首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sites phosphorylated in myosin light chain in contracting smooth muscle   总被引:4,自引:0,他引:4  
Purified smooth muscle myosin light chain can be phosphorylated at multiple sites by myosin light chain kinase and protein kinase C. We have determined the sites phosphorylated on myosin light chain in intact bovine tracheal smooth muscle. Stimulation with 10 microM carbachol resulted in 66 +/- 5% monophosphorylated and 11 +/- 2% diphosphorylated myosin light chain after 1 min, and 47 +/- 4% monophosphorylated and 5 +/- 2% diphosphorylated myosin light chain after 30 min. Myosin heavy chain contained 0.06 +/- 0.01 mol of phosphate/mol of protein which did not change with carbachol. At both 1 and 30 min the monophosphorylated myosin light chain contained only phosphoserine whereas the diphosphorylated myosin light chain contained both phosphoserine and phosphothreonine. Two-dimensional peptide mapping of tryptic digests of monophosphorylated and diphosphorylated myosin light chain obtained from carbachol-stimulated tissue was similar to the peptide maps of purified light chain monophosphorylated and diphosphorylated, respectively, by myosin light chain kinase; these maps were distinct from the map obtained with tracheal light chain phosphorylated by protein kinase C. Phosphorylation of tracheal smooth muscle myosin light chain by myosin light chain kinase yields the tryptic phosphopeptide ATSNVFAMFDQSQIQEFK with S the phosphoserine in the monophosphorylated myosin light chain and TS the phosphotreonine and phosphoserine in the diphosphorylated myosin light chain. Thus, stimulation of tracheal smooth muscle with a high concentration of carbachol results in formation of both monophosphorylated and diphosphorylated myosin light chain although the amount of diphosphorylated light chain is substantially less than monophosphorylated light chain. In the intact muscle, myosin light chain is phosphorylated at sites corresponding to myosin light chain kinase phosphorylation.  相似文献   

2.
The effects of N6,O2-dibutyryl-adenosine 3',5'-monophosphate (Bt2cAMP) and sodium fluoride on the phosphorylation of ribosomal proteins S6 and on protein synthesis were examined. Rabbit reticulocytes were incubated in a nutritional medium containing 32Pi in the presence and absence of Bt2cAMP (1mM) and 3-isobutyl-1-methyl-xanthine (1mM). In the control cells, four phosphorylated derivatives of S6 were observed, with most of the radioactivity in the monophosphorylated form. Upon addition of cyclic nucleotide, a twofold increase in the phosphorylation of ribosomal protein S6 was observed. This was accompanied by an increase of radioactive phosphate in the diphosphorylated derivative. No alteration in protein synthesis was observed upon addition of cAMP and analogues of cAMP in conjunction with 3-isobutyl-1-methyl-xanthine or theophylline. The effects of sodium fluoride on phosphorylation of S6 and on protein synthesis were examined also. At 5 mM sodium fluoride, protein synthesis was inhibited by 85%. A 2.5-fold increase in the phosphorylation of ribosomal protein S6 was observed with an accumulation of 32Pi in the diphosphorylated, triphosphorylated and tetraphosphorylated derivatives. Inhibition of protein synthesis coincided with an increase in the more highly phosphorylated derivatives, whereas an increase of radioactive phosphate in the diphosphorylated derivative could not be correlated with an alteration in globin synthesis.  相似文献   

3.
Serine phosphorylation of insulin/IGF-I receptors in transfected fibroblasts was analysed by peptide mapping. PMA stimulated the phosphorylation of 5 distinct insulin receptor phosphopeptides: a single major phosphothreonine peptide containing Thr-1348, one major and 3 minor phosphoserine peptides. The major insulin-stimulated phosphoserine peptides were the same as those after PMA, with the exception of 2 minor phosphoserine peptides. PMA stimulated phosphorylation of a single major IGF-I receptor phosphoserine peptide which was phosphorylated to a lesser extent after IGF-I. We conclude that insulin/IGF-I and PMA stimulate phosphorylation of the same sites, but differ in the extents of phosphorylation.  相似文献   

4.
The addition of large amounts of myosin light chain kinase to the reconstituted gizzard actomyosin shows diphosphorylation of 20 kDa myosin light chain. Accompanying diphosphorylation, the actin-activated myosin ATPase activity was also enhanced. The extent of diphosphorylation and the myosin ATPase activity were clearly demonstrated to be in a linear relationship. From the time course experiment, the conversion of monophosphorylated light chain into one which was diphosphorylated seemed to be a sequential process. Moreover, analyzing phospho-amino acid by using a two-dimensional electrophoresis technique revealed that monophosphorylated light chain contained phosphoserine and diphosphorylated one contained phosphothreonine in addition to phosphoserine.  相似文献   

5.
Vinculin, a cytoskeletal substrate of protein kinase C   总被引:22,自引:0,他引:22  
Vinculin, a cytoskeletal protein localized at adhesion plaques, is a phosphoprotein containing phosphoserine, phosphothreonine, and phosphotyrosine. Vinculin has been previously shown to be a substrate for pp60src, a phosphotyrosine protein kinase, but the kinase(s) responsible for phosphorylation of the other amino acid residues is unknown. The present report examines the phosphorylation of vinculin by various serine- and threonine-specific protein kinases. Only protein kinase C, the calcium-activated phospholipid-dependent protein kinase, phosphorylates vinculin at a significant rate (24 nmol/min/mg) and displays marked specificity for vinculin. Both calcium and phosphatidylserine were required for vinculin phosphorylation by protein kinase C. In addition, both phorbol 12,13-dibutyrate (10 nM) and phorbol 12-myristate 13-acetate (10 nM) stimulated vinculin phosphorylation by protein kinase C at a limiting calcium concentration (10(-6) M). Tryptic peptide analysis revealed two major sites of phosphorylation. One site contained phosphoserine and the other contained phosphothreonine. When compared with tryptic maps of vinculin phosphorylated by src kinase, no overlapping phosphorylated peptides were found. The present findings coupled with the plasma membrane location of both these proteins suggest that vinculin may be a physiologic substrate for protein kinase C.  相似文献   

6.
We have determined the sequence of the sites phosphorylated by protein kinase C in the turkey gizzard smooth muscle myosin light chain. In contrast to previous work (Nishikawa, M., Hidaka, H., and Adelstein, R. S. (1983) J. Biol. Chem. 258, 14069-14072), two-dimensional tryptic peptide maps of both heavy meromyosin and the isolated myosin light chain showed two major phosphopeptides, one containing phosphoserine and the other phosphothreonine. We have purified the succinylated tryptic phosphopeptides using reverse phase and DEAE high pressure liquid chromatography. The serine-containing peptide, residues 1-4 (Ac-SSKR), is the NH2-terminal peptide. The phosphorylated serine residue may be either serine 1 or serine 2. The threonine-containing peptide, residues 5-16, yielded the sequence AKAKTTKKRPQR. Analysis of the yields and radioactivity of the products from automated Edman degradation showed that threonine 9 is the phosphorylation site.  相似文献   

7.
8.
9.
1. The phosphorylatable light chain from uterine and arterial smooth muscles appear as four spots on two-dimensional gel electrophoretograms due to the existence of isoforms which may be non-, mono- or diphosphorylated. 2. The phosphorylation sites are serine and threonine residues; the phosphoserine to phosphothreonine ratio is smaller, and the extent of diphosphorylation is larger in uterus than in artery. 3. Different phosphorylation values found at identical tension levels and identical phosphorylation values found at different tension levels narrow the role of light chain phosphorylation to the activation of smooth muscle contraction.  相似文献   

10.
Myelin basic protein of rabbit brain (Mr = 18,200) was initially freed of the bulk of the nonphosphorylated species (mainly component 1) by Cm-cellulose chromatography at high pH. The remainder of the protein was subjected to peptic digestion at pH 6.00, which resulted in specific, essentially complete cleavage at several bonds (Phe-44--Phe-45, Phe-87--Phe-88, Leu-109--Ser-110, and Leu-151--Phe-152) and partial cleavage at the Tyr-14--Leu-15 bond. Gel filtration of the digest through Sephadex G-25 (fine) yielded three fractions, the first containing primarily peptides 1-44 and 45-87, the second peptides 15-44, 88-109, and 110-151, and the third peptides 1-14 and 152-168. Each fraction was chromatographed on Cm-cellulose at pH 8.2, and the resulting subfractions and partially purified peptides were analyzed for phosphoserine and phosphothreonine. Materials containing significant amounts of the phosphoamino acids were subsequently chromatographed on Cm-cellulose at pH 4.65, and the analyses for phosphoserine and phosphothreonine were repeated. The resulting purified peptic phosphopeptides were identified by amino acid analysis and tryptic peptide mapping. Comparison of the maps with those of the unphosphorylated counterparts located the tryptic phosphopeptides. These were recovered and their identities were established by amino acid analysis. In those cases where the phosphopeptide contained 2 Ser residues, the position of the phosphoserine was established by aminopeptidase M digestion. Five phosphorylation sites were found: Ser-7, Ser-56, Thr-96, Ser-113, and Ser-163. Only a small fraction of these sites was phosphorylated in the total basic protein, with values ranging from about 2 (ser-113) to 6% (Thr-96). With the possible exception of Ser-56, these sites are not the ones that have been reported to be phosphorylated in vitro by cyclic AMP-dependent protein kinase.  相似文献   

11.
The co-operative interaction of 30 S ribosomal subunit proteins S6, S8, S15 and S18 with 16 S ribosomal RNA from Escherichia coli was studied by (1) determining how the binding of each protein is influenced by the others and (2) characterizing a series of protein-rRNA fragment complexes. Whereas S8 and S15 are known to associate independently with the 16 S rRNA, binding of S18 depended upon S8 and S15, and binding of S6 was found to require S8, S15 and S18. Ribonucleoprotein (RNP) fragments were derived from the S8-, S8/S15- and S6/S8/S15/S18-16 S rRNA complexes by partial RNase hydrolysis and isolated by electrophoresis through Mg2+-containing polyacrylamide gels or by centrifugation through sucrose gradients. Identification of the proteins associated with each RNP by gel electrophoresis in the presence of sodium dodecyl sulfate demonstrated the presence of S8, S8 + S15 and S6 + S8 + S15 + S18 in the corresponding fragment complexes. Analysis of the rRNA components of the RNP particles confirmed that S8 was bound to nucleotides 583 to 605 and 624 to 653, and that S8 and S15 were associated with nucleotides 583 to 605, 624 to 672 and 733 to 757. Proteins S6, S8, S15 and S18 were shown to protect nucleotides 563 to 605, 624 to 680, 702 to 770, 818 to 839 and 844 to 891, which span the entire central domain of the 16 S rRNA molecule (nucleotides 560 to 890). The binding site for each protein contains helical elements as well as single-stranded internal loops ranging in size from a single bulged nucleotide to 20 bases. Three terminal loops and one stem-loop structure within the central domain of the 16 S rRNA were not protected in the four-protein complex. Interestingly, bases within or very close to these unprotected regions have been shown to be accessible to chemical and enzymatic probes in 30 S subunits but not in 70 S ribosomes. Furthermore, nucleotides adjacent to one of the unprotected loops have been cross-linked to a region near the 3' end of 16 S rRNA. Our observations and those of others suggest that the bases in this domain that are not sequestered by interactions with S6, S8, S15 or S18 play a role involved in subunit association or in tertiary interactions between portions of the rRNA chain that are distant from one-another in the primary structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
We describe the isolation and characterization of a gene (ptpA) from Streptomyces coelicolor A3(2) that codes for a protein with a deduced M(r) of 17,690 containing significant amino acid sequence identity with mammalian and prokaryotic small, acidic phosphotyrosine protein phosphatases (PTPases). After expression of S. coelicolor ptpA in Escherichia coli with a pT7-7-based vector system, PtpA was purified to homogeneity as a fusion protein containing five extra amino acids. The purified fusion enzyme catalyzed the removal of phosphate from p-nitrophenylphosphate (PNPP), phosphotyrosine (PY), and a commercial phosphopeptide containing a single phosphotyrosine residue but did not cleave phosphoserine or phosphothreonine. The pH optima for PNPP and PY hydrolysis by PtpA were 6.0 and 6.5, respectively. The Km values for hydrolysis of PNPP and PY by PtpA were 0.75 mM (pH 6.0, 37 degrees C) and 2.7 mM (pH 6.5, 37 degrees C), respectively. Hydrolysis of PNPP by S. coelicolor PtpA were 0.75 mM (pH 6.0, 37 degrees C) and 2.7 mM (pH 6.5, 37 degrees C), respectively. Hydrolysis of PNPP by S. coelicolor PtpA was competitively inhibited by dephostatin with a Ki of 1.64 microM; the known PTPase inhibitors phenylarsine oxide, sodium vanadate, and iodoacetate also inhibited enzyme activity. Apparent homologs of ptpA were detected in other streptomycetes by Southern hybridization; the biological functions of PtpA and its putative homologs in streptomycetes are not yet known.  相似文献   

13.
We have examined the ribosomal protein kinase activities in partially purified cytoplasmic extracts from HeLa cells infected with vaccinia virus. We found an activity or activities, absent from mock-infected cells, that was capable of phosphorylating the proteins S2 and S13 in vitro. The ribosomes phosphorylated in vitro exhibited the same multiple phosphorylation of S2 found in vivo, at least 3 phosphoryl residues being seen, and the same mono-phosphorylation of S13. Also as in vivo, ribosomal protein S2 contained phosphothreonine as well as phosphoserine, whereas S13 contained only phosphoserine. This strongly suggests that these new protein kinase activities are responsible for the ribosomal protein phosphorylations that occur during infection with vaccinia virus.  相似文献   

14.
Contraction of glycerinated porcine carotid artery smooth muscle in response to calcium (20 microM), calmodulin (10 microM), and MgATP was associated with phosphorylation of the 20,000-dalton myosin light chain (LC20) to an average stoichiometry of 1.47 mol of PO4/mol of LC20. Tryptic and chymotryptic phosphopeptide maps of the mono- and diphosphorylated forms of LC20 purified from skinned muscles demonstrated the presence of a single phosphopeptide in all cases. Phosphoamino acid analysis indicated that the monophosphorylated form contained primarily phosphoserine, whereas the diphosphorylated form contained both phosphoserine and phosphothreonine. Thiophosphorylation of LC20 by adenosine 5'-O-(thiotriphosphate) resulted in the incorporation of 1 mol of thiophosphate into phosphoserine. Thiophosphorylated LC20 could be subsequently phosphorylated at a threonine residue to a stoichiometry of 1.7 mol of PO4/mol of LC20 by incubation in the presence of MgATP, calcium, and calmodulin. The extent of multiple site phosphorylation of LC20 was dependent upon both the ionic strength and the free Mg2+ concentration in the muscle bath; increasing either ionic strength (0.07-0.15 M) or [Mg2+] (1-20 mM) resulted in lower stoichiometries of LC20 phosphorylation. The effect of multiple site phosphorylation on contraction was examined in muscles which were seqentially phosphorylated at serine followed by threonine. Full activation (21 degrees C) of both isometric force (1.4 newtons/cm2) and unloaded shortening velocity (0.016 L0/s) was achieved following thiophosphorylation to 1.1 mol of PO4/mol of LC20. No further activation of either isometric force (1.5 newtons/cm2) or unloaded shortening velocity (0.015 L0/s) occurred following phosphorylation to 1.7 mol of PO4/mol of LC20.  相似文献   

15.
Previous studies have shown that increased ribosomal protein S6 kinase activity in unfertilized Xenopus eggs can be resolved by DEAE-Sephacel chromatography into two peaks, designated S6 kinase I and S6 kinase II. We show here that antibody against bacterially expressed S6 kinase II cross-reacts with S6 kinase I. Both S6 kinases undergo marked phosphorylation when they are activated during oocyte maturation, and both become deactivated and dephosphorylated upon activation of eggs. Immunoblotting of extracts of oocytes reveals that all S6 kinase molecules undergo a decrease and increase in electrophoretic mobility upon activation and deactivation, respectively. The increase in electrophoretic mobility can be produced in vitro by incubation of activated S6 kinase with purified phosphatases. Phosphoamino acid analysis of S6 kinase II labeled in vivo during maturation reveals both phosphoserine and phosphothreonine, and phosphopeptide maps suggest that several kinases may phosphorylate and activate S6 kinase II in vivo. These results demonstrate that, during oocyte maturation and early development, S6 kinase activation and deactivation are regulated by phosphorylation and dephosphorylation, suggesting a probable mechanism for S6 kinase regulation in other mitogenically stimulated cells.  相似文献   

16.
The structure of a ribosomal protein S8/spc operon mRNA complex   总被引:2,自引:0,他引:2  
In bacteria, translation of all the ribosomal protein cistrons in the spc operon mRNA is repressed by the binding of the product of one of them, S8, to an internal sequence at the 5' end of the L5 cistron. The way in which the first two genes of the spc operon are regulated, retroregulation, is mechanistically distinct from translational repression by S8 of the genes from L5 onward. A 2.8 A resolution crystal structure has been obtained of Escherichia coli S8 bound to this site. Despite sequence differences, the structure of this complex is almost identical to that of the S8/helix 21 complex seen in the small ribosomal subunit, consistent with the hypothesis that autogenous regulation of ribosomal protein synthesis results from conformational similarities between mRNAs and rRNAs. S8 binding must repress the translation of its own mRNA by inhibiting the formation of a ribosomal initiation complex at the start of the L5 cistron.  相似文献   

17.
The wild-type p53-induced phosphatase Wip1 (PP2Cdelta or PPM1D) is a member of the protein phosphatase 2C (PP2C) family and controls cell cycle checkpoints in response to DNA damage. p38 MAPK and ATM were identified as physiological substrates of Wip1, and we previously reported a substrate motif that was defined using variants of the p38(180pT 182pY) diphosphorylated peptide, TDDEMpTGpYVAT. However, the substrate recognition motifs for Wip1 have not been fully defined as the sequences surrounding the targeted residues in ATM and p38 MAPK appear to be unrelated. Using a recombinant human Wip1 catalytic domain (rWip1), in this study we measured the kinetic parameters for variants of the ATM(1981pS) phosphopeptide, AFEEGpSQSTTI. We found that rWip1 dephosphorylates phosphoserine and phosphothreonine in the p(S/T)Q motif, which is an essential requirement for substrate recognition. In addition, acidic, hydrophobic, or aromatic amino acids surrounding the p(S/T)Q sequence have a positive influence, while basic amino acids have a negative influence on substrate dephosphorylation. The kinetic constants allow discrimination between true substrates and nonsubstrates of Wip1, and we identified several new putative substrates that include HDM2, SMC1A, ATR, and Wip1 itself. A three-dimensional molecular model of Wip1 with a bound substrate peptide and site-directed mutagenesis analyses suggested that the important residues for ATM(1981pS) substrate recognition are similar but not identical to those for the p38(180pT 182pY) substrate. Results from this study should be useful for predicting new physiological substrates that may be regulated by Wip1 and for developing selective anticancer drugs.  相似文献   

18.
We report here the isolation and identification of the RNA specifically immunoprecipitated and covalently linked to the tumor suppressor gene product p53. After treatment with proteinase K, the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) band of p53 yields a single, discrete 157-nucleotide RNA, which was cloned, sequenced, and identified as 5.8S rRNA. 5.8S rRNA was obtained only after proteolysis of the p53 SDS-PAGE band. Free 5.8S rRNA did not comigrate with p53 in SDS-PAGE. This RNA was only immunoprecipitated from cells containing p53. Protein-free RNA obtained by proteolysis of the p53 band hybridized to the single-stranded DNA vector containing the antisense sequence of 5.8S rRNA. The covalence of the p53-5.8S rRNA linkage was demonstrated by the following findings: (i) p53 and the linked 5.8S rRNA comigrated in SDS-PAGE; (ii) only after treatment of the p53-RNA complex with proteinase K did the 5.8S rRNA migrate differently from p53-linked 5.8S rRNA; and (iii) this isolated RNA was found linked to phosphoserine, presumably at the 5' end. Covalent linkage to the single, specific RNA suggests that p53 may be involved in regulating the expression or function of 5.8S rRNA.  相似文献   

19.
Keratins, constituent proteins of intermediate filaments of epithelial cells, are phosphoproteins containing phosphoserine and phosphothreonine. We examined the in vitro phosphorylation of keratin filaments by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. When rat liver keratin filaments reconstituted by type I keratin 18 (molecular mass 47 kDa; acidic type) and type II keratin 8 (molecular mass 55 kDa; basic type) in a 1:1 ratio were used as substrates, all the protein kinases phosphorylated both of the constituent proteins to a significant rate and extent, and disassembly of the keratin filament structure occurred. Kinetic analysis suggested that all these protein kinases preferentially phosphorylate keratin 8, compared to keratin 18. The amino acid residues of keratins 8 and 18 phosphorylated by cAMP-dependent protein kinase or protein kinase C were almost exclusively serine, while those phosphorylated by Ca2+/calmodulin-dependent protein kinase II were serine and threonine. Peptide mapping analysis indicated that these protein kinases phosphorylate keratins 8 and 18 in a different manner. These observations gave the way for in vivo studies of the role of phosphorylation in the reorganization of keratin filaments.  相似文献   

20.
Chicken cardiac C-protein was readily phosphorylated by purified calcium/calmodulin-dependent protein kinase II (CaM-kinase II). Maximum incorporation was about 4 mol of 32P/mol of C-protein subunit. Peptide mapping indicated that some of the sites phosphorylated by CaM-kinase II were located on the same phosphopeptides obtained when C-protein was phosphorylated by the cAMP-dependent protein kinase (peptides T1, T2, and T3). There was a fourth peptide (T3a) which was unique to CaM-kinase II phosphorylation. 32P-Amino acid analysis showed that essentially all of the 32P of peptides T1, T2, and T3a was in phosphoserine. cAMP-dependent protein kinase incorporated 32P only into threonine of peptide T3. Threonine was the preferred site of phosphorylation by CaM-kinase II, but there was significant phosphorylation of a serine in peptide T3. Partially purified C-protein preparations contained an associated calcium/calmodulin-dependent protein kinase. Peptide maps obtained from C-protein phosphorylated by the endogenous kinase were similar to those obtained from C-protein phosphorylated by CaM-kinase II. However, the ratio of phosphothreonine to phosphoserine in peptide T3 was lower. This was due to a contaminating phosphatase in the partially purified C-protein which preferentially dephosphorylated the phosphothreonine of peptide T3. It is suggested that the calcium/calmodulin-dependent protein kinase associated with C-protein is similar or identical to CaM-kinase II and that CaM-kinase II may play a role in the phosphorylation of C-protein in the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号