首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The lungs of four species of bats, Phyllostomus hastatus (PH, mean body mass, 98 g), Pteropus lylei (PL, 456 g), Pteropus alecto (PA, 667 g), and Pteropus poliocephalus (PP, 928 g) were analysed by morphometric methods. These data increase fivefold the range of body masses for which bat lung data are available, and allow more representative allometric equations to be formulated for bats. 2. Lung volume ranged from 4.9 cm3 for PH to 39 cm3 for PP. The volume density of the lung parenchyma (i.e. the volume proportion of the parenchyma in the lung) ranged from 94% in PP to 89% in PH. Of the components of the parenchyma, the alveoli composed 89% and the blood capillaries about 5%. 3. The surface area of the alveoli exceeded that of the blood-gas (tissue) barrier and that of the capillary endothelium whereas the surface area of the red blood cells as well as that of the capillary endothelium was greater than that of the tissue barrier. PH had the thinnest tissue barrier (0.1204 microns) and PP had the thickest (0.3033 microns). 4. The body mass specific volume of the lung, that of the volume of pulmonary capillary blood, the surface area of the blood-gas (tissue) barrier, the diffusing capacity of the tissue barrier, and the total morphometric pulmonary diffusing capacity in PH all substantially exceeded the corresponding values of the pteropid species (i.e. PL, PA and PP). This conforms with the smaller body mass and hence higher unit mass oxygen consumption of PH, a feature reflected in the functionally superior gas exchange performance of its lungs. 5. Morphometrically, the lungs of different species of bats exhibit remarkable differences which cannot always be correlated with body mass, mode of flight and phylogeny. Conclusive explanations of these pulmonary structural disparities in different species of bats must await additional physiological and flight biomechanical studies. 6. While the slope, the scaling factor (b), of the allometric equation fitted to bat lung volume data (b = 0.82) exceeds the value for flight VO2max (b = 0.70), those for the surface area of the blood-gas (tissue) barrier (b = 0.74), the pulmonary capillary blood volume (b = 0.74), and the total morphometric lung diffusing capacity for oxygen (b = 0.69) all correspond closely to the VO2max value. 7. Allometric comparisons of the morphometric pulmonary parameters of bats, birds and non-flying mammals reveal that superiority of the bat lung over that of the non-flying mammal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
When alveoli are inflated, the stretched alveolar walls draw their capillaries into oval cross sections. This causes the disk-shaped red blood cells to be oriented near alveolar gas, thereby minimizing diffusion distance. We tested these ideas by measuring red blood cell orientation in histological slides from rapidly frozen rat lungs. High lung inflation did cause the capillaries to have oval cross sections, which constrained the red blood cells within them to flow with their broad sides facing alveolar gas. Low lung inflation stretched alveolar walls less and allowed the capillaries to assume a circular cross section. The circular luminal profile permitted the red blood cells to have their edges facing alveolar gas, which increased the diffusion distance. Using a finite-element method to calculate the diffusing capacity of red blood cells in the broad-side and edge-on orientations, we found that edge-on red blood cells had a 40% lower diffusing capacity. This suggests that, when capillary cross sections become circular, whether through low-alveolar volume or through increased microvascular pressure, the red blood cells are likely to be less favorably oriented for gas exchange.  相似文献   

3.
Using a newly developed perfused rat brain model, we examined direct effects of each change in cerebral blood flow (CBF) and oxygen metabolic rate on cerebral hemoglobin oxygenation to interpret near-infrared spectroscopy signals. Changes in CBF and total hemoglobin (tHb) were in parallel, although tHb showed no change when changes in CBF were small (< or =10%). Increasing CBF caused an increase in oxygenated hemoglobin (HbO(2)) and a decrease in deoxygenated hemoglobin (deoxy-Hb). Decreasing CBF was accompanied by a decrease in HbO(2), whereas changes in direction of deoxy-Hb were various. Cerebral blood congestion caused increases in HbO(2), deoxy-Hb, and tHb. Administration of pentylenetetrazole without increasing the flow rate caused increases in HbO(2) and tHb with a decrease in deoxy-Hb. There were no significant differences in venous oxygen saturation before vs. during seizure. These results suggest that, in activation studies with near-infrared spectroscopy, HbO(2) is the most sensitive indicator of changes in CBF, and the direction of changes in deoxy-Hb is determined by the degree of changes in venous blood oxygenation and volume.  相似文献   

4.
Application of respiratory heat exchange for the measurement of lung water.   总被引:2,自引:0,他引:2  
A noninvasive method for measuring pulmonary blood flow and lung mass (called airway thermal volume), based on the measurements of lung heat exchange with environment, is described. The lungs function as a steady-state heat exchange system, having an inner heat source (pulmonary blood flow) and an external heat sink (ventilation). Sudden changes in the steady-state condition, such as caused by hyperventilation of dry air, lead to a new steady state after a few minutes. The expired air temperature difference between the initial and final steady states is proportional to pulmonary blood flow, whereas the rate at which the new steady state is achieved is proportional to airway thermal volume. The method was tested in 20 isolated dogs lungs, 9 perfused goat lungs, and 27 anesthetized sheep. The expired air temperature fall during hyperventilation was inversely proportional to the perfusion rate of the isolated lungs, and half-time of the temperature fall was proportional to the lung tissue mass. Experiments in anesthetized sheep showed that the measured airway thermal volume is close to the total mass of the excised lungs, including its residual blood (r = 0.98). Pulmonary edema and fluid instillation into the bronchial tree increased in the measured lung mass.  相似文献   

5.
High lung inflation pressures compress alveolar septal capillaries, impede red cell transit, and interfere with oxygenation. However, recently introduced acellular hemoglobin solutions may enter compressed lung capillaries more easily than red blood cells. To test this hypothesis, we perfused isolated rat lungs with fluorescently labeled diaspirin cross-linked hemoglobin (DCLHb; 10%) and/ or autologous red cells (hematocrit, 20). Septal capillaries were compressed by setting lung inflation pressure above vascular pressures (zone 1). Examination by confocal microscopy showed that DCLHb was distributed throughout alveolar septa. Furthermore, this distribution was not affected by adding red blood cells to the perfusate. We estimated the maximum acellular hemoglobin mass within septa to be equivalent to that of 15 red blood cells. By comparison, we found an average of 2.7 +/- 4.6 red cells per septum in zone 1. These values increased to 30.4 +/- 25.8 and 50.4 +/- 22.1 cells per septum in zones 2 and 3, respectively. We conclude that perfusion in zone 1 with a 10% acellular hemoglobin solution may increase the hemoglobin concentration per septum up to fivefold compared with red cell perfusion.  相似文献   

6.
The small highly aerobic avian species have morphometrically superior lungs while the large flightless ones have less well-refined lungs. Two parabronchial systems, i.e. the paleopulmo and neopulmo, occur in the lungs of relatively advanced birds. Although their evolution and development are not clear, understanding their presence is physiologically important particularly since the air- and blood flow patterns in them are different. Geometrically, the bulk air flow in the parabronchial lumen, i.e. in the longitudinal direction, and the flow of deoxygenated blood from the periphery, i.e. in a centripetal direction, are perpendicularly arranged to produce a cross-current relationship. Functionally, the blood capillaries in the avian lung constitute a multicapillary serial arterialization system. The amount of oxygen and carbon dioxide exchanged arises from many modest transactions that occur where air- and blood capillaries interface along the parabronchial lengths, an additive process that greatly enhances the respiratory efficiency. In some species of birds, an epithelial tumescence occurs at the terminal part of the extrapulmonary primary bronchi (EPPB). The swelling narrows the EPPB, conceivably allowing the shunting of inspired air across the openings of the medioventral secondary bronchi, i.e. inspiratory aerodynamic valving. The defence stratagems in the avian lung differ from those of mammals: fewer surface (free) macrophages (SMs) occur, the epithelial cells that line the atria and infundibula are phagocytic, a large population of subepithelial macrophages is present and pulmonary intravascular macrophages exist. This complex defence inventory may explain the paucity of SMs in the avian lung.  相似文献   

7.
Respiratory Adaptations in Marine Mammals   总被引:3,自引:0,他引:3  
This paper is a discussion of some of the possible structuraland functional modifications of the lung which represent adaptationsin mammals living in the sea. Lung capacities of marine mammalsseem to be larger than terrestrial mammals especially if theyare compared on a lean weight basis. It is proposed that atleast in some this represents an important increase in buoyancywhich enables these mammals to rest at sea. The importance ofthe lung as an O2 store during dives is considered, and it seemsthat it would be important only to those species that have alow breath-hold tolerance. In their case the O2 present in thefully inflated lung is from four times to equal that in theblood. In those species with a large breath-hold tolerance thelung O2 store is a small fraction of blood stores. Several experimentsare discussed which indicate that during dives to depth gasexchange between the blood and lungs is low. One of the reasonssuggested is compression collapse of the alveoli. This occursbecause of the apparent rigidity of the airways which even inthe terminal segments possess an unusual amount of muscularor cartilaginous support. The reinforcement insures that duringcompression the airways will not occlude and trap gas in thealveoli. In fact, in some species, especially otariids and cetaceans,the airways seem overly strong and an additional function issuggested. Studies of mechanical properties of sea lion andwhale lungs show that they may be capable of high expiratoryflow rates at low volumes. This feature of the lung would makepossible an exchange of a large gas volume in very short periods.Such an ability is consistent with the ventilatory behaviorof many marine mammals.  相似文献   

8.
Race‐specific differences in the level of glycated hemoglobin are well known. However, these differences were detected by invasive measurement of mean oxygenation, and their understanding remains far from complete. Given that oxygen is delivered to the cells by hemoglobin through the cardiovascular system, a possible approach is to investigate the phase coherence between blood flow and oxygen transportation. Here we introduce a noninvasive optical method based on simultaneous recordings using NIRS, white light spectroscopy and LDF, combined with wavelet‐based phase coherence analysis. Signals were recorded simultaneously for individuals in two groups of healthy subjects, 16 from Sub‐Saharan Africa (BA group) and 16 Europeans (CA group). It was found that the power of myogenic oscillations in oxygenated and de‐oxygenated hemoglobin is higher in the BA group, but that the phase coherence between blood flow and oxygen saturation, or blood flow and hemoglobin concentrations is higher in the CA group  相似文献   

9.
The rate-controlling process in the oxygenation of red blood cells is investigated using a Roughton-like model for oxygen diffusion and reaction with hemoglobin. The mathematical equations describing the model are solved using two independent techniques, numerical inversions of the Laplace transform of the equations and numerical solutions via an implicit-explicit finite difference form of the equations. The model is used to re-examine previous theoretical models that incorporate either a red cell membrane that is resistive to oxygen diffusion or an unstirred layer of water surrounding the cell. Although both models have been postulated to be equivalent, the results of the computer simulations demonstrate significant differences between the two models in the rate of oxygenation of the red cells, depending upon the values chosen for the diffusion coefficient for O2 in the membrane and the thickness of the water layer. The difference is apparently due to differences in the induction and transient periods of the water layer model relative to the membrane model.  相似文献   

10.
This study aims at a functional and morphological characterization of the lung of a boid snake. In particular, we were interested to see if the python's lungs are designed with excess capacity as compared to resting and working oxygen demands. Therefore, the morphological respiratory diffusion capacity of ball pythons (Python regius) was examined following a stereological, hierarchically nested approach. The volume of the respiratory exchange tissue was determined using computed tomography. Tissue compartments were quantified using stereological methods on light microscopic images. The tissue diffusion barrier for oxygen transport was characterized and measured using transmission electron micrographs. We found a significant negative correlation between body mass and the volume of respiratory tissue; the lungs of larger snakes had relatively less respiratory tissue. Therefore, mass-specific respiratory tissue was calculated to exclude effects of body mass. The volume of the lung that contains parenchyma was 11.9±5.0mm(3)g(-1). The volume fraction, i.e., the actual pulmonary exchange tissue per lung parenchyma, was 63.22±7.3%; the total respiratory surface was, on average, 0.214±0.129m(2); it was significantly negatively correlated to body mass, with larger snakes having proportionally smaller respiratory surfaces. For the air-blood barrier, a harmonic mean of 0.78±0.05μm was found, with the epithelial layer representing the thickest part of the barrier. Based on these findings, a median diffusion capacity of the tissue barrier ( [Formula: see text] ) of 0.69±0.38ml O(2)min(-1)mmHg(-1) was calculated. Based on published values for blood oxygen concentration, a total oxygen uptake capacity of 61.16mlO(2)min(-1)kg(-1) can be assumed. This value exceeds the maximum demand for oxygen in ball pythons by a factor of 12. We conclude that healthy individuals of P. regius possess a considerable spare capacity for tissue oxygen exchange.  相似文献   

11.
The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4-34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery.  相似文献   

12.
The lungs of two adult species of bat Epomophorus wahlbergi and Miniopterus minor fixed with 2.3% glutaraldehyde were processed for SEM (scanning electron microscope) and TEM (transmission electron microscope) examination by the standard procedures. The bat lung comprised a blood and air conducting zone (consisting of bronchi, bronchioles and large blood vessels), the intermediate zone (made up of alveolar ducts), and the respiratory zone, which consisted of alveoli and blood capillaries. The interalveolar septa comprised basically granular pneumocytes (type II cells), squamous pneumocytes (type I cells), endothelial cells, and, in the interstitium, collagen and elastic fibres with occasional fibrocytes. Blood capillaries were interposed in the interalveolar septa, thus bulging into adjacent alveoli. It was noted that grossly, architecturally and structurally, the bat lung was similar to that of a terrestrial mammal. However, in previous morphometric and physiological studies it has been found that bats have a large lung, a thin pulmonary blood-gas barrier, a large pulmonary capillary blood volume, and high haematocrit and haemoglobin concentration. The bat lung, while retaining the basic mammalian pulmonary design, is well adapted to provide the large amount of oxygen demanded by flight. The avian pulmonary design (the lung-air sac system) is thus not a prerequisite to flight.  相似文献   

13.
A compartmental model is developed for oxygen (O(2)) transport in brain microcirculation in the presence of blood substitutes (hemoglobin-based oxygen carriers). The cerebrovascular bed is represented as a series of vascular compartments, on the basis of diameters, surrounded by a tissue compartment. A mixture of red blood cells (RBC) and plasma/extracellular hemoglobin solution flows through the vascular bed from the arterioles through the capillaries to the venules. Oxygen is transported by convection in the vascular compartments and by diffusion in the surrounding tissue where it is utilized. Intravascular resistance and the diffusive loss of oxygen from the arterioles to the tissue are incorporated in the model. The model predicts that most of the O(2) transport occurs at the level of capillaries. Results computed from the present model in the presence of hemoglobin-based oxygen carriers are consistent with those obtained from the earlier validated model (Sharan et al., 1989, 1998a) on oxygen transport in brain circulation in the absence of extracellular hemoglobin. We have found that: (a) precapillary PO(2) gradients increase as PO(2) in the arterial blood increases, P(50 p) (oxygen tension at 50% saturation of hemoglobin with O(2) in plasma) decreases, i.e. O(2) affinity of the extracellular hemoglobin is increased, the flow rate of the mixture decreases, hematocrit decreases at constant flow, metabolic rate increases, and intravascular transport resistance in the arterioles is neglected; (b) precapillary PO(2) gradients are not sensitive to (i) intracapillary transport resistance, (ii) cooperativity (n(p)) of hemoglobin with oxygen in plasma, (iii) hemoglobin concentration in the plasma and (iv) hematocrit when accounting for viscosity variation in the flow; (c) tissue PO(2) is not sensitive to the variation of intravascular transport resistance in the arterioles. We also found that tissue PO(2) is a non-monotonic function of the Hill coefficient n(p) for the extracellular hemoglobin with a maximum occurring when n(p) equals the blood Hill coefficient. The results of the computations give estimates of the magnitudes of the increases in tissue PO(2) as arterial PO(2) increases,P(50 p) increases, flow rate increases, hematocrit increases, hemoglobin concentration in the plasma increases, metabolic rate decreases, the capillary mass transfer coefficient increases or the intracapillary transport resistance decreases.  相似文献   

14.
Acute respiratory distress syndrome (ARDS) affects nearly 150,000 patients per year in the US, and is associated with high mortality (≈40%) and suboptimal options for patient care. Mechanical ventilation and extracorporeal membrane oxygenation are limited to short‐term use due to ventilator‐induced lung injury and poor biocompatibility, respectively. In this report, we describe the development of a biohybrid lung prototype, employing a rotating endothelialized microporous hollow fiber (MHF) bundle to improve blood biocompatibility while MHF mixing could contribute to gas transfer efficiency. MHFs were surface modified with radio frequency glow discharge (RFGD) and protein adsorption to promote endothelial cell (EC) attachment and growth. The MHF bundles were placed in the biohybrid lung prototype and rotated up to 1,500 revolutions per minute (rpm) using speed ramping protocols to condition ECs to remain adherent on the fibers. Oxygen transfer, thrombotic deposition, and EC p‐selectin expression were evaluated as indicators of biohybrid lung functionality and biocompatibility. A fixed aliquot of blood in contact with MHF bundles rotated at either 250 or 750 rpm reached saturating pO2 levels more quickly with increased rpm, supporting the concept that fiber rotation would positively contribute to oxygen transfer. The presence of ECs had no effect on the rate of oxygen transfer at lower fiber rpm, but did provide some resistance with increased rpm when the overall rate of mass transfer was higher due to active mixing. RFGD followed by fibronectin adsorption on MHFs facilitated near confluent EC coverage with minimal p‐selectin expression under both normoxic and hyperoxic conditions. Indeed, even subconfluent EC coverage on MHFs significantly reduced thrombotic deposition adding further support that endothelialization enhances, blood biocompatibility. Overall these findings demonstrate a proof‐of‐concept that a rotating endothelialized MHF bundle enhances gas transfer and biocompatibility, potentially producing safer, more efficient artificial lungs. Biotechnol. Bioeng. 2010; 106: 490–500. © 2010 Wiley Periodicals, Inc.  相似文献   

15.
Alvinella pompejana is a tubicolous polychaete that dwells in the hottest part of the hydrothermal vent ecosystem in a highly variable mixture of vent (350 degrees C, anoxic, CO(2)- and sulfide-rich) and deep-sea (2 degrees C, mildly hypoxic) waters. This species has developed distinct-and specifically respiratory-adaptations to this challenging environment. An internal gas exchange system has recently been described, along with the report of an intracellular coelomic hemoglobin, in addition to the previously known extracellular vascular hemoglobin. This article reports the structure of coelomic hemoglobin and the functional properties of both hemoglobins in order to assess possible oxygen transfer. Coelomocytes contain a unique monomeric hemoglobin with a molecular weight of 14,810+/-1.5 Da, as determined by mass spectrometry. The functional properties of both hemoglobins are unexpectedly very similar under the same conditions of pH (6.1-8.2) and temperature (10 degrees -40 degrees C). The oxygen affinity of both proteins is relatively high (P50=0.66 Torr at 20 degrees C and pH 7), which facilitates oxygen uptake from the hypoxic environment. A strong Bohr effect (Phi ranging from -0.8 to -1.0) allows the release of oxygen to acidic tissues. Such similar properties imply a possible bidirectional transfer of oxygen between the two hemoglobins in the perioesophagal pouch, a mechanism that could moderate environmental variations of oxygen concentration and maintain brain oxygenation.  相似文献   

16.
Blood volume changes in the fetal lung following the onset of ventilation were studied by isotopic measurement of red blood cell and plasma volume in rapidly frozen lungs of ten near term fetal lambs. Total pulmonary blood volumes of fetal lambs ventilated with 3% O2 and 7% CO2 in nitrogen (so that blood gas levels were little changed from fetal values), or with air, were compared with measurements in unventilated lambs. Regional correlations of blood volume and blood flow (measured with isotope-labeled microemboli) within the lungs were also examined. Total pulmonary blood volume averaged 5.6 ml/kg body weight in unventilated fetal lambs and was approximately 43% greated in fetal lambs after 5-20 min of air ventilation, but not significantly different in lambs ventilated with 3% O2 and 7% CO2 in nitrogen. Thus it is ventilation with air, rather than the introduction of gas into the alveoli, which enlarges the fetal pulmonary vascular bed. Regional pulmonary blood volume and blood flow were correlated, though poorly, in air-ventilated lungs, but not in lungs ventilated with 3% O2 and 7% CO2 in nitrogen; this suggests that a common factor may operate to increase both blood flow and blood volume in the fetal lung following the introduction of air.  相似文献   

17.
目的:体外肺灌注技术(Ex vivo lung perfusion, EVLP)对于肺移植的实施意义重大,但成本昂贵。本文采用国产经济材料建立猪模型的EVLP系统,以探索保证系统性能的同时降低移植费用。方法:我们首先依据国产材料配置肺灌注液,并组装管道、连接仪器以建立EVLP系统;之后通过外科手段获得3头家猪的肺脏,并灌注肺灌注液,低温保存6小时;最后我们将肺脏连接到EVLP系统,通过血气分析和肺功能检查来评估肺脏随时间变化的状况。结果:离体并在低温保存6小时的猪肺脏,通过我们建立的相对经济的EVLP系统,可以在2小时内维持良好的氧合功能和肺生理指标:肺动脉压、气道峰压、平台压力、肺动脉氧气分压和二氧化碳分压和左心房的氧气分压和二氧化碳分压都保持稳定,同时肺脏具有正常的颜色和弹性,没有明显水肿和功能损害。结论:我们建立的EVLP系统可以有效地维护离体猪肺的生理功能,且降低了成本,从而为肺移植体外肺灌注技术的优化应用提供了研究基础。  相似文献   

18.
The effects of compression on gastrocnemius medialis muscle oxygenation and hemodynamics during a short-term dynamic exercise was investigated in a sample of 15 male subjects (mean ± SD; age 25.8 ± 4.9 years; mass 70.6 ± 4.3 kg). Elastic compression sleeves were used to apply multiple levels of compression to the calf muscles during exercise, and noncompressive garments were used for the control condition. Tissue hemoglobin oxygen saturation was measured as the relative "tissue oxygen index" (TOI) with a near-infrared spectrometer. The recovery of TOI during exercise was determined from the slope of oxygenation recovery in a nonoccluded situation. The TOI recovery rate during the first 2 minutes of the exercise was 24% higher (p = 0.042) for the compression condition than for the control condition. A significant correlation (r = 0.61, p = 0.012) between the level of compression and the tissue oxygenation recovery during exercise was observed. Muscle energy use was determined from the rate of decline of TOI immediately upon arterial occlusion during early exercise. Muscle energy use measured during the occluded situation was not significantly influenced by compression. Based on these results, it was concluded that compression induced changes in tissue blood flow and perfusion appear to result in improved oxygenation during short-term exercise. Assuming that increased muscle oxygen availability positively influences performance, compression of muscles may enhance performance especially in sports that require repeated short bouts of exercise.  相似文献   

19.
Previous studies have suggested that a reduction in cerebral oxygen delivery may limit motor drive, particularly in hypoxic conditions, where oxygen transport is impaired. We hypothesized that raising end-tidal Pco(2) (Pet(CO(2))) during incremental exercise would increase cerebral blood flow (CBF) and oxygen delivery, thereby improving peak power output (W(peak)). Amateur cyclists performed two ramped exercise tests (25 W/min) in a counterbalanced order to compare the normal, poikilocapnic response against a clamped condition, in which Pet(CO(2)) was held at 50 Torr throughout exercise. Tests were performed in normoxia (barometric pressure = 630 mmHg, 1,650 m) and hypoxia (barometric pressure = 425 mmHg, 4,875 m) in a hypobaric chamber. An additional trial in hypoxia investigated effects of clamping at a lower Pet(CO(2)) (40 Torr) from ~75 to 100% W(peak) to reduce potential influences of respiratory acidosis and muscle fatigue imposed by clamping Pet(CO(2)) at 50 Torr. Metabolic gases, ventilation, middle cerebral artery CBF velocity (transcranial Doppler), forehead pulse oximetry, and cerebral (prefrontal) and muscle (vastus lateralis) hemoglobin oxygenation (near infrared spectroscopy) were monitored across trials. Clamping Pet(CO(2)) at 50 Torr in both normoxia (n = 9) and hypoxia (n = 11) elevated CBF velocity (~40%) and improved cerebral hemoglobin oxygenation (~15%), but decreased W(peak) (6%) and peak oxygen consumption (11%). Clamping at 40 Torr near maximal effort in hypoxia (n = 6) also improved cerebral oxygenation (~15%), but again limited W(peak) (5%). These findings demonstrate that increasing mass cerebral oxygen delivery via CO(2)-mediated vasodilation does not improve incremental exercise performance, at least when accompanied by respiratory acidosis.  相似文献   

20.
Low O2 levels in the lungs of birds and mammals cause constriction of the pulmonary vasculature that elevates resistance to pulmonary blood flow and increases pulmonary blood pressure. This hypoxic pulmonary vasoconstriction (HPV) diverts pulmonary blood flow from poorly ventilated and hypoxic areas of the lung to more well-ventilated parts and is considered important for the local matching of ventilation to blood perfusion. In the present study, the effects of acute hypoxia on pulmonary and systemic blood flows and pressures were measured in four species of anesthetized reptiles with diverse lung structures and heart morphologies: varanid lizards (Varanus exanthematicus), caimans (Caiman latirostris), rattlesnakes (Crotalus durissus), and tegu lizards (Tupinambis merianae). As previously shown in turtles, hypoxia causes a reversible constriction of the pulmonary vasculature in varanids and caimans, decreasing pulmonary vascular conductance by 37 and 31%, respectively. These three species possess complex multicameral lungs, and it is likely that HPV would aid to secure ventilation-perfusion homogeneity. There was no HPV in rattlesnakes, which have structurally simple lungs where local ventilation-perfusion inhomogeneities are less likely to occur. However, tegu lizards, which also have simple unicameral lungs, did exhibit HPV, decreasing pulmonary vascular conductance by 32%, albeit at a lower threshold than varanids and caimans (6.2 kPa oxygen in inspired air vs. 8.2 and 13.9 kPa, respectively). Although these observations suggest that HPV is more pronounced in species with complex lungs and functionally divided hearts, it is also clear that other components are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号