首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atrial natriuretic factor (ANF) binding sites in frog kidney and adrenal.   总被引:1,自引:0,他引:1  
W Kloas  W Hanke 《Peptides》1992,13(2):297-303
Atrial natriuretic factor (ANF) binding sites were localized and quantified in kidney and adrenal of the frog Rana temporaria by quantitative in vitro autoradiography. [125I]-rat ANF(99-126) binding was present in kidney glomeruli and in the outer layer of interrenal tissue in the adrenal gland. ANF binding exhibited positive cooperativity with a half-maximal binding concentration (EC50) of 102 +/- 16 pM in glomeruli and 93 +/- 19 pM in interrenal tissue (n = 8). The corresponding maximal binding capacities (Bmax) were 1.33 +/- 0.16 and 1.21 +/- 0.36 fmol/mm2. [125I]-Rat ANF(99-126) binding was competitively displaced by unlabeled ANF analogues with an intact disulfide bridge showing a lower affinity than the iodinated ligand. The presence of ANF binding in glomeruli and steroidogenic interrenal cells suggests physiological functions of ANF for the osmomineral regulation in the frog by influencing glomerular filtration rate and adrenal steroid secretion.  相似文献   

2.
3.
Angiotensin II receptors in the kidney   总被引:3,自引:0,他引:3  
Angiotensin II (AngII) receptors have been localized in rat kidney by using the high-affinity agonist analog 125I-labeled [Sar1]AngII as a probe for in vitro autoradiography. Receptors were associated with four morphologically distinct patterns of distribution. First, a high density of receptors occurs in glomeruli. These are diffusely distributed, consistent with a mesangial localization. AngII receptor density shows a cortical gradient, which is highest in superficial and midcortical glomeruli and lowest in juxtamedullary glomeruli. Receptors associated with both superficial and deep glomeruli show down-regulation during low-sodium intake. Second, low levels of tubular AngII binding were seen in the outer cortex. Third, a very high density of AngII receptors occurs in longitudinal bands in the inner zone of the outer medulla in association with vasa recta bundles. Receptors in this site also show down-regulation during low dietary sodium intake. Fourth, a moderate density of receptors occurs diffusely throughout the inner zone of the outer medulla in the interbundle areas. These results suggest that AngII exerts a number of different intrarenal regulatory actions. In addition to the known vascular, glomerular, and proximal tubular effects of AngII, these findings focus attention on possible actions of AngII in the renal medulla where it could regulate medullary blood flow and thereby modify the function of the countercurrent concentrating system.  相似文献   

4.
High affinity binding sites for angiotensin II in bovine and rat brain membranes have been identified and characterized using monoiodinated Ile5-angiotensin II of high specific radioactivity. Degradation of labeled and unlabeled peptide by washed brain particulate fractions was prevented by adding glucagon to the final incubation medium and including a proteolytic enzyme inhibitor (phenylmethylsulfonyl fluoride) in preincubation and incubation procedures. 125I-Angiotensin II binding can be studied using either centrifugation or filtration techniques to separate tissue-bound radioactivity. 125I-Angiotensin II binding to calf brain membranes is saturable and reversible, with a dissociation binding constant of 0.2 nM at 37 degrees. A similar binding constant is found in rat brain membranes. Analogues and fragments of angiotensin II compete for these brain binding sites with potencies which correlate with both their in vivo potencies and their binding inhibition protencies at adrenal cortex angiotensin II receptors. Angiotensin I is 1 to 2 orders of magnitude weaker than angiotensin II; the 3-8 hexapeptide and 4-8 pentapeptide are much weaker still. (desAsp1) angiotensin II (angiotensin III) is slightly more potent than angiotensin II, as are several antagonists of angiotensin II with aliphatic amino acids substituted at position 8. In calf brain 125I-angiotensin II binding is restricted almost exclusively to the cerebellum (cortex and deep nuclei). In rat brain, angiotensin II binding is highest in the thalamus-hypothalamus, midbrain, and brainstem, areas which are believed to be involved in mediating angiotensin II-induced central effects. These findings illustrate the presence of high affinity specific binding sites for angiotensin II in rat and bovine brain and suggest a physiological role for angiotensin peptides in the central nervous system.  相似文献   

5.
Adrenal cell suspensions obtained by collagenase digestion of rat adrenal capsules was demonstrated to bind tritiated angiotensin II. The binding was rapid and reversible and was temperature dependent. Saturation of binding sites of a low order of capacity could be demonstrated by the addition of unlabeled angiotensin II. Specificity for this binding was demonstrated using several peptide analogues. Specificity was also observed with respect to cell type. These studies suggest the presence of a biologically significant receptor for angiotensin in cells of the zona glomerulosa of rat adrenal glands.  相似文献   

6.
The factor inhibiting aldosterone secretion produced by the adrenal medulla may be atrial natriuretic factor (ANF), since the latter abolishes aldosterone release in response to a number of secretagogues, including angiotensin II and K+. In this study we have shown that cells in the adrenal medulla contain ANF mRNA and therefore have the potential to synthesize this peptide. The presence of binding sites for ANF predominantly in the adrenal zona glomerulosa suggests that, if ANF is synthesized in the medulla and transferred to the cortex, it may affect mineralocorticoid status.  相似文献   

7.
The recently discovered natural heptadecapeptide nociceptin (orphanin FQ) shares some homology with the opioid peptides but it binds to a distinct receptor type, termed nociceptin receptor. This study demonstrates the presence of specific nociceptin recognition sites in brain membrane fractions of an amphibian, Rana esculenta. Para-iodo-Phe(1)-nociceptin-amide was radiolabelled by catalytic dehalotritiation, resulting in p[(3)H]Phe(1)-nociceptin-amide of 25 Ci/mmol specific radioactivity. Specific binding of [(3)H]nociceptin-amide to frog brain membranes was found to be saturable and of high affinity with equilibrium K(d) values in the low nanomolar range. A single set of binding sites with about 180 fmol/mg protein maximal binding capacity was obtained in saturation and competition experiments. [(3)H]Nociceptin-amide binding could easily be inhibited by synthetic nociceptin compounds but not by opioid ligands. Both sodium ions and 5'-guanylylimidodiphosphate decreased the binding of the radioligand by transferring the receptor to a lower affinity state. Nociceptin dose-dependently stimulated the binding of the nonhydrolysable, radiolabeled GTP-analogue guanosine-5'-O-(3-thio)triphosphate ([(35)S]GTPgammaS) to G-proteins in frog brain membranes. Addition of 1 microM naloxone caused no significant change in the curves, indicating that nociceptin-mediated activation of G-proteins occurred through nonopioid mechanism.  相似文献   

8.
The plasma-membrane receptors, coupling mechanisms, and effector enzymes that mediate target-cell activation by angiotensin II (AII) have been characterized in rat and bovine adrenal glomerulosa cells. The AII holoreceptor is a glycoprotein of Mr approximately 125,000 under non-denaturing conditions. Photoaffinity labeling of AII receptors with azido-AII derivatives has shown size heterogeneity among the AII binding sites between species and target tissues, with Mr values of 55,000 to 79,000. Such variations in molecular size probably reflect differences in carbohydrate content of the individual receptor sites. The adrenal AII receptor, like that in other tissues, is coupled to the inhibitory guanine nucleotide inhibitory protein (Ni). However, studies with pertussis toxin have shown that stimulation of aldosterone production by AII is not mediated by Ni but by a pertussis-insensitive nucleotide regulatory protein of unidentified nature. Although Ni is not involved in the stimulatory action of AII on steroidogenesis, it does mediate the inhibitory effects of high concentrations of AII upon aldosterone production. The actions of AII on adrenal cortical function are thus regulated by at least two guanine nucleotide regulatory proteins that are selectively activated by increasing AII concentrations. The principal effector enzyme in AII action is phospholipase C, which is rapidly stimulated in rat and bovine glomerulosa after AII receptor activation. AII-induced breakdown of phosphatidylinositol bisphosphate (PIP2) and phosphatidylinositol phosphate (PIP) leads to formation of inositol 1,4,5-trisphosphate (IP3) and inositol 1,4-bisphosphate (IP2). These are metabolized predominantly to inositol-4-monophosphate, which serves as a marker of polyphosphoinositide breakdown, whereas inositol-1-phosphate is largely derived from phosphatidylinositol hydrolysis. The AII-stimulated glomerulosa cell also produces inositol 1,3,4-trisphosphate, a biologically inactive IP3 isomer formed from Ins-1,4,5-trisphosphate via inositol tetrakisphosphate (IP4) during ligand activation in several calcium-dependent target cells. The Ins-1,4,5-P3 formed during AII action binds with high affinity to specific intracellular receptors that have been characterized in the bovine adrenal gland and other AII target tissues, and may represent the sites through which IP3 causes calcium mobilization during the initiation of cellular responses.  相似文献   

9.
[125I]ET-1 binding to vascular smooth muscle cells showed an apparent single class of high affinity recognition sites with a Kd of 2.12 +/- 0.46 nM and a Bmax of 81.2 +/- 5.2 fmol/10(6) cells. The specific binding was equally and totally displaced by ET-1 and ET-2 whereas ET-3 presented a different pattern. We investigated heterologous regulation of ET-1 binding sites by preincubating the cells with angiotensin II (AII), Arg-vasopressin, bradykinin, enkephalins, serotonin, norepinephrine and carbachol, for 18 h at 37 degrees C. Only AII pretreatment resulted in an important and dose-dependent decrease of ET-1 binding capacity. Sar1-Ile8-AII inhibited the regulatory effect of AII. Furthermore, preexposure of the cells with phorbol-12,13 dibutyrate but not with phorbol-12,13 didecanoate also resulted in a concentration-dependent diminution of ET-1 binding sites. These findings suggest that AII may selectively down-regulate ET-1 binding sites in vascular smooth muscle cells by a mechanism involving protein kinase C.  相似文献   

10.
Specific beta-adrenergic receptors present in membrane preparations of frog erythrocytes were identified by binding of (-)-[3H]dihydroalprenolol, a potent competitive beta-adrenergic antagonist. The (-)-[3H]dihydroalprenolol binding sites could be solubilized by treatment of a purified erythrocyte membrane fraction with the plant glycoside digitonin but not by treatment with a wide variety of other detergents. The binding sites appeared to be soluble by several independent experimental criteria including (a) failure to sediment of 105,000 X g for 2 hours; (b) passage through 0.22-mu Millipore filters; (c) chromatography on Sepharose 6B gels; and (d) electron microscopy. The soluble receptor sites retained all of the essential characteristics of the membrane-bound sites, namely rapid and reversible binding of beta-adrenergic agonists and antagonists; strict stereospecificity toward both beta-adrenergic agonists and antagonists; appropriate structure-activity relationships; saturability of the sites at low concentrations of ligand; no affinity for alpha-adrenergic drugs, nonphysiologically active catechol compounds, and catecholamine metabolites. Based on gel chromatography in the presence of detergent, the molecular weight of the soluble receptor is estimated to be no greater than 130,000 to 150,000. Equilibrium binding studies indicated a KD for the soluble receptor of 2 nM. Hill coefficients (nH) of 0.77 and curved Scatchard plots suggested the presence of negatively cooperative interactions among the solubilized receptors in agreement with previous findings with the membrane-bound sites. Kinetic studies indicated an association rate constant K1 = 3.8 X 10(6) M-1 min-1 and a reverse rate constant k2 = 2.3 X 10(-3) min-1 at 4 degrees. The kinetically derived KD (k2/k1) of 0.6 nM is in reasonable agreement with that determined by equilibrium studies. The soluble receptors were labile at temperature greater than 4 degrees but could be stabilized with high concentrations of EDTA. Guanidine hydrochloride and urea produced concentration-dependent losses of binding activity which were partially reversible upon dialysis. Trypsin and phospholipase A both degraded the soluble receptors but a variety of other proteases and phospholipases as well as DNase and RNase were without effect. Experiments with group-specific reagents indicated that free lysine, tryptophan, serine, and sulfhydryl groups may be important for receptor binding. These studies suggest that the receptor is probably a protein which requires lipids for functional integrity. Data obtained with the solubilized binding sites are consistent with the contention that these sites represent the physiologically relevant beta-adrenergic receptors which have been extracted from the membranes with full retention of their properties.  相似文献   

11.
12.
Angiotensin II (Ang II) elicits a variety of physiological effects through specific Ang II receptors in numerous tissues. In addition, Ang II is a modulator of cellular growth and exerts a positive or negative effect on cell growth depending on which receptor subtype is activated. Expression of the intrarenal AT2 receptors occurs at its highest levels in the fetal kidney, with a rapid decline after birth. In the present paper, we performed a study on the signaling mechanism of Ang II receptors in rat fetal (E20) kidney, a rich source of AT2 receptors, where both Ang II receptor subtypes are present. Ang II induces Tyr-dephosphorylation of proteins in rat fetal kidney membranes. The response is dose-dependent, with a reduction of 20% with respect to the control (100%), signal that is completely reversed by Ang II AT2 competitor PD123319. Orthovanadate, the inhibitor of phospho-Tyr-phosphatases (PTPase), reverts Ang II effect, suggesting the involvement of a protein tyrosine phosphatase. The peptide analog of Ang II, CGP42112, exhibits an agonist effect, which is dose-dependent. Thus, in rat fetal (E20) kidney, the Ang-induced protein Tyr-dephosphorylation of several proteins is mediated by AT2 receptors, mechanism that involves an orthovanadate sensitive PTPase.  相似文献   

13.
Heterogenous inositol tetrakisphosphate binding sites in the adrenal cortex   总被引:5,自引:0,他引:5  
Bovine adrenal cortical microsomes possess high (Kd = 3.68 +/- 1.02 X 10(-9) M) and lower (Kd = 9.20 +/- 1.71 X 10(-8) M) affinity binding sites for inositol 1,3,4,5-tetrakisphosphate. The binding to these sites is rapid, saturable (reaches equilibrium by 15 min at 0 degrees C), and reversible. Competition studies with other inositol phosphate analogs indicate that the high affinity binding sites are clearly distinct from the inositol 1,4,5-trisphosphate receptors which are, however, responsible for a fraction of the lower affinity binding. The characteristics of the inositol 1,3,4,5-tetrakisphosphate binding sites described are compatible with their possible receptor function.  相似文献   

14.
15.
[3H]Neurotensin ([3H]NT) appears to bind specifically to a single class of sites in slide-mounted rat kidney sections (KD = 8.3 nM; Bmax = 31.6 fmol/mg tissue). Bound [3H]NT can be displaced by nonradioactive NT and a series of its fragments and analogues with relative potencies that correlate well (r = 0.91; p less than 0.005) to their potencies in the rat stomach strip bioassay. These results suggest that NT receptors are similar in both systems. However, they are probably slightly different from those present in the guinea pig atria (r = 0.78; p less than 0.1). We visualized these sites by using the tritium-sensitive LKB film technique analysed by computerized densitometry. [3H]NT binding sites are highly concentrated in the renal cortex while low levels are observed in the renal medulla. The possible physiological and/or pathophysiological significances of the presence of [3H]NT binding sites in the kidney are discussed.  相似文献   

16.
Specific binding sites for somatostatin have been identified in cytosolic fraction of rabbit kidney (cortex and outer medulla) using 125I-Tyr11-somatostatin. The binding was saturable and reversible, as well as time and temperature dependent. Optimal pH for binding was observed at about 7.4. Scatchard plots were compatible with the existence of two classes of binding sites: a first class with a high affinity (Kd = 40 nM) and a low binding capacity (2.0 pmol somatostatin/mg protein) and a second class with a low affinity (Kd = 222 nM) and a high binding capacity (114.3 pmol somatostatin/mg protein). Vasoactive intestinal peptide, neurotensin, substance P, Leu-enkephalin and vasopressin had practically no effect on somatostatin binding. The properties of these binding sites strongly support the concept that somatostatin could behave as a regulatory peptide on the rabbit kidney.  相似文献   

17.
In the present study we have investigated the distribution of IGF-I mRNA and IGF-I binding sites in the rat kidney. The distribution of IGF-I mRNA was investigated using a simple and sensitive non-radioactive in situ hybridisation technique based on probe labelling with digoxigenin labelled-UTP followed by detection with conventional immunocytochemical techniques. IGF-I mRNA was found predominantly in medullary collecting ducts and sparsely in cortical collecting duct cells. In addition IGF-I mRNA was expressed in scattered proximal tubular cells in the cortex and in cells confined to the glomerular tuft. IGF-I binding sites were studied using radiolabelled IGF-I and conventional autoradiographical techniques on tissue sections. It was found that IGF-I binding sites were widely distributed throughout the entire kidney and that the specific binding was highest in the inner medulla. These findings add further complexity to the understanding of IGF-I production and action on renal structures.  相似文献   

18.
The high-affinity binding site for [3H]Ro 5–4864 has been solubilized from rat kidney using 1% Triton X-100. After lowering the concentration of detergent and using a poly(ethylene glycol) γ-globulin assay, it has been possible to demonstrate solubilization of about 90% of the binding sites. A single soluble class of binding sites with a Kd of 1.8 nM is found. The order of potency of benzodiazepines is identical for the solubilized receptor and the membrane-bound form. Gel filtration revealed a major peak of binding activity with apparent molecular weight of 215000 and a Stokes' radius of 5.03 nm.  相似文献   

19.
The nature of the intermediate-affinity (n2) Mn(II) binding sites in glutamine synthetase [EC 6.3.1.2] has been studied as a function of adenylylation in a variety of enzyme-metal complexes by EPR. In the absence of nucleotide the n2 Mn(II) environment is nearly isotropic, the Mn(II) bonds are highly ionic, and the interaction distance R greater than or equal to 12-14 A. Nucleotide binding at the n2 Mn(II) site renders the n2 Mn(II) signal unobservable and causes a reduction in signal amplitude (approximately 30%) and line broadening (approximately 6 G) at the high-affinity (n1) Mn(II) site. This behavior indicates that nucleotide binding induces a conformational change in the enzyme which brings the previously distant n1 and n2 sites into closer proximity (R less than or equal to 8-11 A), possibly for the purpose of activating the nucleotide for direct phosphoryl transfer to L-glutamate. In line with this suggestion, the broad, unresolved resonances in complexes containing both L-methionine SR-sulfoximine (MSOX) and nucleotide may result from the phosphorylation of MSOX. The n2 Mn(II) site is not affected by adenylylation in all the enzyme-metal complexes studied, which suggests that the regulatory effects of adenylylation may only act at the n1 Mn(II) sites.  相似文献   

20.
1. Prolactin (PRL) has been previously associated with adrenal secretion of either corticosterone, progesterone, or aldosterone. 2. PRL binding sites have been previously demonstrated in rat adrenal cellular membrane preparations. 3. No studies have reported specific zonal sites of PRL binding. 4. The current study demonstrates presence of both endogenously bound PRL and free receptor for PRL in zona fasciculata of mouse adrenal cortex. 5. This finding is consistent with a role for PRL in regulating adrenal secretion of either corticosterone or progesterone in the mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号