首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J J Yin  J B Feix    J S Hyde 《Biophysical journal》1987,52(6):1031-1038
Electron-electron double resonance (ELDOR) and saturation-recovery spectroscopy employing 14N:15N stearic acid spin-label pairs have been used to study the effects of cholesterol on lateral diffusion and vertical fluctuations in lipid bilayers. The 14N:15N continuous wave electron-electron double resonance (CW ELDOR) theory has been developed using rate equations based on the relaxation model. The collision frequency between 14N-16 doxyl stearate and 15N-16 doxyl stearate, WHex (16:16), is indicative of lateral diffusion of the spin probes, while the collision frequency between 14N-16 doxyl stearate and 15N-5 doxyl stearate, WHex (16:5), provides information on vertical fluctuations of the 14N-16 doxyl stearate spin probe toward the membrane surface. Our results show that: (a) cholesterol decreases the electron spin-lattice relaxation time Tle of 14N-16 doxyl stearate spin label in dimyristoylphosphatidylcholine (DMPC) and egg yolk phosphatidylcholine (egg PC). (b) Cholesterol increases the biomolecular collision frequency WHex (16:16) and decreases WHex (16:5), suggesting that incorporation of cholesterol significantly orders the part of the bilayer that it occupies and disorders the interior region of the bilayer. (c) Alkyl chain unsaturation of the host lipid moderates the effect of cholesterol on both vertical fluctuations and lateral diffusion of 14N-16 doxyl stearate. And (d), there are marked differences in the effects of cholesterol on lateral diffusion and vertical fluctuations between 0-30 mol% and 30-50 mol% of cholesterol that suggest an inhomogeneous distribution of cholesterol in the membrane.  相似文献   

2.
The interaction of lipid soluble spin labels with wheat embryo axes has been investigated to obtain insight into the structural organization of lipid domains in embryo cell membranes, using conventional electron paramagnetic resonance (EPR) and saturation transfer EPR (ST-EPR) spectroscopy. Stearic acid spin labels (n-SASL) and their methylated derivatives (n-MeSASL), labelled at different positions of their doxyl group (n=5, 12 and 16), were used to probe the ordering and molecular mobility in different regions of the lipid moiety of axis cell membranes. The ordering and local polarity in relation to the position of the doxyl group along the hydrocarbon chain of SASL, determined over the temperature range from -50 to +20 degrees C, are typical for biological and model lipid membranes, but essentially differ from those in seed oil droplets. Positional profiles for ST-EPR spectra show that the flexibility profile along the lipid hydrocarbon chain does exist even at low temperatures, when most of the membrane lipids are in solid state (gel phase). The ordering of the SASL nitroxide radical in the membrane surface region is essentially higher than that in the depth of the membrane. The doxyl groups of MeSASLs are less ordered (even at low temperatures) than those of the corresponding SASLs, indicating that the MeSASLs are located in the bulk of membrane lipids rather than in the protein boundary lipids. The analysis of the profiles of EPR and ST-EPR spectral parameters allows us to conclude that the vast majority of SASL and MeSASL molecules accumulated in embryo axes is located in the cell membranes rather than in the interior of the oil bodies. The preferential partitioning of the doxyl stearates into membranes demonstrates the potential of the EPR spin-labelling technique for the in situ study of membrane behavior in seeds of different hydration levels.  相似文献   

3.
Skeletal muscle sarcolemma (SL), transverse tubule (TT) and heavy sarcoplasmic reticulum (HSR) membranes were isolated from malignant hyperthermia susceptible (MHS) and normal pigs, and the rotational dynamics of lipid hydrocarbon chain motion was examined by electron paramagnetic resonance (EPR) spectroscopy. The stearic acid spin probe 16-SASL was incorporated into MHS and normal membranes and both the order parameter (S) and effective correlation time (tau r) of probe motion were calculated from spectra recorded over the temperature range of 2 to 40 degrees C. At any given temperature, TT membranes exhibited significantly greater values for both the S and tau r of probe motion than did SL, which exhibited significantly greater values than did HSR membranes. The order of decreasing S and tau r values for 16-SASL mobility correlated with the decreasing cholesterol content of these membranes (TT greater than SL greater than HSR), however there was no difference in the S or tau r values for a given membrane fraction isolated from both MHS and normal muscle. Arrhenius plots of 16-SASL mobility in SL, TT and HSR were linear from 2 to 40 degrees C, indicating no abrupt thermotropic change in the lipid hydrocarbon phase of any of the membrane types studied. Apparent activation energies (Ea), calculated from the Arrhenius plots, were similar for MHS and normal membranes derived from a given cellular location. However, the Ea of probe motion for TT membranes (2.3 +/- 0.1 and 2.4 +/- 0.1 kcal/mol/degree for MHS and normal, respectively) was significantly less than for SL (3.4 +/- 0.4 and 2.9 +/- 0.1 kcal/mol/degree for MHS and normal, respectively) which, in turn, was significantly less than the Ea for HSR (3.7 +/- 0.1 and 3.7 +/- 0.1 kcal/mol/degree for MHS and normal, respectively). Since 16-SASL motion was similar in MHS and normal membranes, we conclude that there is no evidence for a generalized membrane defect affecting lipid mobility in these MHS muscle membranes.  相似文献   

4.
A short pulse saturation recovery electron spin resonance technique has been used to study the effects of polar carotenoid-lutein and cholesterol on interactions of 14N:15N stearic acid spin-label pairs in fluid-phase phosphatidylcholine (PC) membranes. Bimolecular collisions for pairs consisting of various combinations of [14N]-16-, [14N]-10-, [14N]-7-, or [14N]-5-doxylstearate and [15N]-16-doxylstearate in dimyristoyl-PC (DMPC) or egg yolk PC (EYPC) membranes were measured at 27 degrees C. In the absence and presence of lutein or cholesterol for both lipid systems, the collision rates were ordered as 16:5 < 16:7 < 16:10 < 16:16. For all spin-label pairs studied, interaction frequencies were greater in DMPC than in EYPC. Polar carotenoid-lutein reduces the collision frequency for all spin-label pairs, whereas cholesterol reduces the collision frequency for 16:5 and 16:7 pairs and increases the collision frequency in the membrane center for 16:10 and 16:16 pairs. The presence of unsaturated alkyl chains greatly reduces the effect of lutein but magnifies the effect of cholesterol in the membrane center. The observed differences in the effects of these modifiers on alkyl chain bending result from differences in the structure of cholesterol and polar carotenoid and from their different localization within the lipid bilayer membrane. These studies further confirm the occurrence of vertical fluctuations of alkyl chain ends toward the bilayer surface.  相似文献   

5.
Human serum albumin (HSA) has been spin-labelled with stearic acids having the nitroxide moiety attached to the hydrocarbon chain either at the 5th or at the 16th carbon atom (n-SASL, n = 5 and 16, respectively) with respect to the carboxyl groups. Its interaction with sterically stabilized liposomes (SSL) composed of dipalmitoylphosphatidylcholine (DPPC) mixed with submicellar content of poly(ethylene glycol:2000)-grafted dipalmitoyl phosphatidylethanolamine (PEG:2000-DPPE) has been studied by conventional electron spin resonance (ESR) spectroscopy. In the absence of bilayer membranes, the ESR spectra of nitroxide stearic acids non-covalently bound to HSA are single component powder patterns, indicative of spin labels undergoing temperature dependent anisotropic motion in the slow motional regime on the conventional ESR timescale. The adsorption of HSA to DPPC bilayers results in two component ESR spectra. Indeed, superimposed to an anisotropic protein-signal appears a more isotropic signal due to the labels in the lipid environment. This accounts for the transfer of fatty acids from the protein to DPPC bilayers. Two spectral components with different rotational mobility are also singled out in the spectra of n-SASL bound to HSA when DPPC/PEG:2000-DPPE mixtures are present in the dispersion medium. The fraction, f(L)(16-SASL), of spin labels transferred from the protein to lipid/polymer-lipid lamellar membranes has been quantified performing spectral subtraction. It is found that f(L)(16-SASL) decreases on increasing the content of the polymer-lipid mixed with DPPC. It is strongly reduced in the low-density mushroom regime and levels off in the high-density brush regime of the polymer-lipid content as a result of the steric stabilization exerted by the PEG-lipids. Moreover, the fraction of transferred fatty acids from HSA to SSL is dependent on the physical state of the lipid bilayers. It progressively increases with increasing the temperature from the gel to the liquid-crystalline lamellar phases of the mixed lipid/polymer-lipid membranes, although such a dependence is much weaker in the brush regime.  相似文献   

6.
Dynamic properties of phosphatidylcholine-cholesterol membranes in the fluid phase and water accessibility to the membranes have been studied as a function of phospholipid alkyl chain length, saturation, mole fraction of cholesterol, and temperature by using spin and fluorescence labelling methods. The results are the following: (1) The effect of cholesterol on motional freedom of 5-doxyl stearic acid spin label (5-SASL) and 16-doxyl stearic acid spin label (16-SASL) in saturated phosphatidylcholine membrane is significantly larger than the effects of alkyl chain length and introduction of unsaturation in the alkyl chain. (2) Variation of alkyl chain length of saturated phospholipids does not alter the effects of cholesterol except in the case of dilauroylphosphatidylcholine, which possesses the shortest alkyl chains (12 carbons) used in this work. (3) Unsaturation of the alkyl chains greatly reduces the ordering effect of cholesterol at C-5 and C-16 positions although unsaturation alone gives only minor fluidizing effects. (4) Introduction of 30 mol% cholesterol to dimyristoylphosphatidylcholine membranes decreases the lateral diffusion constants of lipids by a factor of four, while it causes only a slight decrease of lateral diffusion in dioleoylphosphatidylcholine membranes. (5) If compared at the same temperature, 5-SASL mobilities plotted as a function of mole fraction of cholesterol in the fluid phases of dimyristoylphosphatidylcholine-, dipalmitoylphosphatidylcholine- and distearoylphosphatidylcholine-cholesterol membranes are similar in wide ranges of temperature (45-82 degrees C) and cholesterol mole fraction (0-50%). (6) In isothermal experiments with saturated phosphatidylcholine membranes, 5-SASL is maximally immobilized at the phase boundary between Regions I and III reported by other workers (Recktenwald, D.J. and McConnell, H.M. (1981) Biochemistry 20, 4505-4510) and becomes more mobile away from the boundary in Regions I and III. (7) 5-SASL in unsaturated phosphatidylcholine membranes showed a gradual monotonic immobilization with increase of cholesterol mole fraction without showing any maximum in the range of cholesterol fractions studied. (8) By rigorously determining rigid-limit magnetic parameters of cholestane spin labels in membranes from Q-band second-derivative ESR spectra to monitor the dielectric environment around the nitroxide radical, it is concluded that cholesterol incorporation increases water accessibility in the hydrophilic loci of the membrane. In contrast, 12-(9-anthroyloxy)stearic acid fluorescence showed that water accessibility is decreased in the hydrophobic loci of the membrane.  相似文献   

7.
The mobility of 5-doxyl stearic acid spin label (5-SASL) in the gel phase of dipalmitoylphosphatidylcholine membranes between the main transition and subtransition temperatures was studied as a function of cholesterol content. Very small amounts of cholesterol (0.01-1 mol%) cause a dramatic increase in the mobility of 5-SASL. Temperature-drop experiments from 38 degrees C to 28 degrees C were made across the pretransition temperature and the rate of approach to equilibrium was measured. Cholesterol at low concentrations also affects this rate. The membrane reached equilibrium after 10 h in the absence of cholesterol, 3 h at 0.01 mol% cholesterol, and less than 10 min at 0.03 mol% cholesterol.  相似文献   

8.
In this study, the effects of chlorpromazine (CPZ) on lipid order and motion in saturated (DMPC, DMPG) and unsaturated (SOPC) liposome membranes were investigated by electron spin resonance (ESR) spin labeling technique. We have shown that above the main phase transition temperature of membrane lipids (T(M)), CPZ slightly increases lipid order in membranes without cholesterol, whereas below T(M) it has a strong opposite effect. Addition of 30 mol% of cholesterol into DMPC and SOPC membranes changes significantly the CPZ effects both above and below T(M). Additionally, above T(M), the ordering effect of CPZ on pure SOPC membrane is stronger at pH 7.4 than at pH 9.0, whereas below T(M), as well as in the presence of cholesterol, pH does not seem to play a role in CPZ effect on both membranes. Because of the strong influence of membrane composition on CPZ effect on membranes, the use of cholesterol as a marker of CPZ photosensitized reactions has been discussed.  相似文献   

9.
A novel form of non-linear EPR spectroscopy, viz. the first harmonic absorption spectrum recorded in phase quadrature with respect to the Zeeman field modulation, is used here to investigate spin-lattice relaxation enhancements of nitroxide spin labels bound to serum albumin that are induced by spin-spin interactions with aqueous paramagnetic ions. The advantage of this EPR method is that it is directly sensitive to spin-lattice relaxation and affected relatively little by other spectral parameters (Livshits et al., J. Magn. Reson. 133 (1998) 79-91). Relaxation enhancements by ferricyanide of bound fatty acids (n-SASL) spin-labelled at different positions, n, in the chain are compared with those of different maleimide spin label derivatives attached at the single free -SH group, as well as with those of the spin labels free in solution. It was found that: (1) the encounter frequency of ferricyanide with 5-SASL and 12-SASL bound to serum albumin is more than two times less than that with 16-SASL; (2) the accessibility of ferricyanide to 16-SASL is comparable to that of the more immobilised covalently bound spin labels; and (3) the absolute values of the encounter frequencies for the bound spin-labelled fatty acids are approximately a factor of ten smaller than for the corresponding free spin labels, but the latter show a dependence on position of labelling that is similar to the bound labels. A kinetic scheme that is consistent with these relative differences involves rapid reversible transitions between an 'open' and 'closed' state, in which interaction with aqueous paramagnetic agents is possible only in the 'open' state. The equilibrium strongly favours the 'closed' state, which is further enhanced at low temperatures.  相似文献   

10.
The distribution of the lipid-attached doxyl electron paramagnetic resonance (EPR) spin label in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes has been studied by (1)H and (13)C magic angle spinning nuclear magnetic resonance relaxation measurements. The doxyl spin label was covalently attached to the 5th, 10th, and 16th carbons of the sn-2 stearic acid chain of a 1-palmitoyl-2-stearoyl-(5/10/16-doxyl)-sn-glycero-3-phosphocholine analog. Due to the unpaired electron of the spin label, (1)H and (13)C lipid relaxation rates are enhanced by paramagnetic relaxation. For all lipid segments the influence of paramagnetic relaxation is observed even at low probe concentrations. Paramagnetic relaxation rates provide a measure for the interaction strength between lipid segments and the doxyl group. Plotted along the membrane director a transverse distribution profile of the EPR probe is obtained. The chain-attached spin labels are broadly distributed in the membrane with a maximum at the approximate chain position of the probe. Both (1)H and (13)C relaxation measurements show these broad distributions of the doxyl group in the membrane indicating that (1)H spin diffusion does not influence the relaxation measurements. The broad distributions of the EPR label result from the high degree of mobility and structural heterogeneity in liquid-crystalline membranes. Knowing the distribution profiles of the EPR probes, their influence on relaxation behavior of membrane inserted peptide and protein segments can be studied by (13)C magic angle spinning nuclear magnetic resonance. As an example, the location of Ala residues positioned at three sites of the transmembrane WALP-16 peptide was investigated. All three doxyl-labeled phospholipid analogs induce paramagnetic relaxation of the respective Ala site. However, for well ordered secondary structures the strongest relaxation enhancement is observed for that doxyl group in the closest proximity to the respective Ala. Thus, this approach allows study of membrane insertion of protein segments with respect to the high molecular mobility in liquid-crystalline membranes.  相似文献   

11.
Spin labeling methods were used to study the structure and dynamic properties of dimyristoylphosphatidylcholine (DMPC) membranes as a function of temperature and the mole fraction of polar carotenoids. The results in fluid phase membranes are as follows: (1) Dihydroxycarotenoids, zeaxanthin and violaxanthin, increase order, decrease motional freedom and decrease the flexibility gradient of alkyl chains of lipids, as was shown with stearic acid spin labels. The activation energy of rotational diffusion of the 16-doxylstearic acid spin label is about 35% less in the presence of 10 mol% of zeaxanthin. (2) Carotenoids increase the mobility of the polar headgroups of DMPC and increase water accessibility in that region of membrane, as was shown with tempocholine phosphatidic acid ester. (3) Rigid and highly anisotropic molecules dissolved in the DMPC membrane exhibit a bigger order of motion in the presence of polar carotenoids as was shown with cholestane spin label (CSL) and androstane spin label (ASL). Carotenoids decrease the rate of reorientational motion of CSL and do not influence the rate of ASL, probably due to the lack of the isooctyl side chain. The abrupt changes of spin label motion observed at the main phase transition of the DMPC bilayer are broadened and disappear at the presence of 10 mol% of carotenoids. In gel phase membranes, polar carotenoids increase motional freedom of most of the spin labels employed showing a regulatory effect of carotenoids on membrane fluidity. Our results support the hypothesis of Rohmer, M., Bouvier, P. and Ourisson, G. (1979) Proc. Natl. Acad. Sci. USA 76, 847-851, that carotenoids regulate the membrane fluidity in Procaryota as cholesterol does in Eucaryota. A model is proposed to explain these results in which intercalation of the rigid rod-like polar carotenoid molecules into the membrane enhances extended trans-conformation of the alkyl chains, decreases free space in the bilayer center, separate the phosphatidylcholine headgroups and decreases interaction between them.  相似文献   

12.
The mobility of 5-doxylstearic acid spin label (5-SASL) in the intact rat liver Golgi membranes of streptozotocin diabetes was studied as a function of free blood sugar level and temperature. During development of diabetes, indicated by the increase of the free blood sugar level, the membrane fluidity measured in the physiological temperature range (1) does not change in comparison with control in light diabetes, (2) decreases significantly in advanced diabetes and (3) again increases to the control level in heavy diabetes (the free blood sugar levels being 200-250 mg/100 ml, 250-350 mg/100 ml and greater than 350 mg/100 ml, respectively). The development of streptozotocin diabetes is accompanied by significant changes in lipid composition of liver Golgi membranes as also shown in our previous observations. The measurements of motion of 5-SASL in Golgi membranes as well as in vesicles, made from commercially available lipids of composition close to the liver Golgi membranes, show that a decrease of cholesterol contents is the main factor which induces the increase membrane fluidity. We suggest that in the heavy diabetes the hemostatic regulation in the lipid composition leads to minimization of alterations in membrane fluidity to obtain comparatively normal activity of certain membrane enzymes.  相似文献   

13.
Interaction of the cell‐penetrating peptide (CPP) cysteine‐transportan (Cys‐TP) with model lipid membranes was examined by spin‐label electron paramagnetic resonance (EPR). Membranes were labeled with lipophilic spin probes and the influence of Cys‐TP on membrane structure was studied. The influence of Cys‐TP on membrane permeability was monitored by the reduction of a liposome‐trapped water‐soluble spin probe. Cys‐TP caused lipid ordering in membranes prepared from pure dimyristoylphosphatidylcholine (DMPC) and in DMPC membranes with moderate cholesterol concentration. In addition, Cys‐TP caused a large increase in permeation of DMPC membranes. In contrast, with high cholesterol content, at which model lipid membranes are in the so‐called liquid‐ordered phase, no effect of Cys‐TP was observed, either on the membrane structure or on the membrane permeability. The interaction between Cys‐TP and the lipid membrane therefore depends on the lipid phase. This could be of great importance for understanding of the CPP–lipid interaction in laterally heterogeneous membranes, while it implies that the CPP–lipid interaction can be different at different points along the membrane. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Short pulse saturation-recovery electron paramagnetic resonance methods have been used to measure interactions of 14N:15N stearic acid spin label pairs in multilamellar liposomal dispersions composed of dimyristoyl-phosphatidylcholine (DMPC) and dielaidoylphosphatidylcholine (DEPC). Pairs consisting of various combinations of [14N]-16-, [14N]-12- or [14N]-5-doxylstearate, and [15N]-16-, [15N]-12-, or [15N]-5-doxylstearate were studied. SR experiments were performed at 27 degrees and 37 degrees C, and recovery signals were analyzed for initial conditions and multiexponential time constants by computer fitting using a damped least-squares approach. The time constants contain combinations of the electron spin lattice relaxation time, Tle, for each member of the spin-label pair, and the Heisenberg exchange rate constant, Kx. Spin-lattice relaxation times for each of the 14N and 15N stearic acid spin labels were determined, and it is noted that Tle for a given 15N-SASL was always slightly greater than that of the corresponding 14N-SASL. From Kx the bimolecular collision frequency was calculated, providing a detailed picture of molecular interactions. For both lipid systems the bimolecular collision rates were ordered as 12:5 less than 16:5 less than 5:5 less than 16:12 less than 12:12 less than 16:16. For all spin-label pairs studied, interaction frequencies were greater in DMPC than in DEPC. For the 16:16, 12:12, and 16:12 pairs, Kx was approximately 30% greater in DMPC than in DEPC, a significantly greater difference than is observed by conventional EPR methods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effect of adrenochrome semicarbazide on the conformation of erythrocyte ghost membranes has been studied by ANS fluorescence, lipid and sulfhydryl spin labels and circular dichroism. No large conformational alterations in the membrane were detected by these techniques. Noncompetitive quenching of ANS fluorescence by ADCS suggests ADCS to interact with the membrane at sites close to the ANS binding domain.  相似文献   

16.
Membranes made from binary mixtures of egg sphingomyelin (ESM) and cholesterol were investigated using conventional and saturation-recovery EPR observations of the 5-doxylstearic acid spin label (5-SASL). The effects of cholesterol on membrane order and the oxygen transport parameter (bimolecular collision rate of molecular oxygen with the nitroxide spin label) were monitored at the depth of the fifth carbon in fluid- and gel-phase ESM membranes. The saturation-recovery EPR discrimination by oxygen transport (DOT) method allowed the discrimination of the liquid-ordered (l o), liquid-disordered (l d), and solid-ordered (s o) phases because the bimolecular collision rates of the molecular oxygen with the nitroxide spin label differ in these phases. Additionally, oxygen collision rates (the oxygen transport parameter) were obtained in coexisting phases without the need for their separation, which provides information about the internal dynamics of each phase. The addition of cholesterol causes a dramatic decrease in the oxygen transport parameter around the nitroxide moiety of 5-SASL in the l o phase, which at 50 mol% cholesterol becomes ∼5 times smaller than in the pure ESM membrane in the l d phase, and ∼2 times smaller than in the pure ESM membrane in the s o phase. The overall change in the oxygen transport parameter is as large as ∼20-fold. Conventional EPR spectra show that 5-SASL is maximally immobilized at the phase boundary between regions with coexisting l d and l o phases or s o and l o phases and the region with a single l o phase. The obtained results all owed for the construction of a phase diagram for the ESM-cholesterol membrane.  相似文献   

17.
Cholesterol analogs are often used to investigate lipid trafficking and membrane organization of native cholesterol. Here, the potential of various spin (doxyl moiety) and fluorescent (7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) group) labeled cholesterol analogs as well as of fluorescent cholestatrienol and the naturally occurring dehydroergosterol to mimic the unique properties of native cholesterol in lipid membranes was studied in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes by electron paramagnetic resonance, nuclear magnetic resonance, and fluorescence spectroscopy. As cholesterol, all analogs undergo fluctuating motions of large amplitude parallel to the bilayer normal. Native cholesterol keeps a strict orientation in the membrane with the long axis parallel to the bilayer normal. Depending on the chemical modification or the position of the label, cholesterol analogs may adopt an "up-side-down" orientation in the membrane or may even fluctuate between "upright" and up-side-down orientation by rotational motions about the short axis not typical for native cholesterol. Those analogs are not able to induce a comparable condensation of phospholipid membranes as known for native cholesterol revealed by 2H nuclear magnetic resonance. However, cholesterol-induced lipid condensation is one of the key properties of native cholesterol, and, therefore, a well suited parameter to assess the potential of steroid analogs to mimic cholesterol. The study points to extreme caution when studying cholesterol behavior by the respective analogs. Among seven analogs investigated, only a spin-labeled cholesterol with the doxyl group at the end of the acyl chain and the fluorophore cholestatrienol mimic cholesterol satisfactorily. Dehydroergosterol has a similar upright orientation as cholesterol and could be used at low concentration (about 1 mol %), at which its lower potential to enhance lipid packing density does not perturb membrane organization.  相似文献   

18.
The effects of calcium and of the psychoactive drug chlorpromazine (CPZ) on the rat synaptic plasma membrane have been studied using two stearic nitroxide spin labels having their doxyl groups in positions 5 and 16 and the fluorescent probe 1-anilinonaphtalene-8-sulfonate (ANS). The mobility of the 5-doxyl stearic spin label which probes the membrane phospholipids in the vicinity of their polar heads is decreased in the presence of both compounds. Calcium is more efficient in this respect than CPZ. In spite of this qualitative similarity of action, CPZ inhibits the effect of calcium and vice versa. No modification of the 16-doxyl stearic spectrum has been observed even at high calcium or CPZ concentrations. An increase in fluorescence intensity and a blue shift in the emission wavelength of ANS-probed membranes are observed with very low CPZ concentrations (10?7 to 10?5m). With higher concentrations, a further intensity increase and a further blue shift are due to direct interaction between ANS and CPZ. Calcium also increases the fluorescence intensity of ANS-labeled membranes in the concentration range 10?5–10?2m. As for the spin-label data, the effects of both compounds are mutually competitive. It is concluded that calcium interacts principally with the phospholipid polar heads of this type of membrane. However, the competition with CPZ suggests indirectly that this ion is also bound to membrane proteins. CPZ has an affinity for membrane lipids only at high concentrations. In its pharmacologically active concentration range, it is located preferentially on the membrane proteins.  相似文献   

19.
Lipids of isolated guinea pig liver microsomal membranes were labelled biosynthetically with isomeric doxyl stearic acid and temperature-induced changes of these membranes were studied by electron spin resonance. A noticeable discontinuity was detected at 10--12 degree C with 12- or 16-doxyl stearic acid containing membrane lipids which was attributed to the spin-labelled lipid--microsomal membrane protein interactions since no such discontinuity was detected in liposomes prepared from total lipid extracts of microsomal membranes. When microsomal membranes containing radioactive isomeric spin-labelled lipids were incubated with unlabelled mitochondria, reisolated mitochondrial membranes contained translocated radioactive isomeric spin-labelled lipids. Temperature-induced changes in these membranes showed no discontinuity with either isomeric doxyl stearic acid derivative, establishing a difference in the environment of translocated lipids in the membrane donor compared with that in the membrane acceptor. Microsomal membranes recovered from translocation experiments showed the same behaviour as the original membranes and exhibited the same discontinuity at 10--12 degree C, establishing that the translocation incubation itself did not alter the spin-labelled lipid interaction within these membranes. Studies of the loss of paramagnetism of spin-labelled lipids in microsomal membranes before and in mitochondrial membranes after their translocation showed a significant difference and suggested that both the outer and the inner mitochondrial membranes might have been involved.  相似文献   

20.
Transient lateral microdomains or lipid rafts play important roles in many physiological membrane-mediated cell processes. Detergent-resistant membranes (DRMs) are good models for the study of lipid rafts. Here we report that DRMs can be obtained by treating human erythrocytes with the nonionic detergents Triton X-100 or octaethylene glycol monododecyl ether (C12E8) at 37°C, and by treatment at 4°C of cholesterol-depleted erythrocytes. Electron paramagnetic resonance with spin labels inserted at different membrane depths (5- and 16-doxyl stearic acids, 5-SASL and 16-SASL) were used to measure the order parameter (S) of the cell membranes and DRMs. We previously reported significantly higher S values in DRMs with respect to intact erythrocyte membranes. Here we show that higher S values were still measurable in DRMs prepared from intact erythrocytes at 37°C, or from cholesterol-depleted cells at 4°C, for both detergents. For 5-SASL only, increased S values were measured in 4°C DRMs obtained from cholesterol-depleted versus intact erythrocytes. Flotillin-2, a protein marker of lipid rafts, was found in DRMs from intact cells in trace amounts but it was sensitively increased in C12E8 DRMs prepared at 4°C from cholesterol-depleted erythrocytes, while the membrane-skeletal proteins spectrin and actin were excluded from both Triton X-100 and C12E8 DRMs. However, contrary to the 4°C treatment results, flotillin-2 and stomatin were not resistant to Triton X-100 and C12E8 treatment at physiological temperature. The role of cholesterol in DRMs formation is discussed and the results presented provide further support for the use of C12E8 to the study of DRMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号