首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Transforming growth factor-beta-activated kinase 1 (TAK1) is a member of the mitogen-activated protein (MAP) kinase family and is an upstream signaling molecule of nuclear factor-kappaB (NF-kappaB). Given that NF-kappaB regulates keratinocyte differentiation and apoptosis, TAK1 may be essential for epidermal functions. To test this, we generated keratinocyte-specific TAK1-deficient mice from Map3k7(flox/flox) mice and K5-Cre mice. The keratinocyte-specific TAK1-deficient mice were macroscopically indistinguishable from their littermates until postnatal day 2 or 3, when the skin started to roughen and wrinkle. This phenotype progressed, and the mice died by postnatal day 7. Histological analysis showed thickening of the epidermis with foci of keratinocyte apoptosis and intra-epidermal micro-abscesses. Immunohistochemical analysis showed that the suprabasal keratinocytes of the TAK1-deficient epidermis expressed keratin 5 and keratin 14, which are normally confined to the basal layer. The expression of keratin 1, keratin 10, and loricrin, which are markers for the suprabasal and late phase differentiation of the epidermis, was absent from the TAK1-deficient epidermis. Furthermore, the TAK1-deficient epidermis expressed keratin 16 and had an increased number of Ki67-positive cells. These data indicate that TAK1 deficiency in keratinocytes results in abnormal differentiation, increased proliferation, and apoptosis in the epidermis. However, the keratinocytes from the TAK1-deficient epidermis induced keratin 1 in suspension culture, indicating that the TAK1-deficient keratinocytes retain the ability to differentiate. Moreover, the removal of TAK1 from cultured keratinocytes of Map3k7(flox/flox) mice resulted in apoptosis, indicating that TAK1 is essential for preventing apoptosis. In conclusion, TAK1 is essential in the regulation of keratinocyte growth, differentiation, and apoptosis.  相似文献   

3.
The calcium sensing receptor (CaSR) has emerged as an important mediator of a wide range of Ca(2+)-dependent physiological responses (Ca(2+) signaling) in various tissues. To explore the role of CaSR in the epidermis, we utilised the keratin 14 promoter to express CaSR cDNA constitutively in the basal cells of the stratified squamous epithelium of transgenic mice. Analysis of the transgenic mice revealed that a sensitized response to CaSR signaling accelerates the epidermal differentiation program with the precocious formation of the epidermal permeability barrier (EPB) during development and an accelerated hair growth at birth. Our observations indicate that overexpression of CaSR in the undifferentiated basal cells leads to changes in the differentiation program of the transgenic epidermis, including the stimulation of keratins 1 and 6 as well as the overexpression of several markers of terminal differentiation such as filaggrin, loricrin and involucrin. Our data suggest that the observed modifications in the differentiation pathway are a consequence of a CaSR-induced enhancement of Ca(2+) signaling involving cross-talk with other signaling pathways (e.g. EGF and Wnt/Ca(2+)). These studies provide new insights into the role of CaSR in epidermal differentiation including EPB development and hair follicle morphogenesis.  相似文献   

4.
In this study, we investigated the expression and putative role of Sox9 in epidermal keratinocyte. Immunohistochemical staining showed that Sox9 is predominantly expressed in the basal layer of normal human skin epidermis, and highly expressed in several skin diseases including psoriasis, basal cell carcinoma, keratoacanthoma and squamous cell carcinoma. In calcium-induced keratinocyte differentiation model, the expression of Sox9 was decreased in a time dependent manner. When Sox9 was overexpressed using a recombinant adenovirus, cell growth was enhanced, while the expression of differentiation-related genes such as loricrin and involucrin was markedly decreased. Similarly, when rat skin was intradermally injected with the adenovirus expressing Sox9, the epidermis was thickened with increase of PCNA positive cells, while the epidermal differentiation was decreased. Finally, UVB irradiation induced Sox9 expression in cultured human epidermal keratinocytes, and keratinocytes are protected from UVB-induced apoptosis by Sox9 overexpression. Together, these results suggest that Sox9 is an important regulator of epidermal keratinocytes with putative pro-proliferation and/or pro-survival functions, and may be related to several cutaneous diseases that are characterized by abnormal differentiation and hyperproliferation.  相似文献   

5.
6.
7.
Plasminogen activator inhibitor 2 (PAI-2) is an enzyme inhibitor which is involved in cell differentiation, tissue growth and regeneration. In this study, immunocytochemistry, in situ hybridization and confocal laser scanning microscopy were used to investigate the expression and role of PAI-2 in differentiation of keratinocytes in vitro. The result showed that in the mono-layer differentiated keratinocytes induced by high calcium concentration, the expression of PAI-2 and its mRNA increased significantly, accompanied by expression increase of the differentiation marker keratin 10; and in the multi-layer differentiated keratinocytes induced by high calcium, PAI-2 expressed strongly mainly in the keratinocytes of middle as well as upper stratified layers, while K10 expressed in the keratinocytes of all stratified layers. Furthermore, the changes of the parameters related to keratinocyte differentiation were detected after inhibition of PAI-2 functions by its antibody, and the data showed that when treated by PAI-2 antibody, involucrin in the keratinocytes envelope expressed increasingly with an altering distribution from part to the whole envelope area. Our results indicate that during differentiation of epidermal keratinocyte, PAI-2 expresses mainly in the more differentiated keratinocytes and may protect the terminal differentiated keratinocytes from prematuration through inhibiting involucrin expression in cornified envelope.  相似文献   

8.
9.
Cathepsin E (CatE) is predominantly expressed in the rapidly regenerating gastric mucosal cells and epidermal keratinocytes, in addition to the immune system cells. However, the role of CatE in these cells remains unclear. Here we report a crucial role of CatE in keratinocyte terminal differentiation. CatE deficiency in mice induces abnormal keratinocyte differentiation in the epidermis and hair follicle, characterized by the significant expansion of corium and the reduction of subcutaneous tissue and hair follicle. In a model of skin papillomas formed in three different genotypes of syngeneic mice, CatE deficiency results in significantly reduced expression and altered localization of the keratinocyte differentiation induced proteins, keratin 1 and loricrin. Involvement of CatE in the regulation of the expression of epidermal differentiation specific proteins was corroborated by in vitro studies with primary cultures of keratinocytes from the three different genotypes of mice. In wild-type keratinocytes after differentiation inducing stimuli, the CatE expression profile was compatible to those of the terminal differentiation marker genes tested. Overexpression of CatE in mice enhances the keratinocyte terminal differentiation process, whereas CatE deficiency results in delayed differentiation accompanying the reduced expression or the ectopic localization of the differentiation markers. Our findings suggest that in keratinocytes CatE is functionally linked to the expression of terminal differentiation markers, thereby regulating epidermis formation and homeostasis.  相似文献   

10.
The expression of distinct keratin pairs during epidermal differentiation is assumed to fulfill specific and essential cytoskeletal functions. This is supported by a great variety of genodermatoses exhibiting tissue fragility because of keratin mutations. Here, we show that the loss of K10, the most prominent epidermal protein, allowed the formation of a normal epidermis in neonatal mice without signs of fragility or wound-healing response. However, there were profound changes in the composition of suprabasal keratin filaments. K5/14 persisted suprabasally at elevated protein levels, whereas their mRNAs remained restricted to the basal keratinocytes. This indicated a novel mechanism regulating keratin turnover. Moreover, the amount of K1 was reduced. In the absence of its natural partner we observed the formation of a minor amount of novel K1/14/15 filaments as revealed by immunogold electron microscopy. We suggest that these changes maintained epidermal integrity. Furthermore, suprabasal keratinocytes contained larger keratohyalin granules similar to our previous K10T mice. A comparison of profilaggrin processing in K10T and K10(-/-) mice revealed an accumulation of filaggrin precursors in the former but not in the latter, suggesting a requirement of intact keratin filaments for the processing. The mild phenotype of K10(-/-) mice suggests that there is a considerable redundancy in the keratin gene family.  相似文献   

11.
12.
Cripto-1 is an epidermal growth factor-Cripto/FRL1/Cryptic family member that plays a role in early embryogenesis as a coreceptor for Nodal and is overexpressed in human tumors. Here we report that in the two-stage mouse skin carcinogenesis model, Cripto-1 is highly up-regulated in tumor promoter-treated normal skin and in benign papillomas. Treatment of primary mouse keratinocytes with Cripto-1 stimulated proliferation and induced expression of keratin 8 but blocked induction of the normal epidermal differentiation marker keratin 1, changes that are hallmarks of tumor progression in squamous cancer. Chemical or genetic blockade of the transforming growth factor (TGF)-beta1 signaling pathway using the ALK5 kinase inhibitor SB431542 and dominant negative TGF-beta type II receptor, respectively, had similar effects on keratinocyte differentiation. Our results show that Cripto-1 could block TGF-beta1 receptor binding, phosphorylation of Smad2 and Smad3, TGF-beta-responsive luciferase reporter activity, and TGF-beta1-mediated senescence of keratinocytes. We suggest that inhibition of TGF-beta1 by Cripto-1 may play an important role in altering the differentiation state of keratinocytes and promoting outgrowth of squamous tumors in the mouse epidermis.  相似文献   

13.
The desmoglein 1 (Dsg1) and desmocollin 1 (Dsc1) isoforms of the desmosomal cadherins are expressed in the suprabasal layers of epidermis, whereas Dsg3 and Dsc3 are more strongly expressed basally. This differential expression may have a function in epidermal morphogenesis and/or may regulate the proliferation and differentiation of keratinocytes. To test this hypothesis, we changed the expression pattern by overexpressing human Dsg3 under the control of the keratin 1 (K1) promoter in the suprabasal epidermis of transgenic mice. From around 12 weeks of age, the mice exhibited flaking of the skin accompanied by epidermal pustules and thinning of the hair. Histological analysis of affected areas revealed acanthosis, hypergranulosis, hyperkeratosis, localized parakeratosis, and abnormal hair follicles. This phenotype has some features in common with human ichthyosiform diseases. Electron microscopy revealed a mild epidermal spongiosis. Suprabasally, desmosomes showed incorporation of the exogenous protein by immunogold labeling but were normal in structure. The epidermis was hyperproliferative, and differentiation was abnormal, demonstrated by expression of K14 in the suprabasal layer, restriction of K1, and strong induction of K6 and K16. The changes resembled those found in previous studies in which growth factors, cytokines, and integrins had been overexpressed in epidermis. Thus our data strongly support the view that Dsg3 contributes to the regulation of epidermal differentiation. Our results contrast markedly with those recently obtained by expressing Dsg3 in epidermis under the involucrin promoter. Possible reasons for this difference are considered in this paper.  相似文献   

14.
In this study, we chose a differentiation-competent rat epidermal keratinocyte (REK) cell line to examine the role of Cx26 and disease-linked Cx26 mutants in organotypic epidermal differentiation. First, we generated stable REK cell lines expressing three skin disease-linked mutants (G59A, D66H and R75W). Second, we used an RNAi approach to knock down the expression of Cx26 in REKs. Interestingly, the three-dimensional (3D) architecture of the organotypic epidermis altered the intracellular spatial distribution of the mutants in comparison to 2D cultured REKs, highlighting the importance of using organotypic cultures. Unexpectedly, the presence of disease-linked mutants or the overexpression of wild-type Cx26 had little effect on the differentiation of the organotypic epidermis as determined by the architecture of the epidermis, expression of molecular markers indicative of epidermis differentiation (keratin 10, keratin 14, involucrin, loricrin) and stratification/cornification of the epidermis. Likewise, organotypic epidermis continued to differentiate normally upon Cx26 knockdown. While Cx26 has been reported to be upregulated during wound healing, no reduction in wound closure was observed in 2D REK cultures that expressed loss-of-function, dominant Cx26 mutants. In conclusion, we demonstrate that gain or loss of Cx26 function does not disrupt organotypic epidermal differentiation and offer insights into why patients harboring Cx26 mutations do not frequently present with more severe disease that encompasses thin skin. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
The keratins are a highly heterogeneous group of proteins that form intermediate filaments in a wide variety of epithelial cells. These proteins can be divided into at least seven major classes according to their molecular weight and their immunological reactivity with monoclonal antibodies. Tissue-distribution studies have revealed a correlation between the expression of specific keratin classes and different morphological features of in vivo epithelial differentiation (simple vs. stratified; keratinized vs. nonkeratinized). Specifically, a 50,000- and a 58,000-dalton keratin class were found in all stratified epithelia but not in simple epithelia, and a 56,500- and a 65-67,000-dalton keratin class were found only in keratinized epidermis. To determine whether these keratin classes can serve as markers for identifying epithelial cells in culture, we analyzed cytoskeletal proteins from various cultured human cells by the immunoblot technique using AE1 and AE3 monoclonal antikeratin antibodies. The 56,500- and 65-67,000-dalton keratins were not expressed in any cultured epithelial cells examined so far, reflecting the fact that none of them underwent morphological keratinization. The 50,000- and 58,000-dalton keratin classes were detected in all cultured cells that originated from stratified squamous epithelia, but not in cells that originated from simple epithelia. Furthermore, human epidermal cells growing as a monolayer in low calcium medium continued to express the 50,000- and 58,000-dalton keratin classes. These findings suggest that the 50,000- and 58,000-dalton keratin classes may be regarded as "permanent" markers for stratified squamous epithelial cells (keratinocytes), and that the expression of these keratin markers does not depend on the process of cellular stratification. The selective expression of the 50,000- and 58,000-dalton keratin classes, which are synthesized in large quantities on a per cell basis, may explain the high keratin content of cultured keratinocytes.  相似文献   

16.
Connexin levels regulate keratinocyte differentiation in the epidermis   总被引:1,自引:0,他引:1  
To understand the role of connexin43 (Cx43) in epidermal differentiation, we reduced Cx43 levels by RNA-mediated interference knockdown and impaired its functional status by overexpressing loss-of-function Cx43 mutants associated with the human disease oculodentodigital dysplasia (ODDD) in rat epidermal keratinocytes. When Cx43 expression was knocked down by 50-75%, there was a coordinate 55-65% reduction in Cx26 level, gap junction-based dye coupling was reduced by 60%, and transepithelial resistance decreased. Importantly, the overall growth and differentiation of Cx43 knockdown organotypic epidermis was severely impaired as revealed by alterations in the levels of the differentiation markers loricrin and involucrin and by reductions in vital and cornified layer thicknesses. Conversely, although the expression of Cx43 mutants reduced the coupling status of rat epidermal keratinocytes by approximately 80% without altering the levels of endogenous Cx43 or Cx26, their ability to differentiate was not altered. In addition, we used a mouse model of ODDD and found that newborn mice harboring the loss-of-function Cx43(G60S) mutant had slightly reduced Cx43 levels, whereas Cx26 levels, epidermis differentiation, and barrier function remained unaltered. This properly differentiated epidermis was maintained even when Cx43 and Cx26 levels decreased by more than 70% in 3-week-old mutant mice. Our studies indicate that Cx43 and Cx26 collectively co-regulate epidermal differentiation from basal keratinocytes but play a more minimal role in the maintenance of established epidermis. Altogether, these studies provide an explanation as to why the vast majority of ODDD patients, where Cx43 function is highly compromised, do not suffer from skin disease.  相似文献   

17.
In culture, keratinocytes generally express aberrant growth and differentiation programs, which are largely normalized in cell transplants. In order to study the underlying regulatory phenomena and to distinguish between intrinsic properties and external factors, different in vitro and in vivo models have been applied using human keratinocytes from foreskin and trunk skin. When transplanted onto nude mice, keratinocytes reformed a regular epithelium with expression of the differentiation markers, keratins K1 and K10, involucrin and filaggrin. Tissue homeostasis improved in later transplants, as made apparent by coexpression and regular distribution of K1 and K10. Since this was achieved in transplants, whether in contact with mesenchyme or separated by collagen matrix, renormalization was obviously mediated by diffusible factors. In vitro, the host-mesenchymal influence could largely be mimicked by recombining organotypic cultures (keratinocytes on lifted collagen gels) with de-epidermized dermis, but tissue homeostasis was apparently not achieved. Comparing keratinocytes from trunk skin and foreskin, differences observed in situ persisted in isolated cells and reconstituted tissues. The hyperproliferative character of foreskin epidermis, with its less-pronounced stratum granulosum, was maintained in recombinant cultures and transplants along with the expression of keratin K13 (typical for foreskin in situ) irrespective of the type of mesenchyme. Thus, we could demonstrate with these model systems that: (a) the regulation of keratinocyte growth and differentiation is mesenchyme-dependent; (b) it is mediated by diffusible factors; but that (c) differences between epidermis of different body sites are also controlled by intrinsic programs.  相似文献   

18.
Exploiting the sensitivity of neoplastic keratinocytes to physiological effectors, this work analyzes the degree of coordination among differentiation markers in the established human epidermal squamous carcinoma cell line SCC-13 in comparison to normal human epidermal cells. This analysis showed that overall keratin content was modulated substantially and in parallel with particulate transglutaminase activity in response to variation of calcium, retinoic acid, and hydrocortisone concentrations in the medium. The changes in keratin expression were evident primarily in the striking stimulation by hydrocortisone or calcium and the virtual suppression by retinoic acid of species in the 56-58 kd region, which have not previously been reported subject to such physiological modulation. In contrast, involucrin levels were coordinated only to a limited degree with particulate transglutaminase activity and keratin content. The very low involucrin levels observed in low calcium medium were increased 5- to 10-fold in high calcium medium. However, they were also increased 5- to 30-fold in low calcium medium by retinoic acid, a clear example of uncoupling. Activities of the tissue transglutaminase were altered considerably by the various culture conditions but were not obviously coordinated to keratinocyte markers. In normal epidermal cells, the suppressive effect of retinoic acid was much more evident with particulate transglutaminase than involucrin levels. While calcium had a large stimulatory effect on both markers, hydrocortisone had little or no influence. These results emphasize the potential importance of quantitative analysis of differentiation markers for resolving the contribution of physiological elements in coordination of cellular programming.  相似文献   

19.
Using specific monoclonal antibodies (DE-K10 and DE-SCK respectively), the expression of some differentiation-related epidermal keratins was studied in 38 human vulvar squamous carcinomas. In the epidermis, expression of keratin 10 (K10) strictly paralleled the extent of differentiation; it was absent in the basal layer, appeared in the first suprabasal layers and increased in concentration towards the granular layer. However, K10 was rarely detected (1 case out of 12) in early stages of vulvar squamous carcinomas (tumours less than 2 cm, clinical stage I) regardless of the tumour grade. In larger and more advanced tumours (greater than 2 cm, clinical stages II and III), K10 was detected in 21 out of 26 cases. Its expression appeared to be related to maturation of malignant keratinocytes, being preferentially detected in more-differentiated parts. Occasionally however, cells that did not show histological signs of keratinisation were also K10-positive. Modified stratum corneum keratins (recognized specifically by monoclonal antibody DE-SCK) were detected in the most keratinized areas (horn pearls and their close vicinity) of some K10-positive tumours, i.e., in a pattern close to their normal expression in terminally differentiated epidermal cells. These data suggest differences in the regulation of K10 expression during the differentiation processes in the normal keratinising squamous epithelium and in squamous carcinomas. While the normal pattern of vulvar epithelial differentiation is accompanied by an increasing expression of K10, malignant keratinocytes, also when these are histologically moderately or well differentiated, cease expressing this keratin in the early stages of tumour development.  相似文献   

20.
Cells differentiate in response to various extracellular stimuli. This cellular response requires intracellular signaling pathways. The mitogen-activated protein (MAP) kinase cascade is a core signal transduction pathway that determines the fate of many kinds of cell. MAP kinase kinase kinase activates MAP kinase kinase, which in turn activates MAP kinase. Apoptosis signal-regulating kinase (ASK1) was identified as a MAP kinase kinase kinase involved in the stress-induced apoptosis-signaling cascade that activates the SEK1-JNK and MKK3/MKK6-p38 MAP kinase cascades. Expression of the constitutively active form of ASK1 (ASK1-DeltaN) in keratinocytes induced significant morphological changes and differentiation markers, transglutaminase-1, loricrin, and involucrin. A transient increase in p21(Cip1/WAF1) reduced DNA synthesis, and cell cycle analysis verified the differentiation. p38 MAP kinase inhibitors, SB202190 and SB203580, abolished the induction of differentiation markers, transglutaminase-1, loricrin, and involucrin. In turn, the induction of differentiation with ceramide in keratinocytes caused an increase in ASK1 expression and activity. Furthermore, normal human skin expresses ASK1 protein in the upper epidermis, implicating ASK1 in in vivo keratinocyte differentiation. We propose that the ASK1-p38 MAP kinase cascade is a new intracellular regulator of keratinocyte differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号