic factors should be considered in marine planning processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号