首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The syntheses and preliminary biological evaluation of several novel pyrrolo[3,2-d]pyrimidine and thieno[3,2-d]pyrimidine C-nucleosides incorporating the arabinofuranosyl or 2′-deoxyribofuranosyl sugar moiety are described. The 2′-deoxy thieno[3,2-d]pyrimidine C-nucleosides (15 and 16) were obtained from 7-(β-D-ribofuranosyl)-4-oxo-3H-thieno[3,2-d]pyrimidine (3) and its 4-SMe derivative 8. “2”-Deoxy-9-deazaadenosine (31), “9-Deaza ara-A” (38) and the 2′-substituted arabinosyl pyrrolo[3,2-d]pyrimidine C-nucleosides (42 - 44) were synthesized from 4-amino-7-(2,3-O-isopropylidene-5-O-trityl-β-D-ribofuranosyl)-5H-pyrrolo[3,2-d]pyrimidine (21)  相似文献   

2.
The synthesis and physiological activity of some novel 4-substituted triazolo[4,5-d]pyrimidines and 4-substituted pyrazolo[3,4-d]pyrimidines are described. Most of the compounds possessed high anticytokinin activity towards purine (benzyladenine) and phenylurea (4-PU-30) type cytokinins. 1-Benzyl-4-ethoxycarbonylpiperazinyl-1H-1,2,3-triazolo[4,5-d]pyrimidine almost completely removed cytokinin stimulated effects—betacyanin synthesis in Amaranthus caudatus cotyledons; growth of radish cotyledons and retention of chlorophyll in leaf explants. Some chemical structurephysiological activity relationships have been established.  相似文献   

3.
A facile synthesis of 7-amino-5-chloro-3-beta-D-ribofuranosylpyrazolo [4,3-d]pyrimidine (5-chloroformycin A, 6), 7-amino-5-chloro-3-(2-deoxy-beta-D-erythro-pentofuranosyl) pyrazolo [4,3-d]-pyrimidine (5-chloro-2'-deoxyformycin A, 13) and certain related 5,7-disubstituted pyrazolo[4,3-d]pyrimidine ribonucleosides is described starting with formycin A. Thiation of tri-O-acetyloxoformycin B (4b) with phosphorus pentasulfide, followed 3-beta-D-ribofuranosyl-7-thioxopyrazolo[4,3-d] pyrimidin-5(1H,4H,6H)-one (3b) in excellent yield. Chlorination of 4b with either phosphorus oxychloride or phenyl phosphonicdichloride furnished the key intermediate 5,7-dichloro-3-(2,3, 5-tri-O-acetyl-beta-D-ribofuranosyl)pyrazolo[4,3-d]pyrimidine (5a), which on deacetylation afforded 5,7-dichloro-3-beta-D-ribofuranosylpyrazolo [4,3-d]pyrimidine (5b). Ammonolysis of 5a with liquid ammonia gave 6, whereas with MeOH/NH3, a mixture of 6 and 7-methoxy-5-chloro-3-beta-D-ribofuranosylpyrazolo[4,3-d]pyrimidine (7) was obtained. Reaction of 6 with lithium azide and subsequent hydrogenation afforded 5-aminoformycin A (10). Treatment of 5a with thiourea gave 5-chloro-3-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl) pyrazolo[4,3-d]pyrimidine-7(1H,6H)-thione (8a), which on further reaction with sodium hydrosulfide furnished 3-beta-D-ribofuranosylpyrazolo [4,3-d]pyrimidine-5,7(1H,4H,6H)-dithione (11). The four-step deoxygenation procedure using phenoxythiocarbonylation of the 2'-hydroxy group of the 3', 5'-protected 6 gave 5-chloro-2'-deoxyformycin A (13).  相似文献   

4.
Classical antifolates (4-7) with a tricyclic benzo[4,5]thieno[2,3-d]pyrimidine scaffold and a flexible and rigid benzoylglutamate were synthesized as dual thymidylate synthase (TS) and dihydrofolate reductase (DHFR) inhibitors. Oxidative aromatization of ethyl 2-amino-4-methyl-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (±)-9 to ethyl 2-amino-4-methyl-1-benzothiophene-3-carboxylate 10 with 10% Pd/C was a key synthetic step. Compounds with 2-CH? substituents inhibited human (h) TS (IC?? =0.26-0.8 μM), but not hDHFR. Substitution of the 2-CH? with a 2-NH? increases hTS inhibition by more than 10-fold and also affords excellent hDHFR inhibition (IC?? = 0.09-0.1 μM). This study shows that the tricyclic benzo[4,5]thieno[2,3-d]pyrimidine scaffold is highly conducive to single hTS or dual hTS-hDHFR inhibition depending on the 2-position substituents. The X-ray crystal structures of 6 and 7 with hDHFR reveal, for the first time, that tricyclics 6 and 7 bind with the benzo[4,5]thieno[2,3-d]pyrimidine ring in the folate binding mode with the thieno S mimicking the 4-amino of methotrexate.  相似文献   

5.
The reaction of Appel's salt with o-amino nitrile heterocycles 10-19 gave the corresponding 4-chloro-5-heteroimmine-1,2,3-dithiazoles 20-29 which were evaluated for their antibacterial, antifungal and antitumor activity. Although all these N-heteroimines were devoid of significant antibacterial activity, they showed significant antifungal activity. Moreover, the same derivatives represent highly versatile intermediates in heterocyclic synthesis, in fact the pyrazoleimino dithiazoles 20-26 can be converted in one step into 2-cyano derivatives of the corresponding 4-methoxy-pyrazolo[3,4-d]pyrimidines 30-35 by sodium methoxide in refluxing methanol. This provides a general and attractive route to 4-methoxy-6-cyano pyrazolo[3,4-d]pyrimidines from 1-substituted 5-amino pyrazoles 10-19 in two simple steps. Finally, the isosteric replacement of the pyrazole ring atoms to give the imidazole[3,4-d]pyrimidine and triazole [4,5-d] pyrimidine ring systems was examined.  相似文献   

6.
An efficient solid phase synthesis of pyrimido[4,5-d]pyrimidine derivatives is described. Reaction of polymer-bound pyrimidine 1 with urea or thiourea followed by cleavage from the support provided 4-aminopyrimido[4,5-d]pyrimidines 4 and 5 while treatment of 6 with phenyl isocyanate or phenyl isothiocyanate followed by cleavage from resin afforded 3-phenylpyrimido[4,5-d]pyrimidines 9 and 10.  相似文献   

7.
Electron rich 6-[(dimethylamino)methylene]amino uracil 1, undergoes [4+2] cycloaddition reactions with various in situ generated glyoxylate imine and imine oxides 6 to provide novel pyrimido[4,5-d]pyrimidine derivatives of biological significance, after elimination of dimethylamine from the (1:1) cycloadducts and oxidative aromatisation. This procedure provides a convenient method for the direct synthesis of pyrimido[4,5-d]pyrimidines in excellent yields when carried out in the solid state and under microwave irradiations.  相似文献   

8.
A series of new 5-alkyl and 5-arylisoxazolo[4,5-d]pyrimidinones (5a-g, 6-8) were prepared from 4-amino-3-oxo-isoxazolidine-5-carboxylic acid amide. Some of the aryl derivatives of isoxazolo[4,5-d]pyrimidine were tested pharmacologically in comparison with Diazepam. Compounds 5b-d and 7 demonstrated interesting anxiolytic activity.  相似文献   

9.
4-Morpholin-4-ylpyrido[3',2':4,5]thieno[3,2-d]pyrimidine 2a was discovered in our chemical library as a novel p110alpha inhibitor with an IC(50) of 1.4 microM. By structural modification of 2a, the 2-aryl-4-morpholinopyrido[3',2':4,5]furo[3,2-d]pyrimidine derivative 10e was discovered as a p110alpha inhibitor with approximately 400-fold greater potency than 2a. Evaluation of isoform selectivity showed that 10e is a potent inhibitor of p110beta. Furthermore, 10e showed anti-proliferative activity in various cell lines, including multi-drug resistant MCF7/ADR-res cells, and was effective against HeLa human cervical tumor xenografts in nude mice.  相似文献   

10.
In this article, we focus on the synthesis of aryl C-glycosides via Heck coupling. It is organized based on the type of structures used in the assembly of the C-glycosides (also called C-nucleosides) with the following subsections: pyrimidine C-nucleosides, purine C-nucleosides, and monocyclic, bicyclic, and tetracyclic C-nucleosides. The reagents and conditions used for conducting the Heck coupling reactions are discussed. The subsequent conversion of the Heck products to the corresponding target molecules and the application of the target molecules are also described.  相似文献   

11.
In this article, we focus on the synthesis of aryl C-glycosides via Heck coupling. It is organized based on the type of structures used in the assembly of the C-glycosides (also called C-nucleosides) with the following subsections: pyrimidine C-nucleosides, purine C-nucleosides, and monocyclic, bicyclic, and tetracyclic C-nucleosides. The reagents and conditions used for conducting the Heck coupling reactions are discussed. The subsequent conversion of the Heck products to the corresponding target molecules and the application of the target molecules are also described.  相似文献   

12.
Direct glycosylation of the sodium salt of 4,6-dichloro- or 4,6-dibromo-2-methylthiopyrrolo[2,3-d]pyrimidine with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide gave good yield of the corresponding N7-glycosylated pyrrolo [2,3-d]pyrimidine. The intermediate 4-amino-6-chloro-2-methylthio-7-beta-D-ribofuranosylpyrrolo[2,3-d] pyrimidine provided a new synthetic route to tubercidin, via 6-chlorotubercidin. 6-Chloro-2-methoxytubercidin was also obtained from 10 via the methylsulfone. Application of this glycosylation procedure to 4,6-dichloro- or 4,6-dibromo-2-methylpyrrolo [2,3-d]-pyrimidine also furnished the corresponding N7-glycosyl derivatives with beta-configuration. Dehalogenation of gave 2-methyl-tubercidin and bromination with bromine in a buffered solution gave 5,6-dihalo-2-methyltubercidin. Several new 2,6-disubstituted tubercidin derivatives were prepared from these glycosyl intermediates. This new sodium salt glycosylation procedure was found to be superior to other procedures for the total synthesis of these halogenated 7-deazapurine nucleosides.  相似文献   

13.
Five hetercyclic analogs of adenosine cyclic 3',5'-phosphate (cyclic AMP) were examined for their ability (1) to stimulate type II cyclic AMP-dependent kinases from bovine brain, bovine heart, and rat liver; (2) to serve as substrates for "high Km" (Km for cyclic AMP = 0.13-0.43 mM) cyclic nucleotide phosphodiesterases from bovine heart, rabbit kidney, and rat liver; and (3) to inhibit the hydrolysis of cyclic AMP catalyzed by "low Km" (Km for cAMP = 0.32-1.5 muM) cyclic nucleotide phosphodiesterases from bovine brain, bovine heart, dog heart, rabbit liver, rat brain and rat liver. The analogs all had a purine ring system which had been modified by replacement of a ring carbon with nitrogen or vice versa to yield 2-aza-cAMP (7-amino-4-beta-D-ribofuranosylimidazo [4,5-d] -v-triazine cyclic 3',5'-phosphate); 8-aza-cAMP (7-amino-3-beta-D-ribofuranosyl-v-triazolo-[4,5-d]-pyrimidine cyclic 3',5'-phosphate); 1 deaza-cAMP (7-amino-3-beta-D-ribofuranosylimidazo [4,5-b[pyridine cyclic 3',5'-phosphate); 3-deaza-cAMP (4-amino-1-beta-D-ribofuranosylimidazo[4,5-c]pyridine cyclic 3',5'-phosphate) and 7-deaza-cAMP (7-amino-4-beta-D-ribofuranosylpyrrolo[2,3-d]pyrimidine cyclic 3',5'-phosphate).  相似文献   

14.
The synthesis of several pyrido[2,3-d]pyrimidine and pyrimido[4,5-d]pyrimidine analogs is described with one such analog possessing subnanomolar potency in both genotype 1a and 1b cell culture HCV replicon assays.  相似文献   

15.
Three novel 4-subsituted-7-(2'-deoxy-2'-fluoro-4'-azido-β-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidine analogues were designed, synthesized, and tested for their anti-HIV-1 activity. Initial biological studies indicated that among these pyrrolo[2,3-d]pyrimidine ribonucleoside analogues, 4-amino-7-(2'-deoxy-2'-fluoro-4'-azido-β-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidine 10 exhibited the most potent anti-HIV-1 activity (EC(50)=0.5±0.3 μM), while 4-hydroxy-7-(2'-deoxy-2'-fluoro-4'-azido-β-D-ribofuranosyl)pyrrolo[2,3-d] pyrimidine 9 and 4-amino-5-fluoro-7-(2'-deoxy-2'-fluoro-4'-azido-β-D-ribofuranosyl)pyrrolo[2,3-d] pyrimidine 11 showed moderate activity (EC(50)=13±8 and 5.4±0.3 μM, respectively). The cytotoxicity of these compounds has also been assessed. No significant cytotoxicities were found for any of these compounds with concentrations up to 25 μM.  相似文献   

16.
The glycosylation of 4,6-dichloropyrazolo[3,4-d]pyrimidine and 4-chloro-6-methylthiopyrazolo[3,4-d]pyrimidine via the corresponding trimethylsilyl intermediate and tetra-O-acetyl-beta-D-ribofuranose in the presence of trimethylsilyl triflate as a catalyst, gave selective glycosylation at N1 as the only nucleoside product. The intermediates 4,6-dichloro-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)pyrazolo [3,4-d]pyrimidine 7 and 4-chloro-6-methylthio-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)pyrazolo [3,4-d]pyrimidine 13 gave new and convenient synthetic routes to the inosine analog 1, the guanosine analog 2, the adenosine analog 3, and the isoguanosine analog 16. Glycosylation of the trimethylsilyl derivative of 6-chloropyrazolo[3,4-d]pyrimidine-4-one unexpectedly gave the N2-glycosyl isomer 20 as the major product. A number of new 4,6-disubstituted pyrazolo[3,4-d]pyrimidine nucleosides were prepared from these glycosyl intermediates.  相似文献   

17.
Two classical antifolates, a 2,4-diamino-5-substituted furo[2,3-d]pyrimidine and a 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine, were synthesized as potential inhibitors of dihydrofolate reductase (DHFR) and thymidylate synthase (TS). The syntheses were accomplished by condensation of 2,6-diamino-3(H)-4-oxo-pyrimidine with alpha-chloro-ketone 21 to afford two key intermediates 23 and 24, followed by hydrolysis, coupling with l-glutamate diethyl ester and saponification of the diethyl ester to afford the classical antifolates 13 and 14. Compounds 13 and 14 with a single carbon atom bridge are both substrates for folylpoly-gamma-glutamate synthetase (FPGS), the enzyme responsible for forming critical poly-gamma-glutamate antifolate metabolites with increased potency and/or increased cell retention. Compound 14 is a highly efficient FPGS substrate demonstrating that 2,4-diamino-5-substituted furo[2,3-d]pyrimidines are important lead structures for the design of antifolates with FPGS substrate activity. It retains inhibitory potency for DHFR and TS compared to the two atom bridged analog 5. Compound 13 is a poor inhibitor of purified DHFR and TS, and both 13 and 14 are poor inhibitors of the growth of CCRF-CEM human leukemia cells in culture, indicating that single carbon bridged compounds in these series though conducive to FPGS substrate activity were not potent inhibitors.  相似文献   

18.
Structure-affinity relationships (SARs) of non-peptide CRF(1) antagonists suggest that such antagonists can be constructed of three units: a hydrophobic unit (Up-Area), a proton accepting unit (Central-Area), and an aromatic unit (Down-Area). Recently, various non-peptide corticotropin-releasing factor(1) (CRF(1)) receptor antagonists obtained by modification of the Central-Area have been reported. In contrast, we modified the Up-Area and presented 4- or 5-aryl-1,2,3,6-tetrahydropyridinopyrimidine derivatives including potent CRF receptor ligands 1a-c, and proposed that the 4- or 5-aryl-1,2,3,6-tetrahydropyridino moiety might be useful as a substituent in the Up-Area. Our interest shifted to the chemical modification in which the pyrimidine ring of 1a-c was replaced by other heterocycles, purine ring of 2, 3H-1,2,3-triazolo[4,5-d]pyrimidine ring of 3, purin-8-one ring of 4 and 7H-pyrrolo[2,3-d]pyrimidine ring of 5. Among them, 5-aryl-1,2,3,6-tetrahydropyridinopurine compound 6j (CRA0186) had the highest affinity for CRF(1) receptors (IC(50)=20nM). We report here the synthesis and SARs of derivatives 6-9.  相似文献   

19.
The CXCR2 SAR of a series of bicyclic antagonists such as the 2-aminothiazolo[4,5-d]pyrimidine 3b was investigated by systematic variation of the fused pyrimidine-based heterocyclic cores. Replacement of the aminothiazole ring with a 2-thiazolone alternative led to a series of thiazolo[4,5-d]pyrimidine-2(3H)-one antagonists with markedly improved biological and pharmacokinetic properties, which are suitable pharmacological tools to probe the in vivo effects of CXCR2 antagonism combined with the associated CCR2 activity.  相似文献   

20.
The reaction of compounds 1, 2, 3, 4, or 13 with 2-chloroethyl methyl ether or 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl bromide, afforded some acyclic and cyclic nucleosides of thieno[2,3-d]pyrimidine derivatives. Furthermore, cyclic C-nucleosides 24 and 25 were prepared from the reaction of 20, 21 or from 26, 27 with D-glucose. The antimicrobial evaluation of some prepared products showed promising antimicrobial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号