首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Purple non-sulfur phototrophic bacteria, exemplifed byRhodobacter capsulatus andRhodobacter sphaeroides, exhibit a remarkable versatility in their anaerobic metabolism. In these bacteria the photosynthetic apparatus, enzymes involved in CO2 fixation and pathways of anaerobic respiration are all induced upon a reduction in oxygen tension. Recently, there have been significant advances in the understanding of molecular properties of the photosynthetic apparatus and the control of the expression of genes involved in photosynthesis and CO2 fixation. In addition, anaerobic respiratory pathways have been characterised and their interaction with photosynthetic electron transport has been described. This review will survey these advances and will discuss the ways in which photosynthetic electron transport and oxidation-reduction processes are integrated during photoautotrophic and photoheterotrophic growth.  相似文献   

2.
The first photosynthetic bacterium obtained in pure culture wasRhodospirillum rubrum, isolated by Erwin Esmarch in 1887. The organism appeared to be an aerobic heterotroph, and Esmarch was unaware of its photosynthetic capability. The overall general characteristics of a number of major species of photosynthetic bacteria were described by Molisch and van Niel before 1945. Subsequently, our knowledge of the anoxygenic phototrophs increased greatly through the systematic study of numerous new species isolated from enrichment cultures in which capacity for anaerobic (and anoxygenic) growth with light as the energy source was a primary selective factor. A further refinement of the enrichment technique required ability to use N2 as the sole source of nitrogen for growth under anaerobic photosynthetic conditions, and this led to the isolation of additional new species, including the heliobacteria. The first recognition of the heliobacteria was facilitated by serendipity, which was a significant factor in a number of other researches on photosynthetic bacteria (Gest 1992).  相似文献   

3.
Photosynthetic bacteria offer excellent experimental opportunities to explore both the structure and function of the ubiquinol-cytochromec oxidoreductase (bc 1 complex). In bothRhodobacter sphaeroides andRhodobacter capsulatus, thebc 1 complex functions in both the aerobic respiratory chain and as an essential component of the photosynthetic electron transport chain. Because thebc 1 complex in these organisms can be functionally coupled to the photosynthetic reaction center, flash photolysis can be used to study electron flow through the enzyme and to examine the effects of various amino acid substitutions. During the past several years, numerous mutations have been generated in the cytochromeb subunit, in the Rieske iron-sulfur subunit, and in the cytochromec 1 subunit. Both site-directed and random mutagenesis procedures have been utilized. Studies of these mutations have identified amino acid residues that are metal ligands, as well as those residues that are at or near either the quinol oxidase (Qo) site or the quinol reductase (Qi) site. The postulate that these two Q-sites are located on opposite sides of the membrane is supported by these studies. Current research is directed at exploring the details of the catalytic mechanism, the nature of the subunit interactions, and the assembly of this enzyme.  相似文献   

4.
Spectral and kinetic characteristics of fluorescence from isolated reaction centers of photosynthetic purple bacteria Rhodobacter sphaeroides and Rhodobacter capsulatus were measured at room temperature under rectangular shape of excitation at 810 nm. The kinetics of fluorescence at 915 nm reflected redox changes due to light and dark reactions in the donor and acceptor quinone complex of the reaction center as identified by absorption changes at 865 nm (bacteriochlorophyll dimer) and 450 nm (quinones) measured simultaneously with the fluorescence. Based on redox titration and gradual bleaching of the dimer, the yield of fluorescence from reaction centers could be separated into a time-dependent (originating from the dimer) and a constant part (coming from contaminating pigment (detached bacteriochlorin)). The origin was also confirmed by the corresponding excitation spectra of the 915 nm fluorescence. The ratio of yields of constant fluorescence over variable fluorescence was much smaller in Rhodobacter sphaeroides (0.15±0.1) than in Rhodobacter capsulatus (1.2±0.3). It was shown that the changes in fluorescence yield reflected the disappearance of the dimer and the quenching by the oxidized primary quinone. The redox changes of the secondary quinone did not have any influence on the yield but excess quinone in the solution quenched the (constant part of) fluorescence. The relative yields of fluorescence in different redox states of the reaction center were tabulated. The fluorescence of the dimer can be used as an effective tool in studies of redox reactions in reaction centers, an alternative to the measurements of absorption kinetics.Abbreviations Bchl bacteriochlorophyll - Bpheo bacteriopheophytin - D electron donor to P+ - P bacteriochlorophyll dimer - Q quinone acceptor - QA primary quinone acceptor - QB secondary quinone acceptor - RC reaction center protein - UQ6 ubiquinone-30  相似文献   

5.
Two acidic residues, L212Glu and L213Asp, in the QB binding sites of the photosynthetic reaction centers of Rhodobacter capsulatus and Rhodobacter sphaeroides are thought to play central roles in the transfer of protons to the quinone anion(s) generated by photoinduced electron transfer. We constructed the site-specific double mutant L212Ala-L213Ala in R. capsulatus, that is incapable of growth under photosynthetic conditions. A photocompetent derivative of that strain has been isolated that carries the original L212Ala-L213Ala double mutation and a second-site suppressor mutation at residue M43 (AsnAsp), outside of the QB binding site, that is solely responsible for restoring the photosynthetic phenotype. The Asp,Asn combination of residues at the L213 and M43 positions is conserved in the five species of photosynthetic bacteria whose reaction center sequences are known. In R. capsulatus and R. sphaeroides, the pair is L213Asp-M43Asn. But, the reaction centers of Rhodopseudomonas viridis, Rhodospirillum rubrum and Chloroflexus aurantiacus reverse the combination to L213Asn-M43Asp. In this respect, the QB site of the suppressor strain resembles that of the latter three species in that it couples an uncharged residue at L213 with an acidic residue at M43. These reaction centers, in which L213 is an amide, must employ an alternative proton transfer pathway. The observation that the M43AsnAsp mutation in R. capsulatus compensates for the loss of both acidic residues at L212 and L213 suggests that M43Asp is involved in a new proton transfer route in this species that resembles the one normally used in reaction centers of Rps. virddis, Rsp. rubrum and C. aurantiacus.  相似文献   

6.
7.
I have re-examined my 1970 article ‘Evolution of Photosynthesis’ (Olson JM, Science 168: 438–446) to see whether any of my original proposals still survive. My original conviction that the evolution of photosynthesis was intimately connected with the origin of life has been replaced with the realization that photosynthesis may have been invented by the Bacteria after their divergence from the Archea. The common ancestor of all extant photosynthetic bacteria and cyanobacteria probably contained bacteriochlorophyll a, rather than chlorophyll a as originally proposed, and may have carried out CO2 fixation instead of photoassimilation. The first electron donors were probably reduced sulfur compounds and later ferrous iron. The common ancestor of all extant reaction centers was probably similar to the homodimeric RC1 of present-day green sulfur bacteria (Chlorobiaceae) and heliobacteria. In the common ancestor of proteobacteria and cyanobacteria, the gene for the primordial RC1 was apparently duplicated and one copy split into two genes, one for RC2 and the other for a chlorophyll protein similar to CP43 and CP47 in extant cyanobacteria and chloroplasts. Homodimeric RC1 and homodimeric RC2 functioned in series as in the Z-scheme to deliver electrons from Fe(OH)+ to NADP+, while RC1 and/or RC2 separately drove cyclic electron flow for the production of ATP. In the line of evolution leading to proteobacteria, RC1 and the chlorophyll protein were lost, but RC2 was retained and became heterodimeric. In the line leading to cyanobacteria, both RC1 and RC2 replaced bacteriochlorophyll a with chlorophyll a and became heterodimeric. Heterodimeric RC2 further coevolved with a Mn-containing complex to utilize water as the electron donor for CO2 fixation. The chlorophyll–protein was also retained and evolved into CP43 and CP47. Heliobacteria are the nearest photosynthetic relatives of cyanobacteria. The branching order of photosynthetic genes appears to be (1) proteobacteria, (2) green bacteria (Chlorobiaceae plus Chloroflexaceae), and (3) heliobacteria plus cyanobacteria. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Photosynthetic prokaryotes that assimilate CO2 under anoxic conditions may also grow chemolithoautotrophically with O2 as the electron acceptor. Among the nonsulfur purple bacteria, two species (Rhodobacter capsulatus and Rhodopseudomonas acidophilus), exhibit aerobic chemolithoautotrophic growth with hydrogen as the electron donor. Although wild-type strains of Rhodobacter sphaeroides grow poorly, if at all, with hydrogen plus oxygen in the dark, we report here the isolation of a spontaneous mutant (strain HR-CAC) of Rba. sphaeroides strain HR that is fully capable of this mode of growth. Rba. sphaeroides and Rba. capsulatus fix CO2 via the reductive pentose phosphate pathway and synthesize two forms of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). RubisCO levels in the aerobic-chemolithoautotrophic-positive strain of Rba. sphaeroides were similar to those in wild-type strains of Rba. sphaeroides and Rba. capsulatus during photoheterotrophic and photolithoautotrophic growth. Moreover, RubisCO levels of Rba. sphaeroides strain HR-CAC approximated levels obtained in Rba. capsulatus when the organisms were grown as aerobic chemolithoautotrophs. Either form I or form II RubisCO was able to support aerobic chemolithoautotrophic growth of Rba. capsulatus strain SB 1003 and Rba. sphaeroides strain HR-CAC at a variety of CO2 concentrations, although form II RubisCO began to lose the capacity to support aerobic CO2 fixation at high O2 to CO2 ratios. The latter property and other facets of the physiology of this system suggest that Rba. sphaeroides and Rba. capsulatus strains may be effectively employed for the biological selection of RubisCO molecules of altered substrate specificity. Received: 8 August 1997 / Accepted: 26 December 1997  相似文献   

9.
Rhodobacter capsulatus fixes CO2 via the Calvin reductive pentose phosphate pathway and, like some other nonsulfur purple bacteria, is known to synthesize two distinct structural forms of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Cosmid clones that hybridized to form I (cbbLcbbS) and form II (cbbM) RubisCO gene probes were isolated from a genomic library of R. capsulatus strain SB1003. Southern blotting and hybridization analysis with gene-specific probes derived from Rhodobacter sphaeroides revealed that R. capsulatus cbbM is clustered with genes encoding other enzymes of the Calvin cycle, including fructose 1,6/sedoheptulose 1,7-bisphosphatase (cbbF), phosphoribulokinase (cbbP), transketolase (cbbT), glyceraldehyde-3-phosphate dehydrogenase (cbbG), and fructose 1,6-bisphosphate aldolase (cbbA), as well as a gene (cbbR) encoding a divergently transcribed LysR-type regulatory protein. Surprisingly, a cosmid clone containing the R. capsulatus form I RubisCO genes (cbbL and cbbS) failed to hybridize to the other cbb structural gene probes, unlike the situation with the closely related organism R. sphaeroides. The form I and form II RubisCO genes were cloned into pUC-derived vectors and were expressed in Escherichia coli to yield active recombinant enzyme in each case. Complementation of a RubisCO-deletion strain of R. sphaeroides to photosynthetic growth by R. capsulatus cbbLcbbS or cbbM was achieved using the broad host-range vector, pRK415, and R. sphaeroides expression vector pRPS-1. Received: 6 June 1995 / Accepted: 29 September 1995  相似文献   

10.
ARhodobacter sphaeroides gene (pps) inducestrans suppression of bacteriochlorophyll (Bch) and carotenoid (Crt) levels in bothR. sphaeroides andR. capsulatus. It also induces suppression of Crt levels in aParacoccus denitrificans strain carrying the Crt genes ofR. sphaeroides. The gene is located approximately 11 kilobases fromcrtA in the photosynthetic gene cluster. Crt suppression bypps is quantitatively different from that caused by an absence of mature Bch.  相似文献   

11.
Feng Y  Yu Y  Wang Y  Lin X 《Current microbiology》2007,55(5):402-408
Biosorption has been shown to be an eco-friendly approach to remove heavy metal ions. In this study, the photosynthetic bacteria Rhodobacter capsulatus was screened and found to have strong ability to adsorb Au(III). The maximum specific uptake of living cells was over 92.43 mg HAuCl4/g dry weight of cell in the logarithmic phase. Biosorpion ability would be enhanced by an acidic environment. As the main cations, during biosorption the quantity of Mg2+ exchanged was more than Na+. Biosorbed Au(III) could be reduced by carotenoid and enzymes embedded and/or excreted by R. capsulatus, which might be the mechanism of photosynthtic bacteria metal tolerance.  相似文献   

12.
The characteristics of malate transport into aerobically grown cells of the purple photosynthetic bacterium Rhodobacter capsulatus were determined. A single transport system was distinguished kinetically which displayed a Kt value of 2.9 ± 1.2 μM and Vmax of 43 ± 6 nmol · min-1 · mg-1 protein. Competition experiments indicated that the metabolically related C4-dicarboxylates succinate and fumarate are also transported by this system. Malate uptake was sensitive to osmotic shock and evidence from the binding of radiolabelled malate and succinate to periplasmic protein fractions indicated that transport is mediated by a dicarboxylate binding protein. The activity of the transport system was studied as a function of external and internal pH and it was found that a marked activation of uptake occurred at intracellular pH values greater than 7. The use of a high affinity binding protein dependent system to transport a major carbon and energy source suggests that Rhodobacter capsulatus would be capable of obtaining growth sustaining quantities of C4-dicarboxylates even if these were present at very low concentrations in the environment.  相似文献   

13.
In vivo switch-off of nitrogenase activity by NH 4 + is a reversible process in Rhodobacter sphaeroides and Methylosinus trichosporium OB3b. The same pattern of switch-off in Rhodospirillum rubrum is explained by ADP-ribosylation of one of the Fe protein subunits, however, no evidence of covalent modification could be found in the subunits from either R. sphaeroides or M. trichosporium. Fe protein subunits from these organisms showed no variant behaviour on SDS-PAGE, nor were they 32P-labeled following switch-off. These observations suggest either that the attachment of the modifying group to the Fe protein in these organisms is quite labile and does not survive in vitro manipulation, or that the mechanism of switch-off is different than that seen in Rhodospirillum.  相似文献   

14.
Rhodobacter capsulatus strain 37b4 was grown diazotrophically in phototrophic chemostat culture with 30 mM of d,l-malate and 2 mM of ammonium. Illumination was varied at constant dilution rate (D) and vice versa, respectively. When D was raised from 0.035 to 0.165 h-1 at 30 klx, the steady state cell protein level as well as malate consumption decreased. d-malate was utilized only at D=0.035 h-1. Specific cellular activities of nitrogenase, as determined by acetylene reduction as well as by dinitrogen (N2) fixation, increased and approached constancy at D>0.075 h-1. Specific ATP contents of cells increased with increasing D, while specific ADP and AMP contents exhibited no significant variations. Consequently, energy charge values as well as molar ratios of ATP/ADP (T/D) increased. Raising illumination from 6 to 30 klx at D=0.075 h-1 resulted in an increase of the steady state protein level as well as of l-malate consumption. d-malate was not utilized under these conditions. Specific nitrogenase activity of cells increased at the lower and levelled off at the higher illuminations. Specific ATP contents of cells stayed constant but specific ADP contents increased with increasing illumination. The energy charge did not vary significantly, while the T/C ratio decreased between 6 and 18 klx and stayed constant at the higher illuminations. The results do not reveal any relationship between nitrogenase activity and the cellular levels or relative proportions of different adenine nucleotides. However, when steady state amounts of fixed N2 were plotted versus steady state T/D ratios, an inverse proportion became apparent, irrespective of the growth conditions employed. On the other hand, specific nitrogenase activity increased linearly when the rate of malate consumption increased. The results suggest that under steady state conditions the T/D ratio reflects the amount of ATP required to keep the amount of fixed N2 at a given level, while the rate at which nitrogenase functions depends on the rate at which the carbon and electron source, malate, is utilized by the organisms.  相似文献   

15.
H+-FOF1-ATP synthase couples proton flow through its membrane portion, FO, to the synthesis of ATP in its headpiece, F1. Upon reversal of the reaction the enzyme functions as a proton pumping ATPase. Even in the simplest bacterial enzyme the ATPase activity is regulated by several mechanisms, involving inhibition by MgADP, conformational transitions of the ε subunit, and activation by protonmotive force. Here we report that the Met23Lys mutation in the γ subunit of the Rhodobacter capsulatus ATP synthase significantly impaired the activation of ATP hydrolysis by protonmotive force. The impairment in the mutant was due to faster enzyme deactivation that was particularly evident at low ATP/ADP ratio. We suggest that the electrostatic interaction of the introduced γLys23 with the DELSEED region of subunit β stabilized the ADP-inhibited state of the enzyme by hindering the rotation of subunit γ rotation which is necessary for the activation.  相似文献   

16.
The role of a component of the bacterial photosystem, the PufX protein, was examined by heterologous expression of the pufX gene from Rhodobacter capsulatus in a strain of R. sphaeroides that lacks the native pufX gene. The strain of R. sphaeroides containing the R. capsulatus PufX protein was capable of efficient transduction of light energy despite a low degree of sequence conservation between the PufX proteins from the two species. The organization of the hybrid reaction center/LH1 photosystem in strains of R. sphaeroides containing the R. capsulatus LH1 antenna complex was affected differently by the R. sphaeroides and R. capsulatus PufX proteins. We discuss the implications of our findings for the role of the PufX protein in organizing the bacterial photosystem for efficient transduction of light energy.  相似文献   

17.
In order to distinguish between the regulatory effects of oxygen tension and light intensity on cytochrome c oxidase protein and enzymatic activity cells of Rhodobacter capsulatus were shifted from phototrophic (anaerobic, light) growth to aerobic-light, aerobic-dark and to anaerobic-dark conditions, respectively. During shift-experiments the formation of oxidase protein and regulation of oxidase activity was followed by immunological and enzymatic means. The results support the idea, that the formation of oxidase protein is regulated by oxygen tension and light intensity changes, whereas the regulation of oxidase activity seems only to be correlated to the oxygen tension. A DNA sequence involved in the oxygen-dependent regulation of cytochrome oxidase could be identified in the regulation-deficient oxidase mutant H41 of R. capsulatus. Immunological investigations of cytochrome c 2 from mutant H41 demonstrated at the same time the participation of the c 2-polypeptide in the regulation of cytochrome c oxidase.Abbreviations Bchl bacteriochlorophyll - CIE crossed immuno-electrophoresis - DMSO dimethyl sulfoxide  相似文献   

18.
In the mid 1980s, it was observed that photosynthesis could still occur in the absence of the diffusible electron carrier cytochrome c 2 in the purple non-sulfur facultative phototrophic bacterium Rhodobacter capsulatus. This serendipic finding led to the discovery of a novel class of membrane-anchored electron carrier cytochromes and their associated electron transfer pathways. Studies of cytochrome c y of R. capsulatus (and its homologues in other species) have modified the previous dogma of electron transfer between photosynthetic and respiratory membrane protein complexes with a new paradigm, in which these proteins and their electron carriers can form `hard-wired' structural super-complexes. Here, we reminisce on the early days of this discovery, its impacts on our understanding of cellular energy transduction pathways and the physiological roles played by the electron carrier cytochromes c, and discuss the current knowledge and emerging future challenges of this field. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Intracellular localization of glutamine synthetase has been studied by immunochemical techniques with cryosections and London Resin sections of Rhodobacter capsulatus E1F1 and Rhodopseudomonas acidophila. For immunostaining, sections were sequentially incubated with monospecific anti-glutamine synthetase antibodies (R. capsulatus) and gold labelled goat anti-rabbit antibodies. Gold label was present in the cytoplasm but not in the cell walls. The antigen is not associated with the cell membrane or with photosynthetic vesicle whether these are round and randomly distributed (R. capsulatus) or flattened and organized in well defined stacks (R. acidophila). Our results also indicate that glutamine synthetase is absent from the central, nucleoid part of the cell. The enzyme is present in dense cytoplasmic patches, which appear to be RNA-ribosome-containing areas.Abbreviations GS glutamine synthetase - LR London Resin White  相似文献   

20.
Nitrogen assimilation in Rhodobacter capsulatus has been shown to proceed via the coupled action of glutamine synthetase (GS) and glutamate synthase (GOGAT) with no measurable glutamate dehydrogenase (GDH) present. We have recently isolated a novel class of mutants of R. capsulatus strain B100 that lacks a detectable GOGAT activity but is able to grow at wild type rates under nitrogen-fixing conditions. While NH 4 + -supported growth in the mutants was normal under anaerobic/photosynthetic conditions, the growth rate was decreased under aerobic conditions. Ammonium and methylammonium uptake experiments indicated that there was a clear difference in the ammonium assimilatory capabilities in these mutants under aerobic versus anaerobic growth. Regulation of expression of a nifH : : lacZ fusion in these mutants was not impaired. The possible existence of alternative ammonium assimilatory pathways is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号