首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Response characteristics of 130 single neurons in the superior olivary nucleus of the northern leopard frog (Rana pipiens pipiens) were examined to determine their selectivity to various behaviorally relevant temporal parameters [rise-fall time, duration, and amplitude modulation (AM) rate of acoustic signals. Response functions were constructed with respect to each of these variables. Neurons with different temporal firing patterns such as tonic, phasic or phasic-burst firing patterns, participated in time domain analysis in specific manners. Phasic neurons manifested preferences for signals with short rise-fall times, thus possessing low-pass response functions with respect to this stimulus parameter; conversely, tonic and phasic-burst units were non-selective and possessed all-pass response functions. A distinction between temporal firing patterns was also observed for duration coding. Whereas phasic units showed no change in the mean spike count with a change in stimulus duration (i.e., all-pass duration response functions), tonic and phasic-burst units gave higher mean spike counts with an increase in stimulus duration (i.e., primary-like high-pass response functions). Phasic units manifested greater response selectivity for AM rate than did tonic or phasic-burst units, and many phasic units were tuned to a narrow range of modulation rates (i.e., band-pass). The results suggest that SON neurons play an important role in the processing of complex acoustic patterns; they perform extensive computations on AM rate as well as other temporal parameters of complex sounds. Moreover, the response selectivities for rise-fall time, duration, and AM rate could often be shown to contribute to the differential responses to complex synthetic and natural sounds.Abbreviations SON superior olivary nucleus - DMN dorsal medullary nucleus - TS torus semicircularis - FTC frequency threshold curve - BF best excitatory frequency - PAM pulsatile amplitude modulation - SAM sinusoidal amplitude modulation - SQAM square-wave amplitude modulation - MTF modulation transfer function - PSTH peri-stimulus time histogram  相似文献   

2.
We tested the role of descending projections for auditory processing and audiomotor integration in the anuran torus semicircularis. Intracellular recordings were made from isolated brain preparations, impaled neurons were stained. Auditory neurons responded to electrical stimulation of striatum and/or dorsal thalamus, they integrated forebrain and auditory nerve inputs. High frequency stimulation in striatum or thalamus changed the auditory response of torus neurons located in the laminar subnucleus. Our results suggest that the laminar nucleus is the primary target of forebrain projections, which provides a basis for modulation of acoustically guided behaviour.  相似文献   

3.
Single unit recordings were made in the dorsal medullary nucleus and in the torus semicircularis of the immobilized grassfrog. The natural calls have a periodic pulsatile structure. To investigate the coding of pulse repetition rate periodic click trains with varying pulse repetition rate and an ensemble of clicks distributed randomly in time were used as stimuli. In the dorsal medullary nucleus strong time-locking to clicks was found. Most units showed an activation followed by suppression response. Some units showed a preference for pulse repetition rates matching their low-frequency sensitivity. In the torus semicircularis part of the units showed responses similar to dorsal medullary nucleus units. Other response types were activation irrespective of pulse repetition rate, and suppression followed by activation. The responses to the two stimulus ensembles were more compatible in the dorsal medullary nucleus than in the torus semicircularis.  相似文献   

4.
Single units of the goldfish torus semicircularis (TS) were recorded in response to pure tones. Response areas (RA) were obtained by recording the number of spikes evoked by tones in a range of frequencies and levels within the units' dynamic range. RAs gave estimates of best sensitivity (BS), characteristic frequency (CF), most excitatory frequency at each level (BF), and Q10dB. Peri-stimulus-time histograms (PSTH), interspike interval histograms (ISIH), and period histograms were obtained at various frequencies and levels to describe the units' temporal response patterns.The distribution of CF is nonuniform with modes at 155, 455, and 855 Hz. The distribution of the coefficient of synchronization to standard tones is also nonuniform, revealing a dichotomy between units with little or no phase-locking and those that phase-lock strongly. PSTHs for units without significant phase-locking vary widely and include patterns resembling those of the mammalian auditory brainstem. Compared with saccular afferents, torus units tend to have lower spontaneous rates, greater sensitivity, and sharper tuning. Unlike saccular afferents, BF is independent of level for most torus units. Some torus units are similar to saccular afferents while others reveal significant transformations of information between the periphery and the midbrain.Abbreviations BF best frequency - BS best sensitivity - CF characteristic frequency - ISIH inter-spike interval histogram - PSTH peri-stimulus-time histogram - RA response area - TS torus semicircularis  相似文献   

5.
Responses of single neurons to tonal signals amplitude-modulated by repeating segments of lowfrequency noise were studied in the dorsal (cochlear) medullary nucleus and midbrain auditory center (torus semicircularis) of the grass frog Rana temporaria. An autocorrelation function of the response to a total presentation and a shuffled autocorrelation function were derived. The latter was obtained by correlating the impulse response to each segment of the modulated signal with responses to all other segments with the exception of the initial one. After the necessary normalization, the function differed from the initial autocorrelation only in lacking postspike changes in excitability. A delay dependence of the ratio of the two functions directly demonstrated the time course of the postspike change in excitability of the studied cell. The majority of second-order neurons, which are in the dorsal nucleus of the medulla oblongata, were characterized only by brief intervals of absolute and relative refractoriness. However, cells with excitability that was markedly facilitated immediately after the refractory period were observed even in this nucleus. Neurons with a complex pattern of postspike changes in excitability were detected in the torus semicircularis. In these cells, a comparatively long postspike decrease in excitability was usually interrupted by intervals in which the neuron sensitivity was significantly higher than normal. The results demonstrate that spike generation has a marked effect on subsequent activity in brainstem auditory units. The effects may play an important role in the formation of the temporal pattern of neuronal responses to auditory signals.  相似文献   

6.
 Responses of mechanosensory lateral line units to constant-amplitude hydrodynamic stimuli and to sinusoidally amplitude-modulated water movements were recorded from the goldfish (Carassius auratus) torus semicircularis. Responses were classified by the number of spikes evoked in the unit's dynamic range and by the degree of phase locking to the carrier- and amplitude-modulation frequency of the stimulus. Most midbrain units showed phasic responses to constant-amplitude hydrodynamic stimuli. For different units peri-stimulus time histograms varied widely. Based on iso-displacement curves, midbrain units prefered either low frequencies (≤33 Hz), mid frequencies (50–100 Hz), or high frequencies (≥200 Hz). The distribution of the coefficient of synchronization to constant-amplitude stimuli showed that most units were only weakly phase locked. Midbrain units of the goldfish responded to amplitude-modulated water motions in a phasic/tonic or tonic fashion. Units highly phase locked to the amplitude modulation frequency, provided that modulation depth was at least 36%. Units tuned to one particular amplitude modulation frequency were not found. Accepted: 10 July 1999  相似文献   

7.
The cytoarchitecture and neuromorphology of the torus semicircularis in the tokay gecko, Gekko gecko, were examined in Nissl-stained, fiber-stained, and Golgi-impregnated tissues. From a superficial position, the torus semicircularis extends rostrally under the caudal half of the optic tectum. Caudally, the two tori abut upon one another; rostrally, they diverge. The torus semicircularis consists of central, laminar, and superficial nuclei. The central nucleus consists of fusiform, spherical and triangular neurons. Their dendrites are highly branched, with numerous dendritic spines, and are oriented mediolaterally, dorsoventrally, and rostrocaudally. Fusiform and spherical neurons display two dendritic patterns: “single axis,” ramifying in one axis, and “dual axis,” exhibiting higher-order branches perpendicular to the primary dendrites. Triangular neurons exhibit a “radiate” dendritic pattern. In the rostral half of the torus semicircularis, the laminar nucleus caps the central nucleus. The laminar nucleus encircles the central nucleus in the caudal torus semicircularis. The neurons of the laminar nucleus have dendritic arrays oriented parallel to the border of the central nucleus. These dendrites exhibit a paucity of dendritic spines and higher-order branches. Fusiform and spherical neurons exhibit “single axis” and “dual axis” dendritic patterns. Triangular neurons display “radiate” patterns. The caudal superficial nucleus lies dorsal and dorsolateral to the central nucleus. The superficial nucleus is sparsely populated by small fusiform and spherical neurons with moderately branched dendrites and moderate numbers of dendritic spines. These neurons display “single axis” (fusiform neurons) as well as “dual axis” and “radiate” (spherical neurons) dendritic patterns. They are oriented either parallel to or perpendicular to the boundary of the laminar nucleus.  相似文献   

8.
We examined patterns of cell proliferation in the auditory midbrain (torus semicircularis) of the bullfrog, Rana catesbeiana, over larval and early postmetamorphic development, by visualizing incorporation of 5-bromo-2'-deoxyuridine (BrdU) in cycling cells. At all developmental stages, BrdU-labeled cells were concentrated around the optic ventricle. BrdU-labeled cells also appeared within the torus semicircularis itself, in a stage-specific manner. The mitotic index, quantified as the percent of BrdU-positive cells outside the ventricular zone per total cells available for label, varied over larval development. Mitotic index was low in hatchling, early larval, and late larval stages, and increased significantly in deaf period, metamorphic climax, and froglet stages. Cell proliferation was higher in metamorphic climax than at other stages, suggesting increased cell proliferation in preparation for the transition from an aquatic to an amphibious existence. The change in mitotic index over development did not parallel the change in the total numbers of cells available for label. BrdU incorporation was additionally quantified by dot-blot assay, showing that BrdU is available for label up to 72 h postinjection. The pattern of change in cell proliferation in the torus semicircularis differs from that in the auditory medulla (dorsal medullary nucleus and superior olivary nucleus), suggesting that cell proliferation in these distinct auditory nuclei is mediated by different underlying mechanisms.  相似文献   

9.
Summary In the context of aggression and courtship, Eigenmannia repeatedly interrupts its electric organ discharges (EODs) These interruptions (Fig. 1) contain low-frequency components as well as high-frequency transients and, therefore, stimulate ampullary and tuberous electroreceptors, respectively (Figs. 2, 3). Information provided by these two classes of receptors is relayed along separate pathways, via the electrosensory lateral line lobe (ELL) of the hindbrain, to the dorsal torus semicircularis (TSd) of the midbrain. Some neurons of the torus receive inputs from both types of receptors (Figs. 14, 15), and some respond predominantly to EOD interruptions while being rather insensitive to other forms of signal modulations (Figs. 12, 13). This high selectivity appears to result from convergence and gating of inputs from individually less selective neurons.Abbreviations CP central posterior thalamic nucleus - Df frequency difference between neighbor's EOD and fish's own - DPn dorsal posterior nucleus (thalamus) - EOD electric organ discharge - ELL electrosensory lateral line lobe - JAR jamming avoidance response - LMR lateral mesencephalic reticular formation - nE nucleus electrosensorius - nEb nucleus electrosensorius, beat-related area - nE nucleus electrosensorius, area causing rise of EOD frequency - nE nucleus electrosensorius, area causing fall of EOD frequency - nEar nucleus electrosensorius-acusticolateralis area - NPd nucleus praeeminentialis, pars dorsalis - PPn prepacemaker nucleus - PT pretectal nucleus - SE nucleus subelectrosensorius - TeO optic tectum - TSd dorsal (electrosensory) torus semicircularis - TSv ventral (mechano-sensory and auditory) torus semicircularis  相似文献   

10.
In anurans, the midbrain torus semicircularis is involved in auditory processing and audio-motor integration. In this study, we examined the influence of descending forebrain projections on the auditory response properties and hence the audiomotor transmission of mesencephalic interface neurons. In order to investigate response integration, we performed intracellular recordings from torus neurons in an isolated brain preparation of Discoglossus pictus and Bombina orientalis and stimulated the auditory nerve, striatum, and the dorsal thalamus electrically with single pulses. Stimulation of all three sites could evoke responses in torus neurons that were either excitatory, inhibitory, or a mixture of both, with durations of up to several hundred milliseconds. Further, striatum and thalamus were activated by pulse trains (10-20 Hz, 50 pulses) immediately before stimulating the auditory nerve with single pulses. Thus, responses of torus neurons to "auditory" input were facilitated or suppressed for up to 2 min by striatum stimulation or only suppressed by thalamus stimulation. Intracellular labeling of recorded neurons revealed that response modulation by descending input mostly occurred in laminar nucleus neurons. These results suggest that descending forebrain projections to mesencephalic audiomotor interface neurons may play an important role in modifying acoustically guided behavior in anurans.  相似文献   

11.
Activity of medullar and midbrain auditory neurons at action of amplitude-modulated tone burst was recorded in immobilized common frogs Rana temporaria. Depth of modulation amounted to 10% or 80%, frequency of modulation varied from 5 to 150 Hz, and carrier intensity was in the range of 20–30 dB. Phasic neurons in medulla clearly reproduced the modulation frequency, but only at the 80% modulation depth. However, during presentation of signal with the 10% modulation depth, these neurons practically did not respond. Tonic neurons were able to reproduce the modulation frequency up to 10–150 Hz, but at the 10% modulation depth, the degree of reproduction of envelope was rather low, although for several first modulation periods it rose statistically significantly. In midbrain, the highest frequency of the reproduced modulation sharply fell. At greater modulation frequencies, the response of these neurons qualitatively reminds that of medullar neurons. At the low modulation frequencies, there is identified a group of midbrain neurons with a prominent increase of the signal modulation. This occurs in the frequency diapason up to 60 Hz; at an increase of the modulation frequency the time of achievement of maximal synchronization decreases. The optimal modulation frequency in many neurons of semicircular torus corresponds to parameters of the male nuptial call.  相似文献   

12.
Bibikov NG 《Biofizika》2004,49(1):107-120
The responses of single neurones located in different parts of the auditory system of amphibians to tone signals of a small death of amplitude modulation were studied. It was shown that the firing rate generally diminished during both the first second of sounding (short-term adaptation) and subsequent several tens of seconds (long-term adaptation). In a considerable proportion of neurones, a sharp improving of the phase-locking of the response to modulation waveform was observed in parallel the drop in firing rate. These effects are expressed much more strongly in higher nucleus of the auditory system. A sharp accentuation of modulation waveform could be seen also in the completely adapted regime. In some cases, this effect was evident only after the addition of a random noise to the modulating function (stochastic resonance effect). These data were compared with physiological results obtained on mammals and with psychophysical observations.  相似文献   

13.
Single-unit recordings were made from areas in the midbrain (torus semicircularis) of the oyster toadfish. We evaluated frequency tuning and directional responses using whole-body oscillation to simulate auditory stimulation by particle motion along axes in the horizontal and mid-sagittal planes. We also tested for bimodality in responses to auditory and hydrodynamic stimuli. One recording location in each animal was marked by a neurobiotin injection to confirm the recording site. Recordings were made in nucleus centralis, nucleus ventrolateralis, and the deep cell layer. Most units were frequency-selective with best frequencies between 50 and 141 Hz. Suppression of activity was apparent in 10% of the cells. Bimodality was common, including inhibition and suppression of background activity by auditory or hydrodynamic stimulation. The majority of the cells were directionally selective with directional response patterns that were sharpened compared with those of primary saccular afferents. The best directional axes were arrayed widely in spherical space, covering most azimuths and elevations. This representation is adequate for the computation of the motional axis of an auditory stimulus for sound source localization.Abbreviations BF best frequency - DCL deep cell layer - DON descending octaval nucleus - DRP directional response pattern - FFT fast Fourier transform - LL lateral lemniscus - NC nucleus centralis - NVL nucleus ventrolateralis - PVC periventricular cells - R coefficient of synchronization - TS torus semicircularis - Z Rayleigh statistic  相似文献   

14.
Paddlefish are uniquely adapted for the detection of their prey, small water fleas, by primarily using their passive electrosensory system. In a recent anatomical study, we found two populations of secondary neurons in the electrosensory hind brain area (dorsal octavolateral nucleus, DON). Cells in the anterior DON project to the contralateral tectum, whereas cells in the posterior DON project bilaterally to the torus semicircularis and lateral mesencephalic nucleus. In this study, we investigated the properties of both populations and found that they form two physiologically different populations. Cells in the posterior DON are about one order of magnitude more sensitive and respond better to stimuli with lower frequency content than anterior cells. The posterior cells are, therefore, better suited to detect distant prey represented by low-amplitude signals at the receptors, along with a lower frequency spectrum, whereas cells in the anterior DON may only be able to sense nearby prey. This suggests the existence of two distinct channels for electrosensory information processing: one for proximal signals via the anterior DON and one for distant stimuli via the posterior DON with the sensory input fed into the appropriate ascending channels based on the relative sensitivity of both cell populations.  相似文献   

15.
Wave-type weakly electric fish such as Eigenmannia produce continuous sinusoidal electric fields. When conspecifics are in close proximity, interaction of these electric fields can produce deficits in electrosensory function. We examined a neural correlate of such jamming at the level of the midbrain. Previous results indicate that neurons in the dorsal layers of the torus semicircularis can (1) respond to jamming signals, (2) respond to moving electrosensory stimuli, and (3) receive convergent information from the four sensory maps of the electrosensory lateral line lobe (ELL). In this study we recorded the intracellular responses of both tuberous and ampullary neurons to moving objects. Robust Gaussian-shaped or sinusoidal responses with half-height durations between 55 ms and 581 ms were seen in both modalities. The addition of ongoing global signals with temporal-frequencies of 5 Hz attenuated the responses to the moving object by 5 dB or more. In contrast, the responses to the moving object were not attenuated by the addition of signals with temporal frequencies of 20 Hz or greater. This occurred in both the ampullary and tuberous systems, despite the fact that the ampullary afferents to the torus originate in a single ELL map whereas the tuberous afferents emerge from three maps.  相似文献   

16.
The functional development of the auditory system across metamorphosis was examined by recording neural activity from the torus semicircularis of larval and postmetamorphic bullfrog froglets in response to amplitude-modulated sound. Multiunit activity in the torus semicircularis during early larval stages showed significant phase-locking to the envelopes of amplitude-modulated noise bursts, up to modulation rates as high as 250 Hz. Beginning at metamorphic climax and continuing into the froglet period, phase locking was restricted to the more limited frequency range characteristic of adult frogs. The onset of operation of the tympanic pathway does not reinstate the highly synchronous neural activity characteristic of the operation of the fenestral pathway. Modulation transfer functions based on spike count did not show tuning for modulation rate in early stage tadpoles, but a greater variety of shapes of these functions emerged as development proceeded. Most of the different kinds of modulation transfer functions seen in adult frogs were also observed in froglets, but band-pass functions were not as sharply peaked. These data suggest that different neural codes for processing of the periodicity of complex signals operate in early stage tadpoles than in postmetamorphic froglets. Accepted: 7 October 1998  相似文献   

17.
Summary Brain regions participating in the control ofEigenmannia's electric organ discharge frequency were localized by electrical microstimulation and anatomically identified by means of horseradish peroxidase deposition. A diencephalic region was found which, when stimulated, caused electric organ discharge (EOD) frequency increases of similar magnitude and time course as the frequency increases seen during the jamming avoidance response. Single unit recordings from this region revealed one cell type which preferentially responded to stimuli that cause the acceleration phase of the jamming avoidance response (electric organ discharge frequency increase). A second cell type responded preferentially to stimuli which cause EOD frequency decrease, and both cell types were tuned to stimuli which evoked maximal jamming avoidance behaviors.The results of the horseradish peroxidase experiments showed that the recording and stimulation sites correspond to the previously described nucleus electrosensorius. Our results confirm the earlier finding that this nucleus receives output from the torus semicircularis and we also found that the N. electrosensorius projects to the mesencephalic prepacemaker nucleus. The prepacemaker projects to the medullary pacemaker nucleus which generates the commands that evoke electric organ discharges.The anatomical and physiological results described here establish this diencephalic region as a link between the major sensory processing region for the jamming avoidance response, the torus semicircularis, and a mesencephalic pre-motor region, the prepacemaker nucleus.Abbreviations AM amplitude modulation - DF Delta F - ELLL electrosensory lateral line lobe - EOD electric organ discharge - JAR jamming avoidance response - NE nucleus electrosensorius - PPN prepacemaker nucleus - PN pacemaker nucleus  相似文献   

18.
A galanin (GAL)-like peptidergic system was investigated in the brain of Anguilla anguilla subjected to hyperosmolar and hypoosmolar conditions, by using antisera raised against porcine 1-29 GAL. A group of immunoreactive perikaria was identified in the periventricular hypothalamus, in the ventral thalamus, in the pretectal areas and in the optic tectum. Immunoreactive perikaria were present in the nucleus lateralis of the torus semicircularis in seawater (SW) adapted eels, and were absent in the freshwater (FW) adapted eels. Galaninergic fibres were observed in many areas of the brain. The immunoreactive perikaria and fibres, when localised in the same areas, were more strongly labelled and numerous in the SW adapted eels in comparison to the FW adapted animals. GAL-specific binding sites, investigated by autoradiography using iodinated porcine GAL, occurred in several regions of the brain, in particular in the dorsal telencephalon, in the dorsal thalamus and in the torus semicircularis, where a high density of binding sites was observed in the SW adapted eels. Conversely, a higher density of binding sites was observed in the caudal substantia reticularis and in the corpus cerebelli in the FW adapted eels. We conclude that different distributions and intensity in immunoreactive elements occur in response to the two environmental conditions.  相似文献   

19.
During metamorphosis, the lateral line system of ranid frogs (Rana catesbeiana) degenerates and an auditory system sensitive to airborne sounds develops. We examined the onset of function and developmental changes in the central auditory system by recording multi-unit activity from the principal nucleus of the torus semicircularis (TSp) of bullfrogs at different postmetamorphic stages in response to tympanically-presented auditory stimuli. No responses were recorded to stimuli of up to 95 dB SPL from latemetamorphic tadpoles, but auditory responses were recorded within 24 hours of completion of metamorphosis. Audiograms from froglets (SVL < 5.5 cm) were relatively flat in shape with high thresholds, and showed a decrease in most sensitive frequency (MSF) from about 2500 Hz to about 1500 Hz throughout the first 7–10 days after completion of metamorphosis. Audiograms from frogs larger than 5.5 cm showed continuous downward shifts in MSF and thresholds, and increases in sharpness around MSF until reaching adult-like values. Spontaneous activity in the TSp increased throughout postmetamorphic development. The torus increased in volume by approximately 50% throughout development and displayed changes in cell density and nuclear organization. These observations suggest that the onset of sensitivity to tympanically presented airborne sounds is limited by peripheral, rather than central, auditory maturation.Abbreviations CF characteristic frequency - MSF most sensitive frequency - PB phasic burst - PL primary like - S sustained - SVL snout-vent length - TS torus semicircularis - TSl laminar nucleus of TS - TSm magnocellular nucleus of TS - TSp principal nucleus of TS - TW tympanic width  相似文献   

20.
Summary Weakly electric fish (Gymnotiformes) emit quasi-sinusoidal electric organ discharges within speciesspecific frequency ranges. The electrosensory system is organized into 2 parallel pathways which convey either the amplitude or the timing of each electric organ discharge cycle. Two putative metabolic activity markers, calbindin D 28K and cytochrome c oxidase, and their relationship with the electrosensory nuclei of high- and low-frequency species were studied. Calbindin is found in the somata of the spherical neurons in the first-order electrosensory recipient nucleus, the electrosensory lateral-line lobe, and in layer VI of the midbrain's torus semicircularis, in Eigenmannia virescens, an intermediate-frequency species, and Apteronotus leptorhynchus, a high-frequency species. Calbindin immunoreactivity was completely absent in these nuclei in Sternopygus macrurus, a closely related, low-frequency species. Cytochrome c oxidase levels were inversely related to calbindin immunoreactivity since relatively high levels were observed in the electrosensory lateral-line lobe and torus semicircularis of S. macrurus but were absent in these nuclei in A. leptorhynchus. Our studies indicate that calbindin immunoreactivity is present in tonic, repetitively firing neurons with high frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号