首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinesin is a force-generating ATPase that drives the sliding movement of microtubules on glass coverslips and the movement of plastic beads along microtubules. Although kinesin is suspected to participate in microtubule-based organelle transport, the exact role it plays in this process is unclear. To address this question, we have developed a quantitative assay that allows us to determine the ability of soluble factors to promote organelle movement. Salt-washed organelles from squid axoplasm exhibited a nearly undetectable level of movement on purified microtubules. Their frequency of movement could be increased greater than 20-fold by the addition of a high speed axoplasmic supernatant. Immunoadsorption of kinesin from this supernatant decreased the frequency of organelle movement by more than 70%; organelle movements in both directions were markedly reduced. Surprisingly, antibody purified kinesin did not promote organelle movement either by itself or when it was added back to the kinesin-depleted supernatant. This result suggested that other soluble factors necessary for organelle movement were removed along with kinesin during immunoadsorption of the supernatant. A high level of organelle motor activity was recovered in a high salt eluate of the immunoadsorbent that contained only little kinesin. On the basis of these results we propose that organelle movement on microtubules involves other soluble axoplasmic factors in addition to kinesin.  相似文献   

2.
Conventional kinesin (Kinesin-1), the founding member of the kinesin family, was discovered in the squid giant axon, where it is thought to move organelles on microtubules. In this study, we identify a second squid kinesin by searching an expressed sequence tag database derived from the ganglia that give rise to the axon. The full-length open reading frame encodes a 1753 amino acid sequence that classifies this protein as a Kinesin-3. Immunoblots demonstrate that this kinesin, unlike Kinesin-1, is highly enriched in chaotropically stripped axoplasmic organelles, and immunogold electron microscopy (EM) demonstrates that Kinesin-3 is tightly bound to the surfaces of these organelles. Video microscopy shows that movements of purified organelles on microtubules are blocked, but organelles remain attached, in the presence Kinesin-3 antibody. Immunogold EM of axoplasmic spreads with antibody to Kinesin-3 decorates discrete sites on many, but not all, free organelles and localizes Kinesin-3 to organelle/microtubule interfaces. In contrast, label for Kinesin-1 decorates microtubules but not organelles. The presence of Kinesin-3 on purified organelles, the ability of an antibody to block their movements along microtubules, the tight association of Kinesin-3 with motile organelles and its distribution at the interface between native organelles and microtubules suggest that Kinesin-3 is a dominant motor in the axon for unidirectional movement of organelles along microtubules.  相似文献   

3.
When higher eukaryotic cells enter mitosis, membrane organization changes dramatically and traffic between membrane compartments is inhibited. Since membrane transport along microtubules is involved in secretion, endocytosis, and the positioning of organelles during interphase, we have explored whether the mitotic reorganization of membrane could involve a change in microtubule-based membrane transport. This question was examined by reconstituting organelle transport along microtubules in Xenopus egg extracts, which can be converted between interphase and metaphase states in vitro in the absence of protein synthesis. Interphase extracts support the microtubule-dependent formation of abundant polygonal networks of membrane tubules and the transport of small vesicles. In metaphase extracts, however, the plus end- and minus end-directed movements of vesicles along microtubules as well as the formation of tubular membrane networks are all reduced substantially. By fractionating the extracts into soluble and membrane components, we have shown that the cell cycle state of the supernatant determines the extent of microtubule-based membrane movement. Interphase but not metaphase Xenopus soluble factors also stimulate movement of membranes from a rat liver Golgi fraction. In contrast to above findings with organelle transport, the minus end-directed movements of microtubules on glass surfaces and of latex beads along microtubules are similar in interphase and metaphase extracts, suggesting that cytoplasmic dynein, the predominant soluble motor in frog extracts, retains its force-generating activity throughout the cell cycle. A change in the association of motors with membranes may therefore explain the differing levels of organelle transport activity in interphase and mitotic extracts. We propose that the regulation of organelle transport may contribute significantly to the changes in membrane structure and function observed during mitosis in living cells.  相似文献   

4.
Cultured cell extracts support organelle movement on microtubules in vitro   总被引:8,自引:0,他引:8  
Directed movements of organelles have been observed in a variety of cultured cells. To study the regulation and molecular basis of intracellular organelle motility, we have prepared extracts from cultured chick embryo fibroblasts (CEF cells) which support the movement of membraneous organelles along microtubules. The velocity, frequency and characteristics of organelle movements in vitro were similar to those within intact cells. Organelles and extract-coated anionic beads moved predominantly (80%) toward the minus ends of microtubules that had been regrown from centrosomes, corresponding to retrograde translocation. Similar microtubule-dependent organelle movements were observed in extracts prepared from other cultured cells (African green monkey kidney and 3T3 cells). Organelle motility was ATP and microtubule dependent. The frequency of organelle movement was inhibited by acidic (pH less than 7) or alkaline (pH greater than 8) solutions, high ionic strength ([ KCl] = 0.1 M), and the chelation of free magnesium ions. Treatment of the extracts with adenylyl imidodiphosphate (AMP-PNP, 7 mM), sodium orthovanadate (vanadate; Na3VO4, 20 microM), or N-ethylmaleimide (NEM, 2 mM) blocked all organelle motility. The decoration of microtubules with organelles was observed in the presence of AMP-PNP or vanadate. Motility was not affected by cytochalasin D (2 microM) or cAMP (1 mM). Kinesin (Mr = 116,000), an anterograde microtubule-based motor, was partially purified from the CEF extract by microtubule affinity purification in the presence of AMP-PNP, and was able to drive the movement of microtubule on glass coverslips. A similar preparation made in the presence of vanadate contained a different subset of proteins and did not support motility. These results demonstrate that intracellular organelle motility can be reproduced in vitro and provide the basis for investigating the roles of individual molecular components involved in the organelle motor complex.  相似文献   

5.
In this report, we describe an in vitro system for analyzing microtubule-based movements in supernatants of sea urchin egg and embryo homogenates. Using video enhanced DIC microscopy, we have observed bidirectional saltatory particle movements on native taxol-stabilized microtubules assembled in low speed supernatants of Lytechinus egg homogenates, and gliding of these microtubules across a glass surface. A high speed supernatant of soluble proteins, depleted of organelles, microtubules, and their associated proteins supports the gliding of exogenous microtubules and translocation of polystyrene beads along these microtubules. The direction of microtubule gliding has been determined directly by observation of the gliding of flagellar axonemes in which the (+) and (-) ends could be distinguished by biased polar growth of microtubules off the ends. Microtubule gliding is toward the (-) end of the microtubule, is ATP sensitive, and inhibited only by high concentrations of vanadate. These characteristics suggest that the transport complex responsible for microtubule gliding in S2 is kinesin-like. The implications of these molecular interactions for mitosis and other motile events are discussed.  相似文献   

6.
R D Vale  T S Reese  M P Sheetz 《Cell》1985,42(1):39-50
Axoplasm from the squid giant axon contains a soluble protein translocator that induces movement of microtubules on glass, latex beads on microtubules, and axoplasmic organelles on microtubules. We now report the partial purification of a protein from squid giant axons and optic lobes that induces these microtubule-based movements and show that there is a homologous protein in bovine brain. The purification of the translocator protein depended primarily on its unusual property of forming a high affinity complex with microtubules in the presence of a nonhydrolyzable ATP analog, adenylyl imidodiphosphate. The protein, once released from microtubules with ATP, migrates on gel filtration columns with an apparent molecular weight of 600 kilodaltons and contains 110-120 and 60-70 kilodalton polypeptides. This protein is distinct in molecular weight and enzymatic behavior from myosin or dynein, which suggests that it belongs to a novel class of force-generating molecules, for which we propose the name kinesin.  相似文献   

7.
This paper addresses the question of whether microtubule-directed transport of vesicular organelles depends on the presence of a pool of cytosolic factors, including soluble motor proteins and accessory factors. Earlier studies with squid axon organelles (Schroer et al., 1988) suggested that the presence of cytosol induces a > 20-fold increase in the number of organelles moving per unit time on microtubules in vitro. These earlier studies, however, did not consider that cytosol might nonspecifically increase the numbers of moving organelles, i.e., by blocking adsorption of organelles to the coverglass. Here we report that treatment of the coverglass with casein, in the absence of cytosol, blocks adsorption of organelles to the coverglass and results in vigorous movement of vesicular organelles in the complete absence of soluble proteins. This technical improvement makes it possible, for the first time, to perform quantitative studies of organelle movement in the absence of cytosol. These new studies show that organelle movement activity (numbers of moving organelles/min/micron microtubule) of unextracted organelles is not increased by cytosol. Unextracted organelles move in single directions, approximately two thirds toward the plus-end and one third toward the minus-end of microtubules. Extraction of organelles with 600 mM KI completely inhibits minus-end, but not plus-end directed organelle movement. Upon addition of cytosol, minus-end directed movement of KI organelles is restored, while plus--end directed movement is unaffected. Biochemical studies indicate that KI-extracted organelles attach to microtubules in the presence of AMP-PNP and copurify with tightly bound kinesin. The bound kinesin is not extracted from organelles by 1 M KI, 1 M NaCl or carbonate (pH 11.3). These results suggest that kinesin is irreversibly bound to organelles that move to the plus-end of microtubules and that the presence of soluble kinesin and accessory factors is not required for movement of plus-end organelles in squid axons.  相似文献   

8.
Native microtubules from extruded axoplasm of squid giant axons were used as a paradigm to characterize the motion of organelles along free microtubules and to study the dynamics of microtubule length changes. The motion of large round organelles was visualized by AVEC-DIC microscopy and analyzed at a temporal resolution of 10 frames per second. The movements were smooth and showed no major changes in velocity or direction. During translocation, the organelles paused very rarely. Superimposed on the rather constant mean velocity was a velocity fluctuation, which indicated that the organelles are subject to considerable thermal motion during translocation. Evidence for a regular low-frequency oscillation was not found. The thermal motion was anisotropic such that axial motion was less restricted than lateral motion. We conclude that the crossbridge connecting the moving organelle to the microtubule has a flexible region that behaves like a hinge, which permits preferential movement in the direction parallel to the microtubule. The dynamic changes in length of native microtubules were studied at a temporal resolution of 1 Hz. About 98% of the native microtubules maintained their length ("stable" microtubules), while 2% showed phases of growing and/or shrinking typical for dynamic instability ("dynamic" microtubules). Gliding and organelle motion were not influenced by dynamic length changes. Transitions between growing and shrinking phases were low-frequency events (1-10 minutes per cycle). However, a new type of microtubule length fluctuation, which occurred at a high frequency (a few seconds per cycle), was detected. The length changes were in the 1-3 micron range. The latter events were very prominent at the (+) ends. It appears that the native axonal microtubules are much more stable than the purified microtubules and the microtubules of cultured cells that have been studied thus far. Potential mechanisms accounting for the three states of microtubule stability are discussed. These studies show that the native microtubules from squid giant axons are a very useful paradigm for studying microtubule-related motility events and microtubule dynamics.  相似文献   

9.
The relationship between organelle movement and cytoplasmic structure in cultured fibroblasts or epithelial cells was studied using video-enhanced differential interference contrast microscopy and electron microscopy of directly frozen whole mounts. Two functional cytoplasmic domains are characterized by these techniques. A central domain rich in microtubules is associated with directed as well as Brownian movements of organelles, while a surrounding domain rich in f-actin supports directed but often intermittent organelle movements more distally along small but distinct individual microtubule tracks. Differences in the organization of the cytoplasm near microtubules may explain why organelle movements are typically continuous in central regions but usually intermittent along the small tracks through the periphery. The central type of cytoplasm has a looser cytoskeletal meshwork than the peripheral cytoplasm which might, therefore, interfere less frequently with organelles moving along microtubules there.  相似文献   

10.
The movement of pollen tube organelles relies on cytoskeletal elements. Although the movement of organelles along actin filaments in the pollen tube has been studied widely and is becoming progressively clear, it remains unclear what role microtubules play. Many uncertainties about the role of microtubules in the active transport of pollen tube organelles and/or in the control of this process remain to be resolved. In an effort to determine if organelles are capable of moving along microtubules in the absence of actin, we extracted organelles from tobacco pollen tubes and analyzed their ability to move along in vitro-polymerized microtubules under different experimental conditions. Regardless of their size, the organelles moved at different rates along microtubules in the presence of ATP. Cytochalasin D did not inhibit organelle movement, indicating that actin filaments are not required for organelle transport in our assay. The movement of organelles was cytosol independent, which suggests that soluble factors are not necessary for the organelle movement to occur and that microtubule-based motor proteins are present on the organelle surface. By washing organelles with KI, it was possible to release proteins capable of gliding carboxylated beads along microtubules. Several membrane fractions, which were separated by Suc density gradient centrifugation, showed microtubule-based movement. Proteins were extracted by KI treatment from the most active organelle fraction and then analyzed with an ATP-sensitive microtubule binding assay. Proteins isolated by the selective binding to microtubules were tested for the ability to glide microtubules in the in vitro motility assay, for the presence of microtubule-stimulated ATPase activity, and for cross-reactivity with anti-kinesin antibodies. We identified and characterized a 105-kD organelle-associated motor protein that is functionally, biochemically, and immunologically related to kinesin. This work provides clear evidence that the movement of pollen tube organelles is not just actin based; rather, they show a microtubule-based motion as well. This unexpected finding suggests new insights into the use of pollen tube microtubules, which could be used for short-range transport, as actin filaments are in animal cells.  相似文献   

11.
Native microtubules prepared from extruded and dissociated axoplasm have been observed to transport organelles and vesicles unidirectionally in fresh preparations and more slowly and bidirectionally in older preparations. Both endogenous and exogenous (fluorescent polystyrene) particles in rapid Brownian motion alight on and adhere to microtubules and are transported along them. Particles can switch from one intersecting microtubule to another and move in either direction. Microtubular segments 1 to 30 microns long, produced by gentle homogenization, glide over glass surfaces for hundreds of micrometers in straight lines unless acted upon by obstacles. While gliding they transport particles either in the same (forward) direction and/or in the backward direction. Particle movement and gliding of microtubule segments require ATP and are insensitive to taxol (30 microM). It appears, therefore, that the mechanisms producing the motive force are very closely associated with the native microtubule itself or with its associated proteins. Although these movements appear irreconcilable with several current theories of fast axoplasmic transport, in this article we propose two models that might explain the observed phenomena and, by extension, the process of fast axoplasmic transport itself. The findings presented and the possible mechanisms proposed for fast axoplasmic transport have potential applications across the spectrum of microtubule-based motility processes.  相似文献   

12.
B J Schnapp  R D Vale  M P Sheetz  T S Reese 《Cell》1985,40(2):455-462
Single filaments, dissociated from the extruded axoplasm of the squid giant axon and visualized by video-enhanced differential interference contrast microscopy, transport organelles bidirectionally. Organelles moving in the same or opposite directions along the same filament can pass each other without colliding, indicating that each transport filament has several tracks for organelle movement. In order to characterize transport filaments, organelle movements were first examined by video microscopy, and then the same filaments were examined by electron microscopy after rapid-freezing, freeze-drying, and rotary-shadowing. Transport filaments that supported bidirectional movement of organelles are 22 nm to 27 nm in diameter and have a substructure indicative of a single microtubule. Immunofluorescence showed that virtually all transport filaments contain tubulin. These results show that single microtubules can serve as a substratum for organelle movement, and suggest that an interaction between organelles and microtubules is the basis of fast axonal transport.  相似文献   

13.
Multiscale trend analysis of microtubule transport in melanophores   总被引:2,自引:1,他引:1       下载免费PDF全文
Microtubule-based transport is critical for trafficking of organelles, organization of endomembranes, and mitosis. The driving force for microtubule-based transport is provided by microtubule motors, which move organelles specifically to the plus or minus ends of the microtubules. Motor proteins of opposite polarities are bound to the surface of the same cargo organelle. Transport of organelles along microtubules is discontinuous and involves transitions between movements to plus or minus ends or pauses. Parameters of the movement, such as velocity and length of runs, provide important information about the activity of microtubule motors, but measurement of these parameters is difficult and requires a sophisticated decomposition of the organelle movement trajectories into directional runs and pauses. The existing algorithms are based on establishing threshold values for the length and duration of runs and thus do not allow to distinguish between slow runs and pauses, making the analysis of the organelle transport incomplete. Here we describe a novel algorithm based on multiscale trend analysis for the decomposition of organelle trajectories into plus- or minus-end runs, and pauses. This algorithm is self-adapted to the characteristic durations and velocities of runs, and allows reliable separation of pauses from runs. We apply the proposed algorithm to compare regulation of microtubule transport in fish and Xenopus melanophores and show that the general mechanisms of regulation are similar in the two pigment cell types.  相似文献   

14.
Molecular motors are molecules that drive a wide range of activities (for example, organelle movement, chromosome segregation, and flagellar movement) in cells. Thus, they play essential roles in diverse cellular functions. Understanding their structures, mechanisms of action and different roles is therefore of great practical importance. The role of microtubules during pollen tube growth is presently not identified, nor are basic properties. We do not know, for example, where microtubules are organized, the extent of microtubule dynamics, and the polarity of microtubules in the pollen tube. Roles of microtubules and related motors in organelle trafficking are not clear. Regardless of scarce information, microtubule-based motors of both the kinesin and dynein families have been identified in the pollen tube. Most of these microtubule motors have also been found in association with membrane-bounded organelles, which suggest that these proteins could translocate organelles or vesicles along microtubules. The biochemical features of these proteins are typical of the motor protein class. Immunofluorescence microscopy of pollen tubes probed with antibodies that cross-react with microtubule motors indicate that these proteins are localized in different regions of the pollen tube; therefore, they could have different roles. Although a number of microtubule motors have been identified in the pollen tube, the role of these proteins during pollen tube germination and growth or organelle movement is not yet recognized, as tube elongation and organelle movement in the pollen tube depend mostly on actin filaments. In the effort to understand the specific role that microtubules and related motors have in the pollen tube, it is therefore necessary to identify the molecular machinery that interacts with microtubules. Furthermore, it is crucial to clearly establish the types of interaction between organelles and microtubules. This review summarizes the current state of the art on microtubule motors in the pollen tube, mainly surrounding the putative roles of microtubule motors in organelle movement and cytoplasmic organization. Some hypotheses and speculations are also presented.  相似文献   

15.
We characterized and compared the diffusion of beads coated with proteins such as cytoplasmic dynein, alpha-casein, and some immunoglobulins on microtubules. Such weak binding interactions could be common and convenient for concentrating proteins at the surface of cytoplasmic structures such as microtubules. In studying the motile behavior of anionic latex beads coated with limiting dilutions of cytoplasmic dynein, we observed that in addition to active movement, 20-50% of the beads moved back and forth in a random manner. The random movement was inhibited by depletion of ATP or addition of ADP or AMP-PNP. Mean-square-displacement analysis showed that the movement is a one-dimensional diffusion along the microtubule axis with a diffusion coefficient of 2.16 x 10(-10) cm2/sec. Histogram analysis of off-axis movements suggested that approximately 60% of the diffusing beads followed the path of a single microtubule protofilament. Beads coated with proteins such as alpha-casein or a monoclonal immunoglobulin were also observed to diffuse on microtubules with a similar diffusion coefficient to cytoplasmic dynein. However, alpha-casein or immunoglobulin-bead diffusion was not ATP dependent and did not follow the paths of single protofilaments. Thus, although the environment of the microtubule surface can trap a variety of different protein-coated beads, cytoplasmic dynein's interaction is unusual in its ATP dependence and tracking on a single protofilament, which is consistent with its specific interaction with microtubules. Diffusive interactions could concentrate associating proteins and still allow for freedom of movement.  相似文献   

16.
To investigate the role that myosin Va plays in axonal transport of organelles, myosin Va-associated organelle movements were monitored in living neurons using microinjected fluorescently labeled antibodies to myosin Va or expression of a green fluorescent protein-myosin Va tail construct. Myosin Va-associated organelles made rapid bi-directional movements in both normal and dilute-lethal (myosin Va null) neurites. In normal neurons, depolymerization of microtubules by nocodazole slowed, but did not stop movement. In contrast, depolymerization of microtubules in dilute-lethal neurons stopped movement. Myosin Va or synaptic vesicle protein 2 (SV2), which partially colocalizes with myosin Va on organelles, did not accumulate in dilute-lethal neuronal cell bodies because of an anterograde bias associated with organelle transport. However, SV2 showed peripheral accumulations in axon regions of dilute-lethal neurons rich in tyrosinated tubulin. This suggests that myosin Va-associated organelles become stranded in regions rich in dynamic microtubule endings. Consistent with these observations, presynaptic terminals of cerebellar granule cells in dilute-lethal mice showed increased cross-sectional area, and had greater numbers of both synaptic and larger SV2 positive vesicles. Together, these results indicate that myosin Va binds to organelles that are transported in axons along microtubules. This is consistent with both actin- and microtubule-based motors being present on these organelles. Although myosin V activity is not necessary for long-range transport in axons, myosin Va activity is necessary for local movement or processing of organelles in regions, such as presynaptic terminals that lack microtubules.  相似文献   

17.
Intracellular organelle motion within clonal pituitary tumor cells (GH3) was observed directly with a contrast enhancement, computer-video microscope system. All particles except nuclei moved in a complex fashion. Two types of particles predominated; one large and round, the other small and elongated. We classified the movements of these particles as saltation, oscillation and slow translocation. Saltation was directional movement with velocity of the order of 1 micron/sec. Oscillation was local motion occurring within 1 micron that showed no specific direction. Its velocity was similar to that of saltation. Large particles, in particular, showed the 3rd type of movement, slow translocation. The velocity appeared to be one order slower than that of saltation. We also examined the cells with fluorescent, dark-field and electron microscopies. We concluded that the large round particles were lysosomes and the small elongated ones mitochondria. The microtubule depolymerizer, vinblastine and the microfilament depolymerizer, cytochalasin D, completely inhibited all the types of organelle movement. The mechanism and significance of these organelle movements are discussed.  相似文献   

18.
Organelles transported along microtubules are normally moved to precise locations within cells. For example, synaptic vesiceles are transported to the neruronal synapse, the Golgi apparatus is generally found in a perinuclear location, and the membranes of the endoplasmic reticulum are actively extended to the cell periphery. The correct positioning of these organelles depends on microtubules and microtubule motors. Melanophores provide an extreme example of organized organelle transport. These cells are specialized to transport pigment granules, which are coordinately moved towards or away from the cell center, and result in the cell appearing alternately light or dark. Melanophores have proved to be an ideal system for studying the mechanisms by which the cell controls the direction of its organelle transport. Pigment granule dispersion (the movement away from the cell center) requires protein phosphorylation, while pigment aggregation (the movement towards the cell center) requires protein dephosphorylation. The target of this phosphorylation and dephosphorylation event is a protein that interacts with the microtubule motor protein, kinesin. Thus, the direction of organelle transport along microtubules may be regulated by controlling the activity of a microtubule motor.  相似文献   

19.
Organelles and plasma membrane domains appear to be transported along Reticulomyxa's microtubule cytoskeleton. Previously we demonstrated that organelle and cell surface transport share the same enzymatic properties and suggested that both are powered by the same cytoplasmic dynein. Motility analysis in Reticulomyxa is complicated by the fact that the microtubules also are motile and appear to "slide" bidirectionally throughout the network. We have utilized laser ablation to address this frame-of-reference problem as to how each transport component (microtubule sliding vs. organelle translocations) contributes to reactivated bidirectional translocation of organelles along the microtubule cytoskeleton. Laser ablation was used to cut microtubule bundles from lysed networks into 4-15-microm segments. After examining these reactivated cut fragments, it appears that the majority of organelles did not move relative to microtubule fragments, but remained attached to microtubules and moved as the microtubules slid. Microtubule sliding stops after 1-2 min and cannot be reactivated even when perfused with fresh ATP. Furthermore, once sliding stops, organelle transport also stops. Our findings indicate that the majority of Reticulomyxa pseudopodial organelles do not move along the surface of the microtubules, rather it is the sliding of the microtubules to which they are attached that moves them.  相似文献   

20.
R D Vale  B J Schnapp  T S Reese  M P Sheetz 《Cell》1985,40(2):449-454
Cytoplasmic filaments, separated from the axoplasm of the squid giant axon and visualized by video-enhanced differential interference contrast microscopy, support the directed movement of organelles in the presence of ATP. All organelles, regardless of size, move continuously along isolated transport filaments at 2.2 +/- 0.2 micron/sec. In the intact axoplasm, however, movements of the larger organelles are slow and saltatory. These movements may reflect a resistance to movement imposed by the intact axoplasm. The uniform rate of all organelles along isolated transport filaments suggests that a single type of molecular motor powers fast axonal transport. Organelles can attach to and move along more than one filament at a time, suggesting that organelles have multiple binding sites for this motor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号