首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytochrome b 6 f complex isolated from spinach chloroplast membranes can be resolved into two forms, a monomeric and a dimeric form, by centrifugation on sucrose gradients. The conversion of the dimeric form of the complex into the monomeric form could be prevented by cross-linking with the homobifunctional reagent, dithiobis(succinimidylpropionate) but not by cross-linking with disuccinimidyltartrate or glutaraldehyde. SDS-PAGE analyses of the monomeric and dimeric forms of the cytochrome complex showed the presence of specific cross-linked products in each respective form of the complex. For example, the monomeric form contained a cross-linked product of cytochrome f, cytochrome b 6 f and subunit IV while the dimeric form contained a cross-linked dimer of cytochrome b 6 f. The presence of the former in the isolated cytochrome b 6 f complex prepared by the method of Hurt and Hauska (Eur J Biochem 117: 591–599, 1981) indicates the presence of the monomer in his preparation.Abbreviations DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DSP dithiobis(succinimidylpropionate) - DST disuccinimidyltartrate  相似文献   

2.
PS II-H is a small hydrophobic protein that is universally present in the PS II core complex of cyanobacteria and plants. The role of PS II-H was studied by directed mutagenesis and biochemical analysis in the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. The psbH disruptant could grow photoautotrophically; however, its growth was much slower than that of the wild type cell. Chromatography enabled the isolation of active oxygen-evolving PS II complexes from both the mutant and the wild type. The mutant yielded a relatively large amount of inactive PS II complex that lacked the following extrinsic proteins: the 33-kDa protein, the 12-kDa protein, and cytochrome c 550 . There were differences between the psbH disruptant and the wild type in terms of the oxygen evolution activities of the cells, thylakoids, and PS II complexes. At high concentrations of 2,6-DCBQ, the activity was much lower in the mutant than in the wild type. Gel filtration chromatography of the PS II complexes showed that both active and inactive PS II complexes isolated from the mutant were mostly in the monomeric form, while the active PS II complex from the wild type was in the dimeric form. The polypeptide composition of both active and inactive PS II complexes from the mutant showed the absence of another small polypeptide, PS II-X. These results suggest that the PS II-H protein is essential for stable assembly of native dimeric PS II complex containing PS II-X.  相似文献   

3.
Effects of three inhibitors of quinol oxidation in the chloroplast cytochrome bf complex (stigmatellin, tridecylstigmatellin and dibromothymoquinone) were studied in an isolated system comprising Photosystem I (PS I) particles, plastocyanin (PC) and cytochrome bf complex, in the absence of quinol or quinone. Addition of these inhibitors increased the extent of cytochrome f oxidation after a laser flash created oxidised PS I reaction centre (P700) and PC, and decreased somewhat the extent of PC oxidation. The re-reduction of oxidised P700 was more complete than when inhibitor was absent. The data were simulated with reactions which included the putative reduction of cytochrome f by the Rieske centre (FeS) and different rate-coefficients according as to whether inhibitor was bound to the bf complex or not. It was concluded that under the conditions studied the Rieske centre donated electrons to oxidised cytochrome f and plastocyanin with an average rate coefficient of 35 s–1. This electron transfer was prevented by any of the three inhibitors, which also increased the equilibrium coefficient for the cytochrome f/PC reaction by a maximum factor of two. This increase corresponded to a decrease in the back reaction coefficient and an increase in the forward rate. The equilibrium coefficient for the reduction of oxidised P700 by PC was about 2 in the absence of inhibitor but increased to about 20 in their presence, but only if cytochrome bf complex was additionally present. This was attributed to the transient formation of complexes between P700 with bound plastocyanin, and bf complex. The operative mid-point potential of FeS, if that of cytochrome f is 370 mV, was 390 mV. Deviations in midpoint potentials (P700/plastocyanin) from solution values were attributed to the bound state of the reactants. Estimates were made of the binding coefficient of each of the three inhibitors to p-sites in the cytochrome bf complex in the absence of competing quinol. A stoichiometry of two inhibitors per bf dimer was necessary to cause the above changes in reduction potential of cyt f and PC. A result of one inhibitor per dimer was statistically unlikely, particularly in the case of tridecylstigmatellin.Abbreviations Cyt- cytochrome - DBMIB(H2)- 2,5-dibromo-3--ethyl-6-isopropyl-p-benzoquinone (reduced) - E m- midpoint reduction potential of a couple relative to the standard hydrogen electrode - e-t- electron transfer - FeS (or R)- Rieske iron-sulphur centre - HEPES- N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid - Mega-9- nonoyl-N-methylglucamide - n-site (Qr-site)- quinone reduction site in cytochrome bf complex - PC- plastocyanin - p-site (Qo-site)- quinol oxidation site in cytochrome bf complex - PQ- plastoquinone - PSI- Photosystem I - P700- reaction centre in Photosystem I - TDS- tridecyl stigmatellin  相似文献   

4.
The cytochrome b 6 f complex occupies a central position in photosynthetic electron transport and proton translocation by linking PS II to PS I in linear electron flow from water to NADP+, and around PS I for cyclic electron flow. Cytochrome b 6 f complexes are uniquely located in three membrane domains: the appressed granal membranes, the non-appressed stroma thylakoids and end grana membranes, and also the non-appressed grana margins, in contrast to the marked lateral heterogeneity of the localization of all other thylakoid multiprotein complexes. In addition to its vital role in vectorial electron transfer and proton translocation across the membrane, cytochrome b 6 f complex is also involved in the regulation of balanced light excitation energy distribution between the photosystems, since its redox state governs the activation of LHC II kinase (the kinase that phosphorylates the mobile peripheral fraction of the chlorophyll a/b-proteins of LHC II of PS II). Hence, cytochrome b 6 f complex is the molecular link in the interactive co-regulation of light-harvesting and electron transfer.The importance of a highly dynamic, yet flexible organization of the thylakoid membranes of plants and green algae has been highlighted by the exciting discovery that a lateral reorganization of some cytochrome b 6 f complexes occurs in the state transition mechanism both in vivo and in vitro (Vallon et al. 1991). The lateral redistribution of phosphorylated LHC II from stacked granal membrane regions is accompanied by a concomitant movement of some cytochrome b 6 f complexes from the granal membranes out to the PS I-containing stroma thylakoids. Thus, the dynamic movement of cytochrome b 6 f complex as a multiprotein complex is a molecular mechanism for short-term adaptation to changing light conditions. With the concept of different membrane domains for linear and cyclic electron flow gaining credence, it is thought that linear electron flow occurs in the granal compartments and cyclic electron flow is localised in the stroma thylakoids at non-limiting irradiances. It is postulated that dynamic lateral reversible redistribution of some cytochrome b 6 f complexes are part of the molecular mechanism involved in the regulation of linear electron transfer (ATP and NADPH) and cyclic electron flow (ATP only). Finally, the molecular significance of the marked regulation of cytochrome b 6 f complexes for long-term regulation and optimization of photosynthetic function under varying environmental conditions, particularly light acclimation, is discussed.Abbreviations Chl chlorophyll - cyt cytochrome - PS Photosystem  相似文献   

5.
The cytochrome b-f complex is composed of four polypeptide subunits, three of which, cytochrome f, cytochrome b-563 and subunit IV, are encoded in chloroplast DNA and synthesised within the chloroplast, and the fourth, the Rieske FeS protein, is encoded in nuclear DNA and synthesised in the cytoplasm. The assembly of the cytochrome b-f complex therefore requires the interaction of subunits encoded by different genomes. A key role for the nuclear-encoded Rieske FeS protein in the assembly of the complex is suggested by a study of cytochrome b-f complex mutants. The assembly of individual subunits of the complex may be regulated by the availability of prosthetic groups. The genes for the chloroplast-encoded subunits and cDNA clones for the Rieske FeS protein have been isolated and characterised. Cytochrome f and the Rieske FeS protein are synthesised initially with N-terminal presequences required for their correct assembly within the chloroplast. The deduced amino acid sequences of the four subunits have been used to suggest models for the arrangement of the polypeptides in the thylakoid membrane.  相似文献   

6.
Complete nucleotide sequences are now available for the pet (fbc) operons coding for the three electron carrying protein subunits of the cytochrome bc 1 complexes of four photosynthetic purple non-sulfur bacteria. It has been demonstrated that, although the complex from one of these bacteria may contain a fourth subunit, three subunit complexes appear to be fully functional. The ligands to the three hemes and the one [2Fe-2S] cluster in the complex have been identified and considerable progress has been made in mapping the two quinone-binding sites present in the complex, as well as the binding sites for quinone analog inhibitors. Hydropathy analyses and alkaline phosphatase fusion experiments have provided considerable insight into the likely folding pattern of the cytochrome b peptide of the complex and identification of the electrogenic steps associated with electron transport through the complex has allowed the orientation within the membrane of the electron-carrying groups of the complex to be modeled.  相似文献   

7.
Mitochondrial F1FO-ATP synthase of chlorophycean algae is a stable dimeric complex of 1,600 kDa. It lacks the classic subunits that constitute the peripheral stator-stalk and the orthodox polypeptides involved in the dimerization of the complex. Instead, it contains nine polypeptides of unknown evolutionary origin named ASA1 to ASA9. The isolated enzyme exhibited a very low ATPase activity (0.03 Units/mg), that increased upon heat treatment, due to the release of the F1 sector. Oligomycin was found to stabilize the dimeric structure of the enzyme, providing partial resistance to heat dissociation. Incubation in the presence of low concentrations of several non-ionic detergents increased the oligomycin-sensitive ATPase activity up to 7.0–9.0 Units/mg. Incubation with 3% (w/v) taurodeoxycholate monomerized the enzyme. The monomeric form of the enzyme exhibited diminished activity in the presence of detergents and diminished oligomycin sensitivity. Cross-linking experiments carried out with the dimeric and monomeric forms of the ATP synthase suggested the participation of the ASA6 subunit in the dimerization of the enzyme. The dimeric enzyme was more resistant to heat treatment, high hydrostatic pressures, and protease digestion than the monomeric enzyme, which was readily disrupted by these treatments. We conclude that the fully-active algal mitochondrial ATP synthase is a stable catalytically active dimer; the monomeric form is less active and less stable. Monomer-monomer interactions could be mediated by the membrane-bound subunits ASA6 and ASA9, and may be further stabilized by other polypeptides such as ASA1 and ASA5. Alexa Villavicencio-Queijeiro and Miriam Vázquez-Acevedo have contributed equally to this work.  相似文献   

8.
The effects of nitric oxide (NO) on electron transfer were studied with a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans. NO inhibited the oxidation of cytochrome c induced by continuous illumination in intact cells. NO inhibited the re-reduction of cytochrome c, the slow phase of the carotenoid bandshift, and the oxidation of cytochrome b after a flash illumination, suggesting that NO inhibited the photosynthetic cyclic electron transfer through the cytochrome b-c 1 region. NO also inhibited the nitrite (NO 2 - ) and NO reductions with succinate as the electron donor in intact cells, but did not inhibit the NO 2 - and NO reductions in chromatophore membranes with ascorbate and phenazine methosulfate as the electron donors. NO reversibly inhibited the ubiquinol: cytochrome c oxidoreductase of the membranes, suggesting that NO inhibited the electron transfer through the cytochrome b-c 1 region and that the cytochrome b-c 1 complex also was involved in the electron transport in both NO 2 - and NO reductions. The catalytic site of NO reduction was distinct from the inhibitory site of NO.Abbreviations UHDBT 5-undecyl-6-hydroxy-4,7-dioxobenzothiazole - UHNQ 3-undecyl-2-hydroxy-1,4-naphthoquinone - MOPS 3-(N-morpholino)propane-sulfonic acid - PMS phenazine methosulfate - DCIP 2,6-dichlorophenol indophenol - DDC diethyl-dithiocarbamate  相似文献   

9.
Cytochrome bc 1 complexes have been isolated from wild type Rhodopseudomonas viridis and Rhodospirillum rubrum and purified by affinity chromatography on cytochrome c-Sepharose 4B. Both complexes are largely free of bacteriochlorophyll and carotenoids and contain cytochromes b and c 1 in a 2:1 molar ratio. For the Rps. viridis complex, evidence has been obtained for two spectrally distinct b-cytochromes. The R. rubrum complex contains a Rieske iron-sulfur protein (present in approximately 1:1 molar ratio to cytochrome c 1) and catalyzes an antimycin A- and myxothiazol-sensitive electron transfer from duroquinol to equine cytochrome c or R. rubrum cytochrome c 2. Although an attempt to prepare a cytochrome bc 1 complex from the gliding green bacterium Chloroflexus aurantiacus was not successful, membranes isolated from phototrophically grown Cfl. aurantiacus were shown to contain a Rieske iron-sulfur protein and protoheme (the prosthetic group of b-type cytochromes).Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

10.
A series of experiments have been conducted with isolated reaction centers of photosystem two (PS II) with the aim to elucidate the functional role of cytochrome (Cyt b 559). At pH 6.5 it was found that Cyt b 559 was reversibly photoreduced by red actinic light when Mn2+ was present as an electron donor while at pH 8.5 a photo-oxidation was observed under the same lighting conditions, which was dark reversible in the presence of hydroquinone. These pH dependent light induced changes were measured under anaerobic conditions and correlated with changes in the relative levels of high (HP) and low (LP) potential forms of the cytochrome. At pH 6.5 the cytochrome was mainly in its LP form while at pH 8.5 a significant proportion was converted to the HP form as detected by dark titrations with hydroquinone. This pH dependent difference in the levels of HP and LP Cyt b 559 was also detected when bright white light was used to monitor the level of the LP form using a novel reaction involving direct electron donation from the flavin of glucose oxidase (present in the medium and used together with glucose and catalase as an oxygen trap). The results suggest that PS II directly oxidises and reduces the HP and LP forms, respectively and that the extent of these photo-reactions is dependent on the relative levels of the two forms, which are in turn governed by the pH. This conclusion is interpreted in terms of the model presented previously (Barber J and De Las Rivas J (1993) Proc Natl Acad Sci USA 90: 10942–10946) whereby the pH induced effect is considered as a possible mechanism by which interconversion of LP and HP forms of Cyt b 559 is achieved. In agreement with this was the finding that as the extent of photo-oxidisable HPCyt b 559 increases, with increasing pH, the rate of irreversible photo-oxidation of -carotene decreases, a result expected if the HP form protects against donor side photoinhibition.Abbreviations -car -carotene - CCCP carbonylcyanide m-chloro-phenylhydrazone - Chl chlorophyll - Cyt b 559 cytochrome b 559 - HPCyt b 559 high potential form of cytochrome b 559 which is reducible by hydroquinone - LPCyt b 559 low potential form of cytochrome b 559 which is non-reducible by hydroquinone - D1 and D2 products of the psbA and psbD genes, respectively - LHC II light-harvesting chlorophyll protein complex associated with PS II - Mes 2-(N-morpholino) ethanesulphonic acid - P680 primary electron donor of PS II - Pheo pheophytin - PQ plastoquinone - PS II Photosystem II - QA first stable quinone electron acceptor of PS II - QB second stable quinone electron acceptor of PS II - RC reaction center - SDS sodium dodecyl sulphate - SiMo silicomolybdate - Tris tris(hydroxymethyl) amino methane - YZ and YD tyrosine residues 161 in D1 and D2 proteins of the PS II RC which act as secondary electron donors to P680  相似文献   

11.
Eight respiratory-deficient mutants ofChlamydomonas reinhardtii have been isolated after mutagenic treatment with acriflavine or ethidium bromide. They are characterized by their inability to grow or their very reduced growth under heterotrophic conditions. One mutation (Class III) is of nuclear origin whereas the seven remaining mutants (Classes I and II) display a predominantly paternalmt - inheritance, typical of mutations residing in the mitochondrial DNA. Biochemical analysis has shown that all mutants are deficient in the cyanide-sensitive cytochrome pathway of the respiration whereas the alternative pathway is still functional. Measurements of complexes II + III (antimycin-sensitive succinate-cytochromec oxido-reductase) and complex IV (cytochromec oxidase) activities allowed to conclude that six mutations have to be localized in the mitochondrial apocytochromeb (COB) gene, one in the mitochondrial cytochrome oxidase subunit I (COI) gene and one in a nuclear gene encoding a component of the cytochrome oxidase complex. By using specific probes, we have moreover demonstrated that five mutants (Class II mutants) contain mitochondrial DNA molecules deleted in the terminal end containing the COB gene and the telomeric region; they also possess dimeric molecules resulting from end-to-end junctions of deleted monomers. The two other mitochondrial mutants (Class I) have no detectable gross alteration. Class I and Class II mutants can also be distinguished by the pattern of transmission of the mutation in crosses.Anin vivo staining test has been developed to identify rapidly the mutants impaired in cyanide-sensitive respiration.  相似文献   

12.
The reaction between membrane-bound cytochrome c and the reaction center bacteriochlorophyll g dimer P798 was studied in the whole cells and isolated membranes of Heliobacterium gestii. In the whole cells, the flash-oxidized P798+ was rereduced in multiple exponential phases with half times (t 1/2s) of 10 s, 300 s and 4 ms in relative amplitudes of 40, 35 and 25%, respectively. The faster two phases were in parallel with the oxidation of cytochrome c. In isolated membranes, a significantly slow oxidation of the membrane-bound cytochrome c was detected with t 1/2 = 3 ms. This slow rate, however, again became faster with the addition of Mg2+. The rate showed a high temperature dependency giving apparent activation energies of 88.2 and 58.9 kJ/mol in the whole cells and isolated membranes, respectively. Therefore, membrane-bound cytochrome c donates electrons to the P798+ in a collisional reaction mode like the reaction of water-soluble proteins. The rereduction of the oxidized cytochrome c was suppressed by the addition of stigmatellin both in the whole cells and isolated membranes. This indicates that the electron transfer from the cytochrome bc complex to the photooxidized P798+ is mediated by the membrane-bound cytochrome c. The multiple flash excitation study showed that 2–3 hemes c were connected to the P798. By the heme staining after the SDS-PAGE analysis of the membraneous proteins, two cytochromes c were detected on the gel indicating apparent molecular masses of 17 and 30 kDa, respectively. The situation resembles the case in green sulfur bacteria, that is, the membrane-bound cyotochrome c z couples electron transfer between the cytochrome bc complex and the P840 reaction center complex.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

13.
Dicyclohexylcarbodiimide (DCCD) binds covalently to an acidic amino acid located in the cd loop connecting membrane-spanning helices C and D of cytochrome b resulting in an inhibition of proton translocation in the cytochrome bc 1 complex with minimal effects on the steady state rate of electron transfer. Single turnover studies performed with the yeast cytochrome bc 1 complex indicated that the initial phase of cytochrome b reduction was inhibited 25–45% in the DCCD-treated cytochrome bc 1 complex, while the rate of cytochrome c 1 reduction was unaffected. Simulations by molecular modeling predict that binding of DCCD to glutamate 163 located in the cd2 loop of cytochrome b of chicken liver mitochondria results in major conformational changes in the protein. The conformation of the cd loop and the end of helix C appeared twisted with a concomitant rearrangement of the amino acid residues of both cd1 and cd2 loops. The predicted rearrangement of the amino acid residues of the cd loop results in disruptions of the hydrogen bonds predicted to form between amino acid residues of the cd and ef loops. Simultaneously, two new hydrogen bonds are predicted to form between glutamate 272 and two residues, aspartate 253 and tyrosine 272. Formation of these new hydrogen bonds would restrict the rotation and protonation of glutamate 272, which may be necessary for the release of the second electrogenic proton obtained during ubiquinol oxidation in the bc1 complex.  相似文献   

14.
Treatment of spheroplasts of Nostoc museorum with hypotonic buffer results in membranes depleted of cytochrome c-553, but still active in photosynthetic and respiratory electron transport. These membranes retain full photosystem II activity (H2ODADox). Complete linear electron transport (H2ONADP+), however, is decreased as compared with untreated spheroplasts. Addition of basic Nostoc cytochrome c-553 to depleted membranes reconstitutes NADP+ reduction and redox reactions of the photosystem I region as well.Using NADPH as electron donor, respiration of depleted membranes is also stimulated by adding cytochrome c-553, indicative of its function in respiratory electron transport.Cytochrome c-553 from Bumilleriopsis filiformis, Spirulina platensis (acidic types), Phormidium foveolarum (basic type), and mitochondrial horse-heart cytochrome c-550 are not effective in reconstituting both photosynthetic and respiratory electron transport, which points to a specific role of Nostoc cytochrome c-553.Abbreviations BSA bovine serum albumin - DAD 3,6-diaminodurene - DADox 3,6-diaminodurene oxidized by potassium ferricyanide - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbazide - Fd ferredoxin - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MES 2(-N-morpholino)-ethanesulfonic acid - MV methylviologen (1,1-dimethyl-4,4-bipyridylium dichloride) - PS I photosystem I - PS II photosystem II - Tris tris-(hydroxymethyl)-aminomethane  相似文献   

15.
Flash-induced primary charge separation, detected as electrochromic absorbance change, the operation of the cytochrome b/f complex and the redox state of the plastoquinone pool were measured in leaves, protoplasts and open-cell preparations of tobacco (Nicotiana tabacum L.), and in isolated intact chloroplasts of peas (Pisum sativum L.). Addition of 0.5–5 mM KCN to these samples resulted in a large increase in the slow electrochromic rise originating from the electrogenic activity of the cytochrome b/f complex. The enhancement was also demonstrated by monitoring the absorbance transients of cytochrome f and b 6 between 540 and 572 nm. In isolated, intact chloroplasts with an inhibited photosystem (PS) II, low concentrations of dithionite or ascorbate rendered turnover of only 60% of the PSI reaction centers, KCN being required to reactivate the remainder. Silent PSI reaction centers which could be reactivated by KCN were shown to occur in protoplasts both in the absence and presence of a PSII inhibitor. Contrasting spectroscopic data obtained for chloroplasts before and after isolation indicated the existence of a continuous supply of reducing equivalents from the cytosol.Our data indicate that: (i) A respiratory electron-transport pathway involving a cyanide-sensitive component is located in chloroplasts and competes with photosynthetic electron transport for reducing equivalents from the plastoquinone pool. This chlororespiratory pathway appears to be similar to that found in photosynthetic prokaryotes and green algae. (ii) There is an influx of reducing equivalents from the cytosol to the plastoquinone pool. These may be indicative of a complex respiratory control of photosynthetic electron transport in higher-plant cells.Abbreviations and symbols A515 flash-induced electrochromic absorbance change at 515 nm - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PS photosystem - SHAM salicylhydroxamic acid  相似文献   

16.
We have shown earlier that microsomal cytochrome b 5 can form a specific complex with mitochondrial cytochrome P450 (cytochrome P450scc). The formation of the complex between these two heme proteins was proved spectrophotometrically, by affinity chromatography on immobilized cytochrome b 5, and by measuring the cholesterol side-chain cleavage activity of cytochrome P450scc in a reconstituted system in the presence of cytochrome b 5. To further study the mechanism of interaction of these heme proteins and evaluate the role of negatively charged amino acid residues Glu42, Glu48, and Asp65 of cytochrome b 5, which are located at the site responsible for interaction with electron transfer partners, we used sitedirected mutagenesis to replace residues Glu42 and Glu48 with lysine and residue Asp65 with alanine. The resulting mutant forms of cytochrome b 5 were expressed in E. coli, and full-length and truncated forms (shortened from the C-terminal sequence due to cleavage of 40 amino acid residues) of these cytochrome b 5 mutants were purified. Addition of the truncated forms of cytochrome b 5 (which do not contain the hydrophobic C-terminal sequence responsible for interaction with the membrane) to the reconstituted system containing cytochrome P450scc caused practically no stimulation of catalytic activity, indicating an important role of the hydrophobic fragment of cytochrome b 5 in its interaction with cytochrome P450scc. However, full-length cytochrome b 5 and the full-length Glu48Lys and Asp65Ala mutant forms of cytochrome b 5 stimulated the cholesterol side-chain cleavage reaction catalyzed by cytochrome P450scc by 100%, suggesting that residues Glu48 and Asp65 of cytochrome b 5 are not directly involved in its interaction with cytochrome P450scc. The replacement of Glu42 for lysine, however, made the Glu42Lys mutant form of cytochrome b 5 about 40% less effective in stimulation of the cholesterol side-chain cleavage activity of cytochrome P450scc, indicating that residue Glu42 of cytochrome b 5 is involved in electrostatic interactions with cytochrome P450scc. Residues Glu42 and Glu48 of cytochrome b 5 appear to participate in electrostatic interaction with microsomal type cytochrome P450.  相似文献   

17.
All photosynthetic membranes contain a cytochrome bc 1 or b 6 f complex that catalyzes the oxidation of quinols and the reduction of a high-potential electron carrier, such as cytochrome c 2 or plastocyanin. The cytochrome complex also functions in the translocation of protons across the membrane and as a consequence, establishes the proton motive force that is used for the synthesis of ATP. The structure and function of the cytochrome complexes are first reviewed in this chapter. Amino acid sequence information for almost all of the protein subunits of these complexes is now available, and these allow for a detailed consideration of functional domains in the protein subunits and for a further discussion of the evolution of the cytochrome complex in photosynthetic organisms.  相似文献   

18.
The supramolecular structure of the exoplasmic freeze-fracture particles of thylakoids of the thermophilic cyanobacterium Synechococcus sp. is compared with that of isolated photosystem-II complexes. The in-situ EF particles are scattered on the thylakoids or organized in rows of variable length; the latter aligned particles measure 10 nmx20 nm and are separated perpendicular to their long axis into two parts. We propose that they represent dimers composed of two monomeric 10-nm EF particles side by side. Isolated photosystem (PS)II particles correspond in size to the monomeric 10-nm EF particles as analysed by negative contrast and freeze-fracture electron microscopy. Dimeric PSII particles, very similar to the in-situ 10 nmx20 nm EF particles, are obtained after incorporation of purified PSII complexes into liposomes made from phospholipid and cholesterol. Each monomeric complex consists of the reaction center, the water-splitting system, the chlorophyll antennae and phycobilisome-binding polypeptides. We propose that the dimeric complexes bind one hemidiscoidal phycobilisome at their domains exposed to the external side of the thylakoids. The implications of this arrangement of the PSII-phycobilisome complexes within the thylakoids upon excitation-energy distribution are discussed.Abbreviations EF exoplasmic fracture face - LDS lithium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - PS photosystem - SDS sodium dodecyl sulfate - SPC-buffer 0.5 M sucrose, 0.5 M K2HPO4/KH2PO4, 0.3 M Nacitrate, pH 7.0 This study is dedicated to Professor W. Nultsch on the occasion of his 60th birthday.  相似文献   

19.
(1) The electron transport system of heterotrophically dark-grown Rhodobacter capsulatus was investigated using the wild-type strain MT1131 and the phototrophic non-competent (Ps-) mutant MT-GS18 carrying deletions of the genes for cytochrome c 1 and b of the bc 1 complex and for cytochrome c 2. (2) Spectroscopic and thermodynamic data demonstrate that deletion of both bc 1 complex and cyt. c 2 still leaves several haems of c- and b-type with Em7.0 of +265 mV and +354 mV at 551–542 nm, and +415 mV and +275 mV at 561–575 nm, respectively. (3) Analysis of the oxidoreduction kinetic patterns of cytochromes indicated that cyt. b 415 and cyt. b 275 are reduced by either ascorbate-diaminodurene or NADH, respectively. (4) Growth on different carbon and nitrogen sources revealed that the membrane-bound electron transport chain of both MT1131 and MT-GS18 strains undergoes functional modifications in response to the composition of the growth medium used. (5) Excitation of membrane fragments from cells grown in malate minimal medium by a train of single turnover flashes of light led to a rapid oxidation of 32% of the membrane-bound c-type haem complement. Conversely, membranes prepared from peptone/yeast extract grown cells did not show cyt. c photooxidation. These results are discussed within the framework of an electron transport chain in which alternative pathways bypassing both the cyt. c 2 and bc 1 complex might involve high-potential membrane bound haems of b- and c-type.Abbreviations AA antimycin A - CCCP carbonylcyanide m-chlorophenyl hydrazone - CN- cyanide - DAD diaminodurene - Q2H2 ubiquinol-2 - Q-pool ubiquinone-10 pool - RC photochemical reaction center  相似文献   

20.
Electron microscopy (EM) in combination with image analysis is a powerful technique to study protein structure at low- and high resolution. Since electron micrographs of biological objects are very noisy, substantial improvement of image quality can be obtained by averaging individual projections. Crystallographic and noncrystallographic averaging methods are available and have been applied to study projections of the large protein complexes embedded in photosynthetic membranes from cyanobacteria and higher plants. Results of EM on monomeric and trimeric Photosystem I complexes, on monomeric and dimeric Photosystem II complexes, and on the monomeric cytochromeb6/f complex are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号