首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of chloroplasts to synthesize aromatic amino acids from CO2 was investigated using highly purified, intact spinach ( Spinacia oleracea L. cv. Viking II) chloroplasts and 14CO2. Incorporation of 14C into aromatic amino acids was very low, however, and this was assumed to be due to lack of phosphoenolpyruvate (PEP), one of the substrates for the shikimate/arogenate pathway leading to aromatic amino acids in chloroplasts. Therefore, the glycolytic enzymes phosphoglycerate mutase (EC 2.7.5.3) and enolase (EC 4.2.1.11) were added to the 14CO2 fixation medium in order to convert labelled 3-phosphoglycerate exported from the intact chloroplasts to 2-phosphoglycerate and PEP. In this way a part of the glycolytic pathway was reconstituted outside the chloroplasts to substitute for the cytoplasm lost on isolation. The presence of both enzymes in the medium increased incorporation of 14C into Tyr and Phe more than ten-fold and incorporation into Trp about two-fold, while total 13CO2 fixation rates were not affected. Our results suggest that chloroplasts do not contain phosphoglycerate mutase or enolase, and that, in vivo, PEP is synthesized in the cytoplasm and imported to the chloroplast stroma for the biosynthesis of aromatic amino acids. The biosynthesis of all three aromatic amino acids was under feedback control. Using expected physiological concentrations (below 100 μ M ), each of the aromatic amino acids exerted a strict feedback inhibition of its own biosynthesis only.  相似文献   

2.
Aromatic amino acid decarboxylase is an enzyme of broad specificity which decarboxylates a range of aromatic amino acids including 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, which yield dopamine and serotonin, respectively. The name aromatic amino acid decarboxylase was applied to the enzyme by workers (1–3) who found that, on purification, a single enzyme appeared to be responsible for activities previously ascribed to two separate enzymes. The separate enzymes had been named 5-hydroxy-l-tryptophan carboxylyase (EC 4.1.1.28) and 3,4-dihydroxy-l-phenylalanine carboxylyase (EC 4.1.1.26). More recent papers (4–7) still leave unresolved the question of whether one enzyme or two is responsible for the two activities.  相似文献   

3.
The multibranched shikimic acid pathway was discovered as the biosynthetic route to the aromatic amino acids phenylalanine, tyrosine and tryptophan and a host of other secondary metabolites. An extensive body of work is available on the characterization of various enzymes of this pathway in order to understand the underlying mechanisms of aromatic amino acid biosynthesis and secondary metabolism in higher plants. In the present investigation, selective assays, based on feedback regulation patterns and divalent cation requirements, were used to monitor the isozyme profiles of two of the key regulatory enzymes of this pathway. 3-Deoxy- d -arabino heptulosonate-7-phosphate synthase (DAHP synthase/DS) (EC 4.1.2.15) and chorismate mutase (CM) (EC 5.4.99.4) have been characterized from different vegetative and reproductive organs of Brassica juncea cv. Pusa Bold. An attempt has also been made to investigate the effect of external factors, such as light and wounding on the regulation of these enzymes. The results reveal differential expression of DAHP synthase and CM in various organs of Brassica and an adaptability of plants to various stresses by up or down regulation of these enzymes.  相似文献   

4.
The technique of affinity chromatography has been used to demonstrate that enzymes involved in the biosynthesis of tyrosine and phenylalanine in Escherichia coli undergo reversible interactions. Thus it has been shown that the aromatic amino acid aminotransferase (aromatic-amino-acid: 2-oxoglutarate amino-transferase, EC 2.6.1.57) reacts specifically with chorismate mutaseprephenate dehydrogenase (chorismate pyruvate mutase, EC 5.4.99.5 and prephenate: NAD+ oxidoreductase (decarboxylating), EC 1.3.1.12) in the absence of reactants and with chorimate mutase-prephenatedehydratase (prephenate hydro-lyase (decarboxylating), EC 4.2.1.51) in the presence of phyenylpyruvate. Tyrosine causes dissociation of the aminotransferase: mutasedehydrogenase complex while dissociation of the aminotransferase-mutasedehydratase complex occurs on omission of phenylpyruvate. Only the active form of chorismate mutase-prephenate dehydrogenase participates in complex formation.  相似文献   

5.
Enhanced production and accumulation of free and conjugated polyamines as well as increased activities of their biosynthetic enzymes in plants have been associated with heat stress. Perchloric acid-soluble free, as well as conjugated polyamines, and their metabolic enzymes were studied under 45°C heat stress in callus raised from heat-tolerant and -sensitive rice cultivars. The levels of free and conjugated polyamines, as well as arginine decarboxylase (EC 4.1.1.19) and polyamine oxidase (EC 1.4.34) activities were higher in tolerant than in sensitive callus under non-stressed conditions. Heat stress caused greater accumulation of free and conjugated polyamines in callus of the heat-tolerant cultivar N22 than in that of the heat-sensitive cultivar IR8. In particular, the uncommon polyamines norspermidine and norspermine were detected in cv. N22, which increased appreciably during stress, but they were not detected in callus of cv. IR8. Arginine decarboxylase and polyamine oxidase activities increased to a larger extent in N22 than in IR8 callus during stress, activities that were well correlated with the increased levels of common and uncommon polyamines. Increased levels of transglutaminase activity indicated the high titre of conjugated polyamines.  相似文献   

6.
The activity of the enzymes of alcoholic and lactic-acid fermentation: pyruvate decarboxylase (PDC, EC 4.1.1.1), alcohol dehydrogenase (ADH, EC 1.1.1.1), lactate dehydrogenase (LDH, EC 1.1.1.27) and the enzymes of malic acid metabolism: phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.23), NAD-dependent malate dehydrogenase (NAD-MDH, EC 1.1.1.37), and NADP-dependent malic enzyme (NADP-ME, EC 1.1.1.40) involved in the operation of biochemical pH-stat was investigated in the root tips of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) under hypoxia and anoxia. Exposures lasted for 6, 12, and 18 h. The most pronounced response was detected for the enzymes of alcoholic fermentation. The activation of ADH and PDC in wheat occurred only under hypoxia, whereas in rice it was detected both under hypoxia and anoxia. The activation of LDH in wheat occurred under hypoxia, and in rice, the activity of this enzyme was slightly enhanced. The activity of the enzymes of malic acid metabolism did not change except in wheat root tips under hypoxia when PEPC activity decreased and NADP-ME activity simultaneously rose. The role of biochemical pH-stat in the regulation of cytoplasmic pH in plant cells under oxygen deficit and the mechanisms for regulating the activities of enzymes involved in biochemical pH-stat are discussed as well as the interaction between biochemical pH-stat and other mechanisms maintaining pH of plant cells. The results are analyzed within a context of intracellular pH regulation.  相似文献   

7.
Amino acid deprivation induces adaptive changes in amino acid transport and the intracellular amino acid pool in cultured cells. In this study intracellular amino acid levels were determined in cultured bovine aortic endothelial cells (EC) deprived of L-arginine or total amino acids for 1, 3, 6 and 24 h. Amino acid concentrations were analyzed by reverse phase HPLC after precolumn derivatisation. Under normal culture conditions levels of L-arginine L-citrulline, total essential and non-essential amino acids were 840 +/- 90 microM, 150 +/- 40 microM, 11.4 +/- 0.9 mM and 53.3 +/- 3.4 mM (n = 9), respectively. In EC deprived of L-arginine or all amino acids for 24 h L-arginine and L-citrulline levels were 200 microM and 50 microM, and 670 microM and 100 microM Deprivation of L-arginine or total amino acids induced rapid (1 h) decreases (30 - 50%) in the levels of other cationic (lysine, ornithine) and essential branched-chain (valine, isoleucine, leucine) and aromatic (phenylalanine, tryptophan) amino acids. L-glutamine was reduced markedly in EC deprived of total amino acids for 1 h - 6 h but actually increased 3-fold in EC deprived of L-arginine for 6 h or 24 h. Arginine deprivation resulted in a rapid decrease in the total intracellular amino acid pool, however concentrations were restored after 24 h. Increased amino acid transport and/or reduced protein synthesis may account for the restoration of amino acid levels in EC deprived of L-arginine. The sustained reduction in the free amino acid pool of EC deprived of all amino acids may reflect utilization of intracellular amino acids for protein synthesis.  相似文献   

8.
A method for quantifying indole-3-acetic acid (IAA) and its conjugates with the six amino acids, Ala, -Asp, -Ile, -Glu, -Phe and -Val, in rice (Oryza sativa) by using high-performance liquid chromatography coupled with electrospray ionization and tandem mass spectrometry (HPLC-ESI-MS/MS) is described. Samples from the rice plant or callus were treated with 80% acetone in water containing 2.5 mM diethyl dithiocarbamate. Each extract was partially purified in C18 cartridge column for solid-phase extraction (SPE) and subjected to HPLC-ESI-MS/MS without converting the product. The detection limit was 3.8 fmol for IAA, and 0.4-2.9 fmol for the IAA amino acid conjugates. The method was applied to the analysis of IAA and its conjugates in rice seedlings, dehulled rice and calli, using 20-100 mg tissue samples.  相似文献   

9.
Carbohydrate metabolism in growing rice seedlings under arsenic toxicity   总被引:7,自引:0,他引:7  
We studied in the seedlings of two rice cultivars (Malviya-36 and Pant-12) the effect of increasing levels of arsenic in situ on the content of sugars and the activity of several enzymes of starch and sucrose metabolism: alpha-amylase (EC 3.2.1.1), beta-amylase (EC 3.2.1.2), starch phosphorylase (EC 2.4.1.1), acid invertase (EC 3.2.1.26), sucrose synthase (EC 2.4.1.13) and sucrose phosphate synthase (EC 2.4.1.14). During a growth period of 10-20 d As2O3 at 25 and 50 microM in the growth medium caused an increase in reducing, non-reducing and total soluble sugars. An increased conversion of non-reducing to reducing sugars was observed concomitant with As toxicity. The activities of alpha-amylase, beta-amylase and sucrose phosphate synthase declined, whereas starch phosphorylase, acid invertase and sucrose synthase were found to be elevated. Results indicate that in rice seedlings arsenic toxicity causes perturbations in carbohydrate metabolism leading to the accumulation of soluble sugars by altering enzyme activity. Sucrose synthase possibly plays a positive role in synthesis of sucrose under As-toxicity.  相似文献   

10.
11.
ABA和NAA联合使用能有效地诱导水稻原生质体再生的愈伤组织向胚性发展。通过液体浅层培养由原生质体得到的愈伤组织,在含ABA和NAA的N_6培养基上培养一段时间,可以诱导原来呈非胚性状态的愈伤组织形成胚性愈伤组织,并在含ZT的N_6分化陪养基上产生绿点。通过对这两种愈伤组织的生化分析,表明二者在游离氨基酸、DNA、RNA、核酸及蛋白质含量等方面,特别是SDS-PAGE谱带存在明显的差异,其细胞的形态与结构也有显著差别,其中经ABA NAA诱导后的愈伤组织其细胞形态与结构特征与来源于种胚的胚性愈伤组织基本类似,所分析的生化指标也大多数相近。结果表明,ABA和NAA联合使用得当,能促进形成胚性愈伤组织。  相似文献   

12.
Calli derived from leaves and radicles of B. ternifolia were grown on Murashige and Skoog (MS) basal medium, and the effects of different nitrogen sources on the rate of callus growth and on the enzymes related to nitrogen assimilation were studied. Ammonium alone did not support callus growth unless a Krebs-cycle intermediate was added to the medium. The activities of glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 1.4.7.1), and glutamate dehydrogenase (EC 1.4.1.2) were measured in homogenates of callus grown on media supplied with different nitrogen sources. The results indicate that leaf and root calli have similar levels of these enzymes when grown on MS medium (Murashige and Skoog 1962. Physiol. Plant. 15, 473–497). However, when the calli were supplied with glutamine as the sole nitrogen source, the activity of glutamate synthase increased in leaf callus but was almost completely inhibited in root callus. The results indicate that calli originated from different B. ternifolia tissues do not have the same biochemical dedifferentiated state.  相似文献   

13.
We describe the complete purification of aromatic aminotransferase I, the enzyme responsible for the ability of Klebsiella aerogenes to use tryptophan and phenylalanine as sole sources of nitrogen, as well as the partial purification of aromatic aminotransferase IV. An examination of the properties of these enzymes revealed that aminotransferase I had much greater affinity for the aromatic amino acids than aminotransferase IV, explaining the essential role of aminotransferase I in the utilization of exogenously supplied aromatic amino acids. The properties of aminotransferase IV suggest that this enzyme is actually an aspartate aminotransferase (EC 2.6.1.1), corresponding to the product of the aspC gene of Escherichia coli.  相似文献   

14.
In a previous study, we developed 5-methyltryptophan (5MT)-resistant rice ( Oryza sativa L.) mutant lines via in vitro mutagenesis. These mutant lines exhibited elevated free amino acid content, in addition to a marked tolerance to a 5MT inhibition. In this study, we verified these increased protein and amino acid contents in the advanced mutant lines, and discovered that the anthranilate synthase (AS, EC 4.1.3.27) activity of the mutant plants was 2.2–3 times as high as that of the control. In all four tested 5MT-resistant mutant lines, AS activity proved to be less sensitive to tryptophan inhibition than that of the control. Proteins produced, either in elevated amounts or de novo in response to 5MT were studied by comparison of silver-stained two-dimensional gels of leaf proteins, between the control and two 5MT-resistant mutant lines. At least 20 proteins exhibited either elevated expression or de novo generation following exposure to growth-inhibitory concentrations of 5MT in MRI-40. We assessed the 5MT stress-mediated responses of the four antioxidant enzymes; catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), superoxide dismutase (SOD, EC 1.15.1.1) and aspartate peroxidase (APX, EC 1.11.1.11). We found that the activity levels of all four enzymes were increased as a result of 5MT treatment, in both the control and the 5MT-resistant mutant lines. However, the mutant lines exhibited more pronounced increases in the antioxidant enzymes than did the control. Significant differences in these activity increases were observed between the control and the mutant lines in the SOD and APX activity assays. Native PAGE confirmed these differences in SOD and APX activity, with the separation patterns of the isoforms of SOD and APX. These results mean that the 5MT-resistant mutants might possess active antioxidant systems which protect the cell from 5MT stress that may induce the production of reactive oxygen species.  相似文献   

15.
Uroporphyrinogen decarboxylase (EC 4.1.1.37) catalyzes the decarboxylation of uroporphyrinogen III to coproporphyrinogen III. The amino acid sequences, kinetic properties, and physicochemical characteristics of enzymes from different sources (mammals, yeast, bacteria) are similar, but little is known about the structure/function relationships of uroporphyrinogen decarboxylases. Halogenated and other aromatic hydrocarbons cause hepatic uroporphyria by decreasing hepatic uroporphyrinogen decarboxylase activity. Two related human porphyrias, porphyria cutanea tarda and hepatoerythropoietic porphyria, also result from deficiency of this enzyme. The roles of inherited and acquired factors, including iron, in the pathogenesis of human and experimental uroporphyrias are reviewed.  相似文献   

16.
目的:改造毕赤酵母使其异源合成类黄酮生物合成途径的重要中间体肉桂酸、对香豆酸,并优化前体芳香族氨基酸生物合成途径以提高毕赤酵母的生产能力。方法:在毕赤酵母GS115中利用乙醇诱导型人工转录系统表达Rhodotorula glutinis来源的苯丙氨酸解氨酶,并在该重组菌株中分别过表达胞内芳香族氨基酸生物合成途径中的关键酶或其突变体以进行优化。结果:异源表达苯丙氨酸解氨酶可使毕赤酵母将自身产生的L-苯丙氨酸、L-酪氨酸转化为肉桂酸(38.8 mg/L)、对香豆酸(34.2 mg/L),而通过过表达相关酶进行优化,最终肉桂酸和对香豆酸的产量分别达到124.1 mg/L和302.0 mg/L。结论:利用新的异源宿主毕赤酵母成功合成了肉桂酸、对香豆酸,并对胞内的芳香族氨基酸生物合成途径进行了优化,表明毕赤酵母具有生产黄酮类化合物的应用潜力,也为其他芳香族氨基酸衍生物或植物化合物在毕赤酵母中的异源合成奠定了基础。  相似文献   

17.
The tyrB gene of E. coli K-12, which encodes aromatic amino acid aminotransferase (EC 2.6.1.57) was cloned. The nucleotide sequence of about 2 kilobase pairs containing the gene was determined. The coding region of the tyrB gene and the deduced amino acid sequence revealed that the aromatic amino acid aminotransferase of E. coli is homologous with the aspartate aminotransferase.  相似文献   

18.
Activities of tricarboxylic acid (TCA) cycle enzymes in seedlings of barnyard grass (Echinochloa phyllopogon (Stapf.) Koss) and rice (Oryza sativa L.) germinated under aerobic and anaerobic conditions were investigated. In E. phyllopogon, development of TCA-cycle enzyme activities during 10 d of anoxia generally paralleled those in air, although at lower rates. After 5 d, E. phyllopogon seedlings germinating under N2 exhibited 50–80% of the activity of seedlings grown in air, except for 2-oxoglutarate dehydrogenase (EC 1.2.4.2) and fumarate reductase (EC 1.3.1.6) which exhibited only 25–35% of aerobic activity. In anaerobically germinated rice, development of TCA-cycle enzyme activities also paralleled those in air except for aconitase (EC 4.2.1.3), isocitrate dehydrogenase (EC 1.1.1.41), and 2-oxoglutarate dehydrogenase. Those enzymes did not increase in activity under anoxia. Development of maximum enzyme activities generally occurred more rapidly and persisted longer in E. phyllopogon compared to rice. The data indicate that mitochondria of E. phyllopogon function better during anaerobiosis than those of rice and this factor may contribute to the successful biochemical strategy of this weed in rice paddies throughout the world.Abbreviation TCA tricarboxylic acid This work was supported by U.S. Department of Agriculture Competitive Research grant No. 87-CRCR1-2595 and a Herman Frasch Foundation grant in Agricultural Chemistry to R.A.K.  相似文献   

19.
Anther culture is a biotechnology technique that can be used for the production of pure lines. The aims of this investigation were to induce embryogenic callus from major and minor culms of Thai aromatic rice cultivars and to subsequently regenerate double-haploid green plantlets by the application of exogenous polyamines. Embryogenic callus derived from anther culture was successfully induced in varieties KDML105, Homjan (HJ), and Pathumthani 1 (PT1). Production of embryogenic callus from anthers collected from the major culms was greater than those collected from the minor culms, especially in cultivar HJ. Plantlet regeneration in the three rice cultivars was observed from embryogenic callus and was highest, at 12.1%, from variety HJ treated with 0.5 mM spermidine. Plantlet regeneration from anther-derived embryogenic callus was dependent on the plant genotype, the types of exogenous polyamines, and the interactions of these factors. The percentage of haploid plantlets regenerated in PT1, KDML105, and HJ were 68.1%, 70.7%, and 78.5%, respectively. Only haploid plantlets were treated with colchicine for double-haploid production. This investigation has increased the knowledge of both embryogenic callus induction and plantlet regeneration in aromatic rice and has lead to the development of a pure, double-haploid line for the use in rice breeding programs in Thailand.  相似文献   

20.
We report the sequences of full-length cDNAs for the nuclear genes encoding the chloroplastic and cytosolic fructose-1,6-bisphosphate aldolase (EC 4.1.2.13) from spinach. A comparison of the deduced amino-acid sequences with one another and with published cytosolic aldolase sequences of other plants revealed that the two enzymes from spinach share only 54% homology on their amino acid level whereas the homology of the cytosolic enzyme of spinach with the known sequences of cytosolic aldolases of maize, rice and Arabidopsis range from 67 to 92%. The sequence of the chloroplastic enzyme includes a stroma-targeting N-terminal transit peptide of 46 amino acid residues for import into the chloroplast. The transit peptide exhibits essential features similar to other chloroplast transit peptides. Southern blot analysis implies that both spinach enzymes are encoded by single genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号