首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estimating energy costs by respirometry is fundamental to many studies of the ecology, behavior and evolution of reptiles. However, traditional respirometry procedures seldom incorporate objective techniques for removal of outliers from estimates of metabolic parameters. We demonstrate how computer-automated respirometry equipment, which records many respiratory measurements over short intervals, can be coupled with mathematical procedures to produce robust estimates of pre- and post-prandial metabolism in banded water snakes (Nerodia fasciata fasciata). Standard metabolic rate of N. f. fasciata was estimated to be 1.21 ml O2/h (mass = 30.21 +/- 0.74 g) at 25 degrees C. After ingestion of a fish equaling 20% of their body mass, snakes exhibited a fivefold increase in metabolic rate with peak O2 consumption rate (VO2) reaching 6.5 ml O2/h. Total cost of digestion was 5.44 kJ, equivalent to approximately 21% of the energy in the meal. Repeated measurements of metabolism in the same individuals revealed that our methods yielded similar results, even when individuals exhibited different patterns of VO2 variation between respiratory trials. Our results underscore the importance of obtaining many VO2 measurements, coupled with objective removal of outlier values from estimates of metabolic rate, especially when metabolic values are to be interpreted in a comparative context.  相似文献   

2.
As ectothermic vertebrates, reptiles undergo diurnal and seasonal changes in body temperature, which affect many biological functions. In conjunction with a general review regarding the effects of temperature on digestion in reptiles, we describe the effects of various temperatures (20-35 degrees C) on the metabolic response to digestion in the Burmese python (Python molurus). The snakes were fed mice amounting to 20% of their body weight and gas exchange (oxygen uptake and CO(2) production) were measured until digestion had ended and gas exchange returned to fasting levels. Elevated temperature was associated with a faster and larger metabolic increase after ingestion, and the time required to return to fasting levels was markedly longer at low temperature. The factorial increase between fasting oxygen consumption (VO(2)) and maximal VO(2) during digestion was, however, similar at all temperatures studied. Furthermore, the integrated SDA response was not affected by temperature suggesting the costs associated with digestion are temperature-independent. Other studies on reptiles show that digestive efficiency is only marginally affected by temperature and we conclude that selection of higher body temperatures during digestion (postprandial thermophilic response) primarily reduces the time required for digestion.  相似文献   

3.
We measured oxygen consumption (Vo(2)) to estimate standard metabolic rates (SMR) in cottonmouth snakes (Agkistrodon piscivorus conanti) from Seahorse Key and the adjacent peninsula of northern Florida. The island population is unusual because adult snakes feed on fish that are dropped by colonial nesting birds, and food resources are temporally limited relative to that of mainland populations. We found no differences in SMR between island and mainland snakes at any of four experimental temperatures (15 degrees -30 degrees C), suggesting that any adjustments to energy limitations involve other aspects of physiology or behavior. As with other viperid species, the SMR of cottonmouths is about one-half of that expected from interspecific allometric regressions previously reported for snakes generally. Allometric mass exponents of SMR averaged 0.76 and were not affected by temperature. We found that Vo(2) increased with temperature (Q(10) = 2.4-2.8) and was elevated 29% during scotophase compared with photophase. Neonates exhibited elevated Vo(2)compared with older juveniles of similar size, apparently due to assimilation of yolk that is present in the neonatal gut. In adult snakes, specific dynamic action (SDA) following feeding resulted in four- to eightfold increases in Vo(2), with magnitude and duration related positively to relative meal size. The total energy devoted to SDA increased with meal size and averaged 32.8%+/-4.4% of total ingested energy. We estimate that a nonreproductive 500-g adult cottonmouth at Seahorse Key uses 3,656 kJ of assimilated energy annually for maintenance and activity, which requires ingestion of approximately 1 kg of fish.  相似文献   

4.
One of the most ubiquitous consequences of feeding in animals is specific dynamic action (SDA), a drastic increment in metabolic rate after a meal, which lasts from a few hours to several days. According to a recent exhaustive review by Secor (2009), studies in SDA are abundant, encompassing all kinds of vertebrates and invertebrates. However, important exceptions are arachnids, as few studies have characterized SDA in this group. Here, we measured the standard metabolic rate (SMR) of the Chilean tarantulas Euathlus truculentus (body mass=7.32±0.7 g; N=32; T(A)=25°C), its inter-individual variation (i.e., repeatability) and its SDA. We measured SMR three or four times in each individual, and we also conducted predation experiments where a prey was consumed by each spider, during a respirometry trial. The SMR of E. truculentus was 0.00049±0.000079 mlCO(2) g(-1) min(-1) which corresponds to 1524 μW (assuming a protein-based diet), 108.4% of the predicted value for arachnids. According to the standard nomenclature for SDA studies, the scope of the SDA for a meal size of 1.26±0.04 g (18% of the spider size) was 6.55±1.1 times the baseline, the time to peak was 45 min, and the magnitude of the SDA was 0.28±0.03 kj, which is 85% of the expected value for invertebrates. Our SMR data are in concordance with previous findings suggesting remarkably low energy metabolism in arachnids, compared with other arthropods. On the other hand, the exceedingly high scope of the postprandial response contrasts with the comparatively low SDA. This fact suggests that spiders spend most of the energy for digestion in a short period after prey capture, which could be a consequence of their external digestion.  相似文献   

5.
The metabolic rate of an animal affects the amount of energy available for its growth, activity and reproduction and, ultimately, shapes how energy and nutrients flow through ecosystems. Standard metabolic rate (SMR; when animals are post-absorptive and at rest) and specific dynamic action (SDA; the cost of digesting and processing food) are two major components of animal metabolism. SMR has been studied in hundreds of species of insects, but very little is known about the SMR of praying mantises. We measured the rates of CO2 production as a proxy for metabolic rate and tested the prediction that the SMR of mantises more closely resembles the low SMR of spiders – a characteristic generally believed to be related to their sit-and-wait foraging strategy. Although few studies have examined SDA in insects we also tested the prediction that mantises would exhibit comparatively large SDA responses characteristic of other types of predators (e.g., snakes) known to consume enormous, protein-rich meals. The SMR of the mantises was positively correlated with body mass and did not differ among the four species we examined. Their SMR was best described by the equation μW = 1526 * g0.745 and was not significantly different from that predicted by the standard ‘insect-curve’; but it was significantly higher than that of spiders to which mantises are ecologically more similar than other insects. Mantises consumed meals as large as 138% of their body mass and within 6–12 h of feeding and their metabolic rates doubled before gradually returning to prefeeding rates over the subsequent four days. We found that the SDA responses were isometrically correlated with meal size and the relative cost of digestion was 38% of the energy in each meal. We conclude that mantises provide a promising model to investigate nutritional physiology of insect predators as well as nutrient cycling within their ecological communities.  相似文献   

6.
The cooking of food is hypothesized to have played a major role in human evolution partly by providing an increase in net energy gain. For meat, cooking compromises the structural integrity of the tissue by gelatinizing the collagen. Hence, cooked meat should take less effort to digest compared to raw meat. Likewise, less energy would be expended digesting ground meat compared to intact meat. We tested these hypotheses by assessing how the cooking and/or grinding of meat influences the energy expended on its digestion, absorption, and assimilation (i.e., specific dynamic action, SDA) using the Burmese python, Python molurus. Pythons were fed one of four experimental diets each weighing 25% of the snake's body mass: intact raw beef, intact cooked beef, ground raw beef, and ground cooked beef. We measured oxygen consumption rates of snakes prior to and up to 14 days following feeding and calculated SDA from the extra oxygen consumed above standard metabolic rate. Postprandial peak in oxygen consumption, the scope of peak rates, and SDA varied significantly among meal treatments. Pythons digesting raw or intact meals exhibited significantly larger postprandial metabolic responses than snakes digesting the cooked ground meals. We found cooking to decrease SDA by 12.7%, grinding to decrease SDA by 12.4%, and the combination of the two (cooking and grinding) to have an additive effect, decreasing SDA by 23.4%. These results support the hypothesis that the consumption of cooked meat provides an energetic benefit over the consumption of raw meat.  相似文献   

7.
Many ectothermic vertebrates ingest very large meals at infrequent intervals. The digestive processes associated with these meals, often coupled with an extensive hypertrophy of the gastrointestinal organs, are energetically expensive and metabolic rate, therefore, increases substantially after feeding (specific dynamic action, SDA). Here, we review the cardio-respiratory consequences of SDA in amphibians and reptiles. For some snakes, the increased oxygen uptake during SDA is of similar magnitude to that of muscular exercise, and the two physiological states, therefore, exert similar and profound demands on oxygen transport by the cardiorespiratory systems. In several species, SDA is attended by increases in heart rate and overall systemic blood flows, but changes in blood flow distribution remain to be investigated. In snakes, the regulation of heart rate appears to involve a non-adrenergic-non-cholinergic mechanism, which may be a regulatory peptide released from the gastrointestinal system during digestion. Digestion is also associated with a net acid secretion to the stomach that causes an increase in plasma HCO3- concentration (the 'alkaline tide'). Experiments on chronically cannulated amphibians and reptiles, show that this metabolic alkalosis is countered by an increased P(CO2), so that the change in arterial pH is reduced. This respiratory compensation of arterial pH is accomplished through a reduction in ventilation relative to metabolism, but the estimated reductions in lung P(O2) are relatively small. The SDA response is also associated with haematological changes, but large interspecific differences exist. The studies on cardiorespiratory responses to digestion may allow for a further understanding of the physiological and structural constraints that limits the ability of reptiles and amphibians to sustain high metabolic rates.  相似文献   

8.
We investigated the combined effect of meal size and temperature on the aerobic metabolism and energetics of digestion in Boa constrictor amarali. Oxygen uptake rates (Vd2;o2) and the duration of the digestion were determined in snakes fed with meals equaling to 5%, 10%, 20%, and 40% of the snake's body mass at 25 degrees and 30 degrees C. The maximum Vd2;o2 values attained during digestion were greater at 30 degrees C than at 25 degrees C. Both maximal Vd2;o2 values and the duration of the specific dynamic action (SDA) were attained sooner at 30 degrees C than at 25 degrees C. Therefore, the temperature effect on digestion in Boa is characterized by the shortening of the SDA duration at the expense of increased Vd2;o2. Energy allocated to SDA was not affected by meal size but was greater at 25 degrees C compared to 30 degrees C. This indicates that a postprandial thermophilic response can be advantageous not only by decreasing the duration of digestion but also by improving digestive efficiency. Maximal Vd2;o2 and SDA duration increased with meal size at both temperatures.  相似文献   

9.
Specific dynamic action (SDA), the increase in metabolic rate above resting levels that accompanies the processes of digestion and assimilation of food, can form a substantial part of the daily energy budget of free-ranging animals. We measured heart rate (fH) and rate of oxygen consumption (VO2) in 12 little penguins while they digested a meal of sardines in order to determine whether they show specific dynamic action. In contrast to some studies of other penguin species, little penguins showed a substantial SDA, the magnitude of which was proportional to the size of the meal. The energy utilized in SDA was equivalent to 13.4% of the available energy content of the fish. Furthermore, animals such as penguins that forage in a cold environment will probably expend further energy in heating their food to body temperature to facilitate efficient digestion. It is estimated that this additional energy expenditure was equivalent to 1.6%-2.3% of the available energy content of the fish, depending on the time of year and therefore the temperature of the water. Changes in fH during digestion were qualitatively similar to those in VO2, implying that there were no substantial circulatory adjustments during digestion and that the relationship between fH and VO2 in penguins is unaffected by digestive state.  相似文献   

10.
The past decade has witnessed a dramatic increase in studies of amphibian and reptile specific dynamic action (SDA). These studies have demonstrated that SDA, the summed energy expended on meal digestion and assimilation, is affected significantly by meal size, meal type, and body size and to some extent by body temperature. While much of this attention has been directed at anuran and reptile SDA, we investigated the effects of meal size, meal type, and body temperature on the postprandial metabolic responses and the SDA of the tiger salamander (Ambystoma tigrinum tigrinum). We also compared the SDA responses among six species of Ambystoma salamanders representing the breadth of Ambystoma phylogeny. Postprandial peaks in VO(2) and VO(2), duration of elevated metabolism, and SDA of tiger salamanders increased with the size of cricket meals (2.5%-12.5% of body mass). For A. tigrinum, as for other ectotherms, a doubling of meal size results in an approximate doubling of SDA, a function of equal increases in peak VO(2) and duration. For nine meal types of equivalent size (5% of body mass), the digestion of hard-bodied prey (crickets, superworms, mealworms, beetles) generated larger SDA responses than the digestion of soft-bodied prey (redworms, beetle larvae). Body temperature affected the profile of postprandial metabolism, increasing the peak and shortening the duration of the profile as body temperature increased. SDA was equivalent among three body temperatures (20 degrees, 25 degrees, and 30 degrees C) but decreased significantly at 15 degrees C. Comparatively, the postprandial metabolic responses and SDA of Ambystoma jeffersonianum, Ambystoma maculatum, Ambystoma opacum, Ambystoma talpoideum, Ambystoma texanum, and the conspecific Ambystoma tigrinum mavortium digesting cricket meals that were 5% of their body mass were similar (independent of body mass) to those of A. t. tigrinum. Among the six species, standard metabolic rate, peak postprandial VO(2), and SDA scaled with body mass with mass exponents of 0.72, 0.78, and 1.05, respectively.  相似文献   

11.
1. Consistency of differences in standard metabolic rate (SMR) between individual juvenile salmonids and the apparently limited ability of individuals to regulate their SMR has led many researchers to conclude that differences in individual SMR are fixed (i.e. genetic). 2. To test for the effects of food ration on individual performance and metabolism, SMR was estimated by measuring oxygen consumption using flow-through respirometry on individually separated young of the year coho salmon (Oncorhynchus kisutch) placed on varying food rations over a period of 44 days. 3. Results demonstrate that the quantity of food consumed directly affects SMR of juvenile coho salmon, independent of specific dynamic action (SDA, an elevation in metabolic rate from the increased energy demands associated with digestion immediately following a meal) and indicates that higher food consumption is a cause of elevated SMR rather than a consequence of it. Juvenile coho salmon therefore demonstrated an ability to regulate their SMR according to food availability and ultimately food consumption. 4. This study indicates that food consumption may play a pivotal role in understanding individual variation in SMR independent of inherent genetic differences. We suggest that studies involving SMR need to be cautious about the effects of intra-individual differences in food consumption in communal tanks or in different microhabitats in the wild as disproportionate food consumption may contribute more to variation in SMR than intrinsic (genetic) factors. 5. In general, our results suggest that evolutionary changes in SMR are likely a response to selection on food consumption and growth, rather than SMR itself.  相似文献   

12.
We present the first data on the effect of hypoxia on the specific dynamic action (SDA) in a teleost fish. Juvenile cod (Gadus morhua) were fed meals of 2.5% and 5% of their wet body mass (BM) in normoxia (19.8 kPa Po(2)) and 5% BM in hypoxia (6.3 kPa Po(2)). Reduced O(2) availability depressed the postprandial peaks of oxygen consumption, and to compensate for this, the total SDA duration lasted 212.0+/-20 h in hypoxia, compared with 95.1+/-25 h in normoxia. The percentage of energy associated with the meal digestion and assimilation (SDA coefficient) was equivalent between the different feeding rations but higher for fish exposed to hypoxia. Comparing peak oxygen consumption during the SDA course with maximum metabolic rates showed that food rations of 2.5% and 5% BM reduced the scope for activity by 40% and 55%, while ingestion of 5% BM in hypoxia occupied 69% of the aerobic scope, leaving little energy for other activities.  相似文献   

13.
The rate of oxygen uptake (MO(2)) of shore crabs following a period of fasting varied directly with acclimation temperature, with a Q(10) of 2.96 between 7 degrees and 15 degrees C and a Q(10) of 2.11 between 15 degrees and 22 degrees C. The factorial rise in MO(2) following a meal (specific dynamic action [SDA]) ranged between 1.9 and 3.1 and varied with temperature, being highest at 15 degrees C and significantly lower at both 7 degrees and 22 degrees C, despite similar ration sizes in all groups. At 7 degrees C, the SDA coefficient and magnitude were significantly lower than at 15 degrees C, possibly due in part to the inhibition of protein synthesis. Both the time to peak and the duration of the SDA response were inversely related to temperature. SDA coefficients were inversely related to the amount of food consumed. The critical oxygen tension of inspired water (P(I)O(2)), which evoked the emersion response in fasted animals, increased with temperature and further increased at each temperature when the animals were fed. Thus, the threshold P(I)O(2) evoking the emersion response is directly related to relative metabolic oxygen demand in Carcinus.  相似文献   

14.
Specific dynamic action (SDA), the accumulated energy expended on all physiological processes associated with meal digestion, is strongly influenced by features of both the meal and the organism. We assessed the effects of meal size, meal type, body temperature, and body size on the postprandial metabolic response and calculated SDA of the marine toad, Bufo marinus. Peak postprandial rates of O(2) consumption (.V(O2)) and CO(2) production (.V(CO2)) and SDA increased with meal size (5%-20% of body mass). Postprandial metabolism was impacted by meal type; the digestion of hard-bodied superworms (Zophobas larva) and crickets was more costly than the digestion of soft-bodied earthworms and juvenile rats. An increase in body temperature (from 20 degrees to 35 degrees C) altered the postprandial metabolic profile, decreasing its duration and increasing its magnitude, but did not effect SDA, with the cost of meal digestion remaining constant across body temperatures. Allometric mass exponents were 0.69 for standard metabolic rate, 0.85 for peak postprandial .V(O2), and 1.02 for SDA; therefore, the factorial scope of peak postprandial .V(O2) increased with body mass. The mass of nutritive organs (stomach, liver, intestines, and kidneys) accounted for 38% and 20% of the variation in peak postprandial .V(O2) and SDA, respectively. Toads forced to exercise experienced 25-fold increases in .V(O2) much greater than the 5.5-fold increase experience during digestion. Controlling for meal size, meal type, and body temperature, the specific dynamic responses of B. marinus are similar to those of the congeneric Bufo alvarius, Bufo boreas, Bufo terrestris, and Bufo woodhouseii.  相似文献   

15.
Abstract Oxygen consumption rate was measured continuously in young tegu lizards Tupinambis merianae exposed to 4 d at 25 degrees C followed by 7-10 d at 17 degrees C in constant dark at five different times of the year. Under these conditions, circadian rhythms in the rate of oxygen consumption persisted for anywhere from 1 d to the entire 2 wk in different individuals in all seasons except the winter. We also saw a progressive decline in standard oxygen consumption rate (at highly variable rates in different individuals) to a very low rate that was seasonally independent (ranging from 19.1 +/- 6.2 to 27.7 +/- 0.2 mL kg(-1) h(-1) across seasons). Although this degree of reduction appeared to take longer to invoke when starting from higher metabolic rates, tegu lizards reduced their metabolism to the low rates seen in winter dormancy at all times of the year when given sufficient time in the cold and dark. In the spring and summer, tegus reduced their standard metabolic rate (SMR) by 80%-90% over the experimental run, but only roughly 20%-30% of the total fall was due to the reduction in temperature; 70%-80% of the total fall occurred at constant temperature. By autumn, when the starting SMR on the first night at 25 degrees C was already reduced by 59%-81% (early and late autumn, respectively) from peak summer values, virtually all of the fall (63%-83%) in metabolism was due to the reduction in temperature. This suggests that the temperature-independent reduction of metabolism was already in place by autumn before the tegus had entered winter dormancy.  相似文献   

16.
We investigated the energy source fuelling the post-feeding metabolic upregulation (specific dynamic action, SDA) in pythons (Python regius). Our goal was to distinguish between two alternatives: (i) snakes fuel SDA by metabolizing energy depots from their tissues; or (ii) snakes fuel SDA by metabolizing their prey. To characterize the postprandial response of pythons we used transcutaneous ultrasonography to measure organ-size changes and respirometry to record oxygen consumption. To discriminate unequivocally between the two hypotheses, we enriched mice (= prey) with the stable isotope of carbon (13C). For two weeks after feeding we quantified the CO2 exhaled by pythons and determined its isotopic 13C/12C signature. Ultrasonography and respirometry showed typical postprandial responses in pythons. After feeding, the isotope ratio of the exhaled breath changed rapidly to values that characterized enriched mouse tissue, followed by a very slow change towards less enriched values over a period of two weeks after feeding. We conclude that pythons metabolize their prey to fuel SDA. The slowly declining delta13C values indicate that less enriched tissues (bone, cartilage and collagen) from the mouse become available after several days of digestion.  相似文献   

17.
Energy metabolism, oxygen consumption rate (VO2), and respiratory quotient (RQ) in mice were monitored continuously throughout 12:12-h light-dark cycles before, during, and after time-restricted feeding (RF). Mice fed ad libitum showed robust daily rhythms in both parameters: high during the dark phase and low during the light phase. The daily profile of energy metabolism in mice under daytime-only feeding was reversed at the beginning of the first fasting night. A few days after daytime-only feeding began, RF also reversed the circadian core body temperature rhythm. Moreover, RF for 6 consecutive days shifted the phases of circadian expression patterns of clock genes in liver significantly by 8-10 h. When mice were fed a high-fat (HF) diet ad libitum, the daily rhythm of RQ dampened day by day and disappeared on the sixth day of RF, whereas VO2 showed a robust daily rhythm. Mice fed HF only in the daytime had reversed VO2 and RQ rhythms. Similarly, mice fed HF only in the daytime significantly phase shifted the clock gene expression in liver, whereas ad libitum feeding with HF had no significant effect on the expression phases of liver clock genes. These results suggested that VO2 is a sensitive indicator of entrainment in the mouse liver. Moreover, physiologically, it can be determined without any surgery or constraint. On the basis of these results, we hypothesize that a change in the daily VO2 rhythm, independent of the energy source, might drive phase shifts of circadian oscillators in peripheral tissues, at least in the liver.  相似文献   

18.
Because the circadian rhythms of oxygen consumption (VO(2)) and body temperature (T(b)) could be contributed to by differences in thermogenesis and because hypoxia depresses thermogenesis in its various forms, we tested the hypothesis that hypoxia blunts the normal daily oscillations in VO(2) and T(b). Adult rats were instrumented for measurements of T(b) and activity by telemetry; VO(2) was measured by an open-flow method. Animals were exposed to normoxia (21% O(2)), hypoxia (10.5% O(2)), and normoxia again, each 1 wk in duration, in either a 12:12-h light-dark cycle ("synchronized") or constant light ("free running"). In this latter case, the period of the cycle was approximately 25 h. In synchronized conditions, hypoxia almost eliminated the T(b) circadian oscillation, because of the blunting of the T(b) rise during the dark phase. On return to normoxia, T(b) rapidly increased toward the maximum normoxic values, and the normal cycle was then reestablished. In hypoxia, the amplitude of the activity and VO(2) oscillations averaged, respectively, 37 and 56% of normoxia. In free-running conditions, on return to normoxia the rhythm was reestablished at the expected phase of the cycle. Hence, the action of hypoxia was not on the clock itself but probably at the hypothalamic centers of thermoregulation. Hyperoxia (40% O(2)) or hypercapnia (3% CO(2)) had no significant effects on circadian oscillations, indicating that the effects of hypoxia did not reflect an undifferentiated response to changes in environmental gases. Modifications of the metabolism and T(b) rhythms during hypoxia could be at the origin of sleep disturbances in cardiorespiratory patients and at high altitude.  相似文献   

19.
In trout and salmon, the metabolic costs of exercise and feeding are additive, which would suggest that gastrointestinal blood flow during exercise is maintained to preserve digestive and absorptive processes related to the specific dynamic action (SDA) of food. However, in most published studies, gastrointestinal blood flow drops during swimming, hypoxia, and general stress. To test whether gastrointestinal blood flow is spared during exercise after feeding, sea bass were instrumented with flow probes to measure cardiac output and celiacomesenteric blood flow while swimming in a respirometer before and after feeding. Swimming at 2 body lengths per second (bl s(-1)) increased metabolic rate considerably more than did feeding (208% vs. 32% increase, respectively, relative to resting), and a similar pattern was observed for cardiac output. In unfed fish, resting gastrointestinal blood flow was 13.8+/-0.5 mL min(-1) kg(-1). After feeding, resting gastrointestinal blood flow increased by 82% but then decreased progressively with increasing swimming speeds. At 2 bl s(-1), gastrointestinal blood flow in fed fish was not significantly different compared with that in unfed swimming fish, and, therefore, the data do not support the gastrointestinal sparing hypothesis. The magnitude of the SDA was maintained despite the decrease in gastrointestinal blood flow and the consequent reduction in oxygen supply to the gut. An estimate of maximal oxygen flow to the gastrointestinal tract after feeding yielded 2.6 mmol O(2) h(-1) kg(-1), but this amount is not able to cover the oxygen demand of 3.16 mmol O(2) h(-1) kg(-1). Therefore, the SDA must reflect metabolic processes in tissues other than those directly perfused by the celiacomesenteric artery.  相似文献   

20.
Specific dynamic action (SDA), the energy expended on all physiological processes that is associated with meal digestion and assimilation, is strongly affected by temperature. We assessed the effects of temperature on the postprandial metabolic response and calculated SDA of the southern catfish, Silurus meridionalis. The fish was fed with experimental diets at a meal size of 4% body mass, and by using an 8-chamber, continuous-flow respirometer the oxygen consumption rate was determined at a 2 h interval until the postprandial oxygen consumption rate returning to the preprandial level, at four different temperatures. The energy expended on SDA (SDA(E)) were 2.71, 3.07, 3.16, and 3.62 kJ, the SDA(coefficients) (energy expended on SDA quantified as a percentage of the digestible energy content of the meal) were 7.70, 9.44, 10.36, and 11.12%, and the peak metabolic rates (R(peak)) of SDA were 3.48, 4.31, 5.96, and 7.30 mg O2 h(-1), at 17.5, 22.5, 27.5, and 32.5 degrees C respectively. The relationships between those parameters and temperature were: SDA(E)=1.74+0.0559T (n=26, r(2)=0.676), SDA(coefficient)=4.10+0.223T (n=26, r(2)=0.726), and R(peak)=-1.34+0.264T (n=26, r(2)=0.896). The SDA durations showed a slow-fast-slow tendency of decrease with increasing temperature, and were 88.00, 85.71, 67.71, and 66.50 h at 17.5, 22.5, 27.5 and 32.5 degrees C respectively. Two separate peaks appeared during the SDA response at 17.5 degrees C, and it might be due to a rapid startup of the mechanical process with a lag of the biochemical process, which suggested that the peaks of "mechanical component" and "biochemical component" of SDA might be separated when temperature was low enough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号