首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E-1020 is a cardiotonic agent that acts as a cyclic-AMP phosphodiesterase inhibitor but also may have actions which alter myofilament response to Ca2+. To identify direct actions of E-1020 on cardiac contractile proteins, effects of E-1020 on myofibrillar Ca2+ dependent MgATPase and force generation in chemically skinned fiber bundles were measured. In bovine cardiac myofibrils, E-1020 (100 M) significantly increased myofilament Ca2+ sensitivity and Ca2+-dependent ATPase activity at submaximal pCa values. At pCa 6.75, E-1020 significantly increased ATPase activity in bovine (10–100 pM) and canine (1–100 pM) cardiac myofibrils but had no effect on rat cardiac myofibrils. Moreover, in one population of canine ventricular fiber bundles, E-1020 (0.0–10 M) significantly increased isometric tension at pCa 6.5 and 6.0, whereas in another population of bundles E-1020 had no effect on tension. In no case was resting (pCa 8.0) or maximal tension (pCa 4.5) increased by E-1020. Measurements of Ca2+ binding to canine ventricular skinned fiber preparations demonstrated that E-1020 does not alter the affinity of myofilament troponin C for Ca2+. We conclude that part of the mechanism by which E-1020 acts as an inotropic agent may involve alterations in the responsiveness of contractile proteins to Ca2+. The lack of effect of E-1020 on some preparations may be dependent on isoform populations of myofilament proteins.  相似文献   

2.
In order to examine the regulatory role of thyroid hormone on sarcolemmal Ca2+-channels, Na+–Ca2+ exchange and Ca2+-pump as well as heart function, the effects of hypothyroidism and hyperthyroidism on rat heart performance and sarcolemmal Ca2+-handling were studied. Hyperthyroid rats showed higher values for heart rate (HR), maximal rates of ventricular pressure development+(dP/dt)max and pressure fall–(dP/dt)max, but shorter time to peak ventricular pressure (TPVP) and contraction time (CT) when compared with euthyroid rats. The left ventricular systolic pressure (LVSP) and left ventricular end-diastolic pressure (LVEDP), as well as aortic systolic and diastolic pressures (ASP and ADP, respectively) were not significantly altered. Hypothyroid rats exhibited decreased values of LVSP, HR, ASP, ADP, +(dP/dt)max and –(dP/dt)max but higher CT when compared with euthyroid rats; the values of LVEDP and TPVP were not changed. Studies with isolated-perfused hearts showed that while hypothyroidism did not modulate the inotropic response to extracellular Ca2+ and Ca2+ channel blocker verapamil, hyperthyroidism increased sensitivity to Ca2+ and decreased sensitivity to verapamil in comparison to euthyroid hearts. Studies of [3H]-nitrendipine binding with purified cardiac sarcolemmal membrane revealed decreased number of high affinity binding sites (Bmax) without any change in the dissociation constant for receptor-ligand complex (Kd) in the hyperthyroid group when compared with euthyroid sarcolemma; hypothyroidism had no effect on these parameters. The activities of sarcolemmal Ca2+-stimulated ATPase, ATP-dependent Ca2+ uptake and ouabain-sensitive Na+–K+ ATPase were decreased whereas the Mg2+-ATPase activity was increased in hypothyroid hearts. On the other hand, sarcolemmal membranes from hyperthyroid samples exhibited increased ouabain-sensitive Na+–K+ ATPase activity, whereas Ca2+-stimulated ATPase, ATP-dependent Ca2+ uptake, and Mg2+-ATPase activities were unchanged. The Vmax and Ka for Ca2+ of cardiac sarcolemmal Na+–Ca2+ exchange were not altered in both hyperthyroid and hypothyroid states. These results indicate that the status of sarcolemmal Ca2+-transport processes is regulated by thyroid hormones and the modification of Ca2+-fluxes across the sarcolemmal membrane may play a crucial role in the development of thyroid state-dependent contractile changes in the heart.  相似文献   

3.
In order to examine the status of Ca2+ channels in heart sarcolemma during the development of diabetes, rats were injected intravenously with 65 mg/kg streptozotocin and hearts were removed 1, 3 and 8 weeks later. Crude membranes from the ventricular muscle were prepared and the specific binding of 3H-nitrendipine was studied by employing different concentrations of this Ca 2+-antagonist. A significant decrease in both dissociation constant and maximal number of 3H-nitrendipine binding was observed in 3 and 8 weeks diabetic preparations. No such alterations were evident in diabetic brain membranes. Treatment of diabetic animals with insulin prevented the occurrence of these changes in the myocardium. The altered 3H-nitrendipine binding characteristics in diabetic heart membranes may not be due to the high levels of circulating catecholamines in this experimental model because no such changes were seen upon injecting a high dose (40 mg/kg) of isoproterenol in rats for 24 hr. The reduced number of 3H-nitrendipine binding sites may decrease Ca2+-influx through voltage sensitive Ca2+ channels and partly explain the depressed cardiac contractile force development in chronic diabetes whereas the increased affinity of Ca2+ channels may partly explain the increased sensitivity of diabetic heart to Ca 2+.  相似文献   

4.
The Ca2+ transport ATPase (SERCA) of sarcoplasmic reticulum (SR) plays an important role in muscle cytosolic signaling, as it stores Ca2+ in intracellular membrane bound compartments, thereby lowering cytosolic Ca2+ to induce relaxation. The stored Ca2+ is in turn released upon membrane excitation to trigger muscle contraction. SERCA is activated by high affinity binding of cytosolic Ca2+, whereupon ATP is utilized by formation of a phosphoenzyme intermediate, which undergoes protein conformational transitions yielding reduced affinity and vectorial translocation of bound Ca2+. We review here biochemical and biophysical evidence demonstrating that release of bound Ca2+ into the lumen of SR requires Ca2+/H+ exchange at the low affinity Ca2+ sites. Rise of lumenal Ca2+ above its dissociation constant from low affinity sites, or reduction of the H+ concentration by high pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+ release into the lumen of SR is bypassed, and hydrolytic cleavage of phosphoenzyme may yield uncoupled ATPase cycles. We clarify how such Ca2+pump slippage does not occur within the time length of muscle twitches, but under special conditions and in special cells may contribute to thermogenesis.  相似文献   

5.
In order to identify defects in Na+-Ca2+ exchange and Ca2+-pump systems in cardiomyopathic hearts, the activities of sarcolemmal Na+-dependent Ca2+ uptake, Na+-induced Ca2+ release, ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase were examined by employing cardiomyopathic hamsters (UM-X7.1) and catecholamine-induced cardiomyopathy produced by injecting isoproterenol into rats. The rates of Na+-dependent Ca2+ uptake, ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase activities of sarcolemmal vesicles from genetically-linked cardiomyopathic as well as catecholamine-induced cardiomyopathic hearts were decreased without any changes in Na+-induced Ca2+-release. Similar results were obtained in Ca2+-paradox when isolated rat hearts were perfused for 5 min with a medium containing 1.25 mM Ca2+ following a 5 min perfusion with Ca2+-free medium. Although a 2 min reperfusion of the Ca2+-free perfused hearts depressed sarcolemmal Ca2+-pump activities without any changes in Na+-induced Ca2+-release, Na+-dependent Ca2+ uptake was increased. These results indicate that alterations in the sarcolemmal Ca2+-efflux mechanisms may play an important role in cardiomyopathies associated with the development of intracellular Ca2+ overload.  相似文献   

6.
We previously reported thatlysoplasmenylcholine (LPlasC) altered the action potential (AP) andinduced afterdepolarizations in rabbit ventricular myocytes. In thisstudy, we investigated how LPlasC alters excitation-contractioncoupling using edge-motion detection, fura-PE3 fluorescent indicator,and perforated and whole cell patch-clamp techniques. LPlasC increasedcontraction, myofilament Ca2+ sensitivity, systolic anddiastolic free Ca2+ levels, and the magnitude ofCa2+ transients concomitant with increases in the maximumrates of shortening and relaxation of contraction and the rising anddeclining phases of Ca2+ transients. In some cells, LPlasCinduced arrhythmias in a pattern consistent with early and delayedaftercontractions. LPlasC also augmented the caffeine-inducedCa2+ transient with a reduction in the decay rate.Furthermore, LPlasC enhanced L-type Ca2+ channel current(ICa,L) and outward currents. LPlasC-induced alterations in contraction and ICa,L wereparalleled by its effect on the AP. Thus these results suggest thatLPlasC elicits distinct, potent positive inotropic, lusitropic, andarrhythmogenic effects, resulting from increases in Ca2+influx, Ca2+ sensitivity, sarcoplasmic reticular (SR)Ca2+ release and uptake, SR Ca2+ content, andprobably reduction in sarcolemmal Na+/Ca2+ exchange.

  相似文献   

7.
The length-dependent activation of skeletal myofibrils was examined at the single-sarcomere level with phase-contrast microscopy at sarcomere length (SL) >2.2 μm. At the maximal activation by Ca2+ (pCa 4.5) the active force linearly decreased with increasing SL, while at partial activation by Ca2+ (pCa 6.1-6.5) the larger active force was generated at longer SL. Throughout these experiments, the distribution of SL was kept homogeneous upon activation. In addition, we found that the spontaneous oscillation of force and SL frequently occurs in the SL range 2.2-2.6 μm at pCa 6.1-6.2. Either changes in [Ca2+] or osmotic compression of the myofilament lattice induced by the addition of dextran T-500, affected both the length dependence of activation and the occurrence of auto-oscillation. These results suggest that the force-generating properties of sarcomeres in striated muscle are determined not only by [Ca2+], but also by the lattice spacing as a function of SL.  相似文献   

8.
Alloxan is widely used to induce diabetes mellitus in experimental animals. Recent studies have provided evidence that alloxan has direct actions on cardiac muscle contraction. The aim of this study was to further investigate the mechanisms underlying the effects of alloxan on ventricular myocyte shortening and intracellular Ca2+ transport. Amplitude of myocyte shortening was reduced in a dose-dependent manner as the concentration of alloxan was increased in the range 10?7–10?4 M. Amplitude of shortening was reduced (56.8 ± 6.6%, n = 27) by 10?6 M alloxan and was partially reversed during a 10 min washout. Amplitude of the Ca2+ transient was also reduced (79.7 ± 2.9%, n = 29) by 10?6 M alloxan. Caffeine-evoked sarcoplasmic reticulum Ca2+ release, fractional release of Ca2+, assessed by comparing the amplitude of electrically evoked with that of caffeine-evoked Ca2+ transients, and fura-2-cell length trajectory during the late stages of relaxation of myocyte twitch contraction were not significantly altered by alloxan. The amplitude of L-type Ca2+ current was not altered by alloxan. Alterations in sarcoplasmic reticulum Ca2+ transport, myofilament sensitivity to Ca2+, and L-type Ca2+ current do not appear to underlie the negative inotropic effects of alloxan.  相似文献   

9.
Single channel properties of cardiac and fast-twitch skeletal muscle sarcoplasmic reticulum (SR) release channels were compared in a planar bilayer by fusing SR membranes in a Cs+-conducting medium. We found that the pharmacology, Cs+ conductance and selectivity to monovalent and divalent cations of the two channels were similar. The cardiac SR channel exhibited multiple kinetic states. The open and closed lifetimes were not altered from a range of 10–7 to 10–3 M Ca2+, but the proportion of closed and open states shifted to shorter closings and openings, respectively.However, while the single channel activity of the skeletal SR channel was activated and inactivated by micromolar and millimolar Ca2+, respectively, the cardiac SR channel remained activated in the presence of high [Ca2+]. In correlation to these studies, [3H]ryanodine binding by the receptors of the two channel receptors was inhibited by high [Ca2+] in skeletal but not in cardiac membranes in the presence of adenine nucleotides. There is, however, a minor inhibition of [3H]ryanodine binding of cardiac SR at millimolar Ca2+ in the absence of adenine nucleotides.When Ca2+-induced Ca2+ release was examined from preloaded native SR vesicles, the release rates followed a normal biphasic curve, with Ca2+-induced inactivation at high [Ca2+] for both cardiac and skeletal SR. Our data suggest that the molecular basis of regulation of the SR Ca2+ release channel in cardiac and skeletal muscle is different, and that the cardiac SR channel isoform lacks a Ca2+-inactivated site.This work was supported by research grants from the National Institutes of Health HL13870 and AR38970, and the Texas Affiliate of the American Heart Association, 91A-188. M. Fill was the recipient of an NIH fellowship AR01834.  相似文献   

10.
In both cardiac and slow-twitch skeletal muscle sarcoplasmic reticulum (SR) there are several systems involved in the regulation of Ca2+-ATPase function. These include substrate level regulation, covalent modification via phosphorylation-dephosphorylation of phospholamban by both cAMP-dependent protein kinase (PKA) and Ca2+/calmodulin-dependent protein kinase (CaM kinase) as well as direct CaM kinase phosphorylation of the Ca2+-ATPase. Studies comparing, the effects of PKA and CaM kinase on cardiac Ca2+-ATPase function have yielded differing results; similar studies have not been performed in slow-twitch skeletal muscle. It has been suggested recently, however, that phospholamban is not tightly coupled to the Ca2+-ATPase in SR vesicles from slow-twitch skeletal muscle. Our results indicate that assay conditions strongly influence the extent of CaM kinase-dependent Ca2+-ATPase stimulation seen in both cardiac and slow-twitch skeletal muscle. Addition of calmodulin (0.2 M) directly to the Ca2+ transport assay medium results in minimal ( 112–130% of control) stimulation of Ca2+ uptake activity when the Ca2+ uptake reaction is initiated by the addition of either ATP or Ca2+/EGTA. On the other hand, prephosphorylation of the SR by the endogenous CaM kinase and subsequent transfer of the membranes to the Ca2+ transport assay medium results in stimulation of Ca2+ uptake activity (202% of control). These effects are observable in both cardiac and slow-twitch skeletal muscle SR. PKA stimulates Ca2+ uptake markedly (215% of control) when the Ca2+ uptake reaction is initiated by the addition of prephosphorylated SR membranes or by Ca2+/EGTA but minimally (130% of control) when the Ca2+ uptake reaction is initiated by the addition of ATP. These findings imply that (a) phospholamban is coupled to the Ca2+-ATPase in slow-twitch skeletal muscle SR (as in cardiac SR), and (b) the amount of Ca2+ uptake stimulation seen upon the addition of calmodulin or PKA depends strongly on the assay conditions employed. Our observations help to explain the wide range of effects of calmodulin or PKA addition reported in previous studies. It should be noted that, since CaM kinase is now known to phosphorylate the Ca2+-ATPase in addition to phospholamban, further studies are required to determine the relative contributions of phospholambanversus Ca2+-ATPase phosphorylation in the stimulation of Ca2+-ATPase function by CaM kinase. Also, earlier studies attributing all of the effects of CaM kinase stimulation of Ca2+ uptake and Ca2+-ATPase activity to phospholamban phosphorylation need to be re-examined.  相似文献   

11.
In the heart, excitation-contraction (E-C) coupling is mediated by Ca2+ release from sarcoplasmic reticulum (SR) through the interactions of proteins forming the Ca2+ release unit (CRU). Among them, calsequestrin (CSQ) and histidine-rich Ca2+ binding protein (HRC) are known to bind the charged luminal region of triadin (TRN) and thus directly or indirectly regulate ryanodine receptor 2 (RyR2) activity. However, the mechanisms of CSQ and HRC mediated regulation of RyR2 activity through TRN have remained unclear. We first examined the minimal KEKE motif of TRN involved in the interactions with CSQ2, HRC and RyR2 using TRN deletion mutants and in vitro binding assays. The results showed that CSQ2, HRC and RyR2 share the same KEKE motif region on the distal part of TRN (aa 202–231). Second, in vitro binding assays were conducted to examine the Ca2+ dependence of protein-protein interactions (PPI). The results showed that TRN-HRC interaction had a bell-shaped Ca2+ dependence, which peaked at pCa4, whereas TRN-CSQ2 or TRN-RyR2 interaction did not show such Ca2+ dependence pattern. Third, competitive binding was conducted to examine whether CSQ2, HRC, or RyR2 affects the TRN-HRC or TRN-CSQ2 binding at pCa4. Among them, only CSQ2 or RyR2 competitively inhibited TRN-HRC binding, suggesting that HRC can confer functional refractoriness to CRU, which could be beneficial for reloading of Ca2+ into SR at intermediate Ca2+ concentrations.  相似文献   

12.
We have previously shown that chronic treatment with propranolol had beneficial effects on heart function in rats during increasing-age in a gender-dependent manner. Herein, we hypothesize that propranolol would improve cardiac function in diabetic cardiomyopathy and investigated the benefits of chronic oral administration of propranolol on the parameters of Ca2+ signaling in the heart of streptozotocin-diabetic rats. Male diabetic rats received propranolol (25 mg/kg, daily) for 12 weeks, 1 week after diabetes induction. Treatment of the diabetic rats with propranolol did not produce a hypoglycaemic effect whereas it attenuated the increased cell size. Basal and β-agonist response levels of left ventricular developed pressure were significantly higher in propranolol-treated diabetic rats relative to untreated diabetics while left ventricular end diastolic pressure of the treated diabetics was comparable to the controls. Propranolol treatment normalized also the prolongation of the action potential in papillary muscles from the diabetic rat hearts. This treatment attenuated the parameters of Ca2+ transients, depressed Ca2+ loading of the sarcoplasmic reticulum, and of the basal intracellular Ca2+ level of diabetic cardiomyocytes. Furthermore, Western blot data indicated that the diabetes-induced alterations in the cardiac ryanodine receptor Ca2+ release channel’s hyperphosphorylation decreased the FKBP12.6 protein level. Also, the high phosphorylated levels of PKA and CaMKII were prevented with propranolol treatment. Chronic treatment with propranolol seems to prevent diabetes-related changes in heart function by controlling intracellular Ca2+ signaling and preventing the development of left ventricular remodeling in diabetic cardiomyopathy.  相似文献   

13.
We have investigated the effects of acute acidosis on ventricular myocyte shortening and intracellular Ca2+ in streptozotocin (STZ)-induced diabetic rat. Shortening and intracellular Ca2+ were measured in electrically stimulated myocytes superfused with either normal Tyrode solution pH adjusted to either 7.4 (control solution) or 6.4 (acid solution). Experiments were performed at 35–36°C. At 8–12 weeks after treatment, the rats that received STZ had lower body and heart weights compared to controls, and blood glucose was characteristically increased. Contractile defects in myocytes from diabetic rat were characterized by prolonged time to peak shortening. Superfusion of myocytes from control and diabetic rats with acid solution caused a significant reduction in the amplitude of shortening; however, the magnitude of the response was not altered by STZ treatment. Acid solution also caused significant and quantitatively similar reductions in the amplitude of Ca2+ transients in myocytes from control and diabetic rats. Effects of acute acidosis on amplitude of myocyte contraction and Ca2+ transient were not significantly altered by STZ treatment. Altered myofilament sensitivity to Ca2+ and altered mechanisms of sarcoplasmic reticulum Ca2+ transport might partly underlie the acidosis-evoked reduction in amplitude of shortening in myocytes from control and STZ-induced diabetic rat. (Mol Cell Biochem 261: 227–233, 2004)  相似文献   

14.
Background Asymptomatic diabetic patients have a high incidence of clinically unrecognized left ventricular dysfunction with an abnormal cardiac response to exercise. We, therefore, examined subclinical defects in the contraction–relaxation cycle and intracellular Ca2+ regulation in myocardium of asymptomatic type 2 diabetic patients. Methods Alterations in the dynamics of the intracellular Ca2+ transient and contractility were recorded in right atrial myocardium of type 2 diabetic patients and non-diabetic control tissue loaded with fura-2. In order to gain an insight into mechanisms underlying the altered Ca2+ handling in diabetic myocardium levels of mRNA, protein expression and phosphorylation of key proteins in sarcoplasmic Ca2+ handling were determined. Results In isolated atrial trabeculae of diabetic myocardium the rise of systolic Ca2+ was significantly prolonged, but relaxation of the Ca2+ transient was unaltered compared to control tissue. Accordingly, the levels of expression of mRNA and protein of the Ca2+ release channel (RyR2) of the sarcoplasmic reticulum were reduced by 68 and 22%, respectively. Endogenous phosphorylation of RyR2 by protein kinases C, however, was increased by 31% in diabetic myocardium, as assessed by the back-phosphorylation technique. Levels of expression of SERCA2 and phospholamban were unaltered between both groups. Conclusions Intracellular Ca2+ release is prolonged in non-failing myocardium of type 2 diabetic patients and this may be primarily due to a decreased expression of RyR2. This defective Ca2+ release may represent an early stage of ventricular dysfunction in type 2 diabetes and would favor the abnormal response to exercise frequently observed in asymptomatic diabetic patients.  相似文献   

15.
The conformational states of Ca2+-ATPase in sarcoplasmic reticulum (SR) vesicles with or without a thousand-fold transmembrane Ca2+ gradient have been studied by fluorescence spectroscopy and fluorescence quenching. In consequence of the establishment of the transmembrane Ca2+ gradient, the steady-state fluorescence results revealed a reproducible 8% decrease in the intrinsic fluorescence while time-resolved fluorescence measurements showed that 13 tryptophan residues in SR · Ca2+-ATPase could be divided into three groups. The fluorescence lifetime of one of these groups increased from 5.5 ns to 5.95 ns in the presence of a Ca2+ gradient. Using KI and hypocrellin B (a photosensitive pigment obtained from a parasitic fungus, growing in Yunnan, China), the fluorescence quenching further indicated that the dynamic change of this tryptophan group, located at the protein-lipid interface, is a characteristic of transmembrane Ca2+ gradient-mediated conformational changes in SR · Ca2+-ATPase.Abbreviations SR sarcoplasmic reticulum - HB hypocrellin B - Trp tryptophan - DMSO dimethysulfoxide - Hepes N-2-hydroxyethyl piperazine-N-ethanesulfonic acad - SR(50005) SR vesicles with 1000-fold transmembrane Ca2+ gradient - SR(5050) SR vesicles without Ca2+ gradient - Ksv(app) apparent Stern-Volmer constant - Ksvi Stern-Volmer constant of component i for dynamic quenching  相似文献   

16.
Heart failure is common among the elderly and an alteration in myocardial Ca2+ transport is believed to be involved in its depressed contractile performance. Although ATP-dependent sarcoplasmic reticular (SR) Ca2+ transport has been reported to decrease in old hearts, virtually nothing appears to be known about the Ca2+ pump activity of SR in aging myocardium in the presence of calmodulin, one of its endogenous activators. In this study, the activity of the Ca2+ pump of aging cardiac SR was assessed in the presence of this endogenous stimulator. This assessment was therefore designed to give additional information about the status of this enzyme in old hearts. Male Sprague-Dawley rats were used and were divided into 3 groups: young (4–6 months old); middle-aged (15–17 months old) and old age (24–25 months old). Purified SR membranes were isolated from ventricular tissues. ATP-dependent Ca2+ accumulation by membrane vesicles of middle-aged and old hearts was significantly depressed in comparison to young hearts at all Ca2+ concentrations employed in the absence and presence of calmodulin. The activity of this Ca2+ transporter was similar in middle-aged and old hearts even in the presence of calmodulin. These results suggest that the activity of the Ca2+ pump in SR of aging hearts is depressed even in the presence of calmodulin.C. E. Heyliger is a Scholar of the British Columbia Heart Foundation.  相似文献   

17.
General anaesthetics have previously been shown to have profound effects on myocardial function. Moreover, many patients suffering from diabetes mellitus are anaesthetised during surgery. This study investigated compromised functioning of cardiac myocytes from streptozotocin (STZ)-induced diabetic rats and the additive effects of halothane on these dysfunctions. Ventricular myocytes were isolated from 8 to 12 weeks STZ-treated rats. Contraction and intracellular free calcium concentration ([Ca2+] i ) were measured in electrically field-stimulated (1 Hz) fura-2-AM-loaded cells using a video-edge detection system and a fluorescence photometry system, respectively. L-type Ca2+ current was measured in whole cell, voltage-clamp mode. Halothane significantly (p < 0.01) depressed the amplitude and the time course of the Ca2+ transients in a similar manner in myocytes from control and STZ-treated rats. However, the effect of halothane on the amplitude of shortening and L-type Ca2+ current was more pronounced in myocytes from STZ-treated animals compared to age-matched controls. Myofilament sensitivity to Ca2+ was significantly (p < 0.01) increased in myocytes from STZ-treated rats compared to control. However, in the presence of halothane the myofilament sensitivity to Ca2+ was significantly (p < 0.05) reduced to a greater extent in myocytes from STZ-treated rats compared to controls. In conclusion, these results show that contractility, Ca2+ transport and myofilament sensitivity were all altered in myocytes from STZ-treated rats and these processes were further altered in the presence of halothane suggesting that hearts from STZ-induced diabetic rats are sensitive to halothane. (Mol Cell Biochem 261: 251–261, 2004)  相似文献   

18.

Aims

We have previously demonstrated that propyl gallate has a Ca2 + sensitizing effect on the force generation in membrane-permeabilized (skinned) cardiac muscle fibers. However, in vivo beneficial effects of propyl gallate as a novel Ca2 + sensitizer remain uncertain. In the present study, we aim to explore in vivo effects of propyl gallate.

Main methods

We compared effects of propyl gallate on ex vivo intact cardiac muscle fibers and in vivo hearts in healthy mice with those of pimobendan, a clinically used Ca2 + sensitizer. The therapeutic effect of propyl gallate was investigated using a mouse model of dilated cardiomyopathy (DCM) with reduced myofilament Ca2 + sensitivity due to a deletion mutation ΔK210 in cardiac troponin T.

Key findings

Propyl gallate, as well as pimobendan, showed a positive inotropic effect. Propyl gallate slightly increased the blood pressure without changing the heart rate in healthy mice, whereas pimobendan decreased the blood pressure probably through vasodilation via inhibition of phosphodiesterase and increased the heart rate. Propyl gallate prevented cardiac remodeling and systolic dysfunction and significantly improved the life-expectancy of knock-in mouse model of DCM with reduced myofilament Ca2 + sensitivity due to a mutation in cardiac troponin T. On the other hand, gallate, a similarly strong antioxidant polyphenol lacking Ca2 + sensitizing action, had no beneficial effects on the DCM mice.

Significance

These results suggest that propyl gallate might be useful for the treatment of inherited DCM caused by a reduction in the myofilament Ca2 + sensitivity.  相似文献   

19.
Although Ca2+ is the principal regulator of contraction in striated muscle, in vitro evidence suggests that some actin-myosin interaction is still possible even in its absence. Whether this Ca2+-independent activation (CIA) occurs under physiological conditions remains unclear, as does its potential impact on the function of intact cardiac muscle. The purpose of this study was to investigate CIA using computational analysis. We added a structurally motivated representation of this phenomenon to an existing myofilament model, which allowed predictions of CIA-dependent muscle behavior. We found that a certain amount of CIA was essential for the model to reproduce reported effects of nonfunctional troponin C on myofilament force generation. Consequently, those data enabled estimation of ΔGCIA, the energy barrier for activating a thin filament regulatory unit in the absence of Ca2+. Using this estimate of ΔGCIA as a point of reference (∼7 kJ mol−1), we examined its impact on various aspects of muscle function through additional simulations. CIA decreased the Hill coefficient of steady-state force while increasing myofilament Ca2+ sensitivity. At the same time, CIA had minimal effect on the rate of force redevelopment after slack/restretch. Simulations of twitch tension show that the presence of CIA increases peak tension while profoundly delaying relaxation. We tested the model’s ability to represent perturbations to the Ca2+ regulatory mechanism by analyzing twitch records measured in transgenic mice expressing a cardiac troponin I mutation (R145G). The effects of the mutation on twitch dynamics were fully reproduced by a single parameter change, namely lowering ΔGCIA by 2.3 kJ mol−1 relative to its wild-type value. Our analyses suggest that CIA is present in cardiac muscle under normal conditions and that its modulation by gene mutations or other factors can alter both systolic and diastolic function.  相似文献   

20.
《Biophysical journal》2023,122(2):386-396
The type 2a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) plays a central role in the intracellular Ca2+ homeostasis of cardiac myocytes, pumping Ca2+ from the cytoplasm into the sarcoplasmic reticulum (SR) lumen to maintain relaxation (diastole) and prepare for contraction (systole). Diminished SERCA2a function has been reported in several pathological conditions, including heart failure. Therefore, development of new drugs that improve SERCA2a Ca2+ transport is of great clinical significance. In this study, we characterized the effect of a recently identified N-aryl-N-alkyl-thiophene-2-carboxamide (or compound 1) on SERCA2a Ca2+-ATPase and Ca2+ transport activities in cardiac SR vesicles, and on Ca2+ regulation in a HEK293 cell expression system and in mouse ventricular myocytes. We found that compound 1 enhances SERCA2a Ca2+-ATPase and Ca2+ transport in SR vesicles. Fluorescence lifetime measurements of fluorescence resonance energy transfer between SERCA2a and phospholamban indicated that compound 1 interacts with the SERCA-phospholamban complex. Measurement of endoplasmic reticulum Ca2+ dynamics in HEK293 cells expressing human SERCA2a showed that compound 1 increases endoplasmic reticulum Ca2+ load by enhancing SERCA2a-mediated Ca2+ transport. Analysis of cytosolic Ca2+ dynamics in mouse ventricular myocytes revealed that compound 1 increases the action potential-induced Ca2+ transients and SR Ca2+ load, with negligible effects on L-type Ca2+ channels and Na+/Ca2+ exchanger. However, during adrenergic receptor activation, compound 1 did not further increase Ca2+ transients and SR Ca2+ load, but it decreased the propensity toward Ca2+ waves. Suggestive of concurrent desirable effects of compound 1 on RyR2, [3H]-ryanodine binding to cardiac SR vesicles shows a small decrease in nM Ca2+ and a small increase in μM Ca2+. Accordingly, compound 1 slightly decreased Ca2+ sparks in permeabilized myocytes. Thus, this novel compound shows promising characteristics to improve intracellular Ca2+ dynamics in cardiomyocytes that exhibit reduced SERCA2a Ca2+ uptake, as found in failing hearts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号