首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
White- and Yolk-riboflavin binding proteins were isolated from hen eggs, and characterized as to their chemical properties. White- and Yolk-RBPs had almost same amino acid compositions except for glutamic acid, but their carbohydrate compositions were different from each other. The complete amino acid sequence of White-RBP was determined by conventional methods. White-RBP comprised 219 amino acid residues, and the amino-terminus was pyroglutamic acid (pyrrolidonecarboxylic acid). Two amino acids, lysine and asparagine, were found at the fourteenth residue from the amino-terminus. Carbohydrate chains were linked to asparagine residues at positions 36 and 147. Both White- and Yolk-RBPs were phosphorylated. In White-RBP either six or seven of nine serine residues between Ser(185) and Ser(197) were phosphorylated. The amino acid sequences around phosphoserines showed that phosphorylation might occur at a serine residue in one of the following sequences; Ser-X-Glu or Ser-X-Ser(P).  相似文献   

2.
Phosvitins are the principal phosphoproteins in the eggs of oviparous vertebrates. They have an exceptionally high serine content and most, or even all, of the serine residues are esterified to phosphate. The phosphorylated residues tend to occur in uninterrupted runs of as many as 28 phosphoserines (as inXenopus phosvitin). This unique structural feature gives phosvitins extraordinary properties and can be expected to play a key role in phosvitin function. For example, the concentration of phosphate groups provides for numerous highly efficient metal-binding sites in clusters. The mode of binding had been shown to be affected by the size of the protein and the degree to which serine residues are phosphorylated. For structure-function studies of phosvitins (and other polyphospho-proteins), phosphopeptides of differentiated structural complexity are desirable. Such model peptides were produced in this work by limited proteolysis of chicken phosvitin, and oligophosphopeptides of widely varying sizes, phosphoserine content, and sequence were purified and characterized. These include phosvitin segments containing one, two, or several oligophosphoserine runs, corresponding to segments of the N-terminal, C-terminal, and core sequence of the protein.  相似文献   

3.
The epidermal growth factor (EGF) receptor is regulated by EGF-stimulated autophosphorylation and by phorbol ester-stimulated, protein kinase C (Ca2+/phospholipid-dependent enzyme) mediated phosphorylation at identified sites. The EGF receptor contains additional phosphorylation sites including a prominent phosphothreonine and several phosphoserines which account for the majority of phosphate covalently bound to the receptor in vivo. We have identified three of these sites in EGF receptor purified from 32P-labeled A431 cells. The major phosphothreonine was identified as threonine 669 in the EGF receptor sequence. Phosphoserine residues were identified as serines 671 and 1046/1047 of the EGF receptor. Two other phosphoserine residues were localized to tryptic peptides containing multiple serine residues located carboxyl-terminal to the conserved protein kinase domain. The amino acid sequences surrounding the three identified phosphorylation sites are highly conserved in the EGF receptor and the protein products of the v-erb B and neu oncogenes. Analysis of predicted secondary structure of the EGF receptor reveals that all of the phosphorylation sites are located near beta turns. In A431 cells phosphorylation of the serine residues was dependent upon serum. In mouse B82 L cells transfected with a wild type human EGF receptor. EGF increased the 32P content in all tryptic phosphopeptides. A mutant EGF receptor lacking protein tyrosine kinase activity was phosphorylated only at threonine 669. Regulated phosphorylation of the EGF receptor at these threonine and serine residues may influence aspects of receptor function.  相似文献   

4.
Caseinomacropeptide (CMP) is a 64 amino acid polypeptide corresponding to kappa-casein 106-169. CMP naturally exists in several forms due to extensive posttranslational modifications including glycosylation and phosphorylation. The aglycosylated, phosphorylated form of CMP has been shown to exhibit antibacterial activity. The aim of this study was to use matrix assisted laser desorption/ionization post source decay mass spectrometry (MALDI-PSD-MS) to identify the phosphorylation sites in the CMP sequence. CMP was isolated from a chymosin digest of casein by HPLC and then digested with endoproteinase Glu-C to generate peptides suitable for MALDI-PSD-MS analysis. This analysis showed that CMP is fully phosphorylated at Ser(149) and only partially phosphorylated at Ser(127.) Dehydroalanyl residues corresponding to the phosphoserines of CMP were detected upon MALDI-PSD-MS analysis suggesting that the phosphoryl bond in phosphoserine is very labile during PSD analysis such that the phosphoryl group may be lost before backbone fragmentation.  相似文献   

5.
The alpha subunit of eukaryotic protein synthesis initiation factor (eIF-2 alpha) is phosphorylated at a single serine residue (Ser51) by two distinct and well-characterized protein kinase, the haem-controlled repressor (HCR) and the double-stranded RNA-activated inhibitor (dsI). The sequence adjacent to Ser51 is rich in basic residues (Ser51-Arg-Arg-Arg-Ile-Arg) suggesting that they may be important in the substrate specificity of the two kinases, as is the case for several other protein kinases. A number of proteins and synthetic peptides containing clusters of basic residues were tested as substrates for HCR and dsI. Both kinases were able to phosphorylate histones and protamines ar multiple sites as judged by two-dimensional mapping of the tryptic phosphopeptides. These data also showed that the specificities of the two kinases were different from one another and from the specificities of two other protein kinases which recognise basic residues, cAMP-dependent protein kinase and protein kinase C. In histones, HCR phosphorylated only serine residues while dsI phosphorylated serine and threonine. Based on phosphoamino acid analyses and gel filtration of tryptic fragments, dsI was capable of phosphorylating both 'sites' in clupeine Y1 and salmine A1, whereas HCR acted only on the N-terminal cluster of serines in these protamines. The specificities of HCR and dsI were further studied using synthetic peptides with differing configurations of basic residues. Both kinases phosphorylated peptides containing C-terminal clusters of arginines on the 'target' serine residue, provided that they were present at positions +3 and/or +4 relative to Ser51. However, peptides containing only N-terminal basic residues were poor and very poor substrates for dsI and HCR, respectively. These findings are consistent with the disposition of basic residues near the phosphorylation site in eIF-2 alpha and show that the specificities of HCR and dsI differ from other protein kinases whose specificities have been studied.  相似文献   

6.
Conditions for carrying out chemically targeted identification of peptides containing phosphorylated or glycosylated serine residues have been investigated. Ba(OH)2 was used at ambient temperature to catalyze the beta-elimination reaction at 25 degrees C. Nucleophilic addition of 2-aminoethanethiol was performed in both parallel and tandem experiments. The method was demonstrated by the reaction of beta-casein tryptic digest phosphopeptides and an O-glycosylated peptide. Contrary to an earlier report by others, the glycopeptide was found to react with essentially the same kinetics as phosphopeptides. Conversion of four phosphoserines in residues 15, 17, 18, and 19 from bovine beta-casein N-terminal tryptic phosphopeptides were followed by monitoring the time course of the addition reaction. The chemistry proceeded rapidly at room temperature with a half-reaction time of 15 min. No side-reaction products were observed; however, care was taken to minimize all counter ions that either precipitate barium or neutralize the base. Digestion of the converted peptides with lysine endopeptidase identified all five phosphoserines in the beta-casein tryptic digest. Alternatively, preincubation with base followed by nucleophilic addition of the thiol was found to work satisfactorily. The use of the water-soluble hydrochloride of 2-aminoethanethiol allowed beta-elimination, nucleophilic addition, and desalting to be carried out on a micro C18 reverse phase pipette tip.  相似文献   

7.
HPLC-electrospray mass spectrometry was used to identify the phosphorylated sites on a bacterially expressed cystic fibrosis transmembrane conductance regulator (CFTR) fragment containing the first nucleotide binding domain (NBD1) and the regulatory domain (R). Tryptic digests of NBD1-R (CFTR residues 404-830) were analyzed after protein kinase A (PKA) treatment for all possible peptides and phosphopeptides (a total of 118 species) containing Ser residues within "high-probability" PKA consensus sequences: R-R/K-X-S/T, R-X-X-S/T, and R-X-S/T. Three criteria were used to assign phosphorylated sites: (1) an 80-Da increase in the predicted average molecular weight of the tryptic peptides; (2) co-elution with the PO3- ion induced by stepped energy collision; and (3) the relative elution positions of the phosphorylated and unmodified peptides. Ser residues within the eight dibasic sites in the NBD1 and R domains (positions 422, 660, 700, 712, 737, 768, 795, and 813) were phosphorylated, a pattern similar to that observed for full-length CFTR. The serine at position 753, which in CFTR is phosphorylated in vivo, was not phosphorylated. The remaining potential PKA sites, Ser489, Ser519, Ser557, Ser670, and Thr788, were not phosphorylated. The "low-probability" PKA sites (those not containing an Arg residue) were not phosphorylated. The results suggest that isolated domains of CFTR developed useful models for investigating the biochemical and structural effects of phosphorylation within CFTR. The mass spectrometry approach in this study should prove useful for defining phosphorylation sites of CFTR in vitro and in vivo.  相似文献   

8.
The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified by electrophoresis and gel-staining with ProQ Diamond and the protein was digested by either trypsin or chymotrypsin for maximum sequence coverage to facilitate identification of phosphorylated positions. Prior to analysis by mass spectrometry, samples were either desalted, passed over TiO(2) or both for improved phosphopeptide detection. As MAP kinases generally phosphorylate serine or threonine followed by proline (Ser/Thr-Pro), theoretical masses of potentially phosphorylated peptides were calculated and mass spectrometric peaks matching these masses were fragmented and searched for a neutral-loss signal at approximately 98 Da indicative of phosphorylation. Additionally, mass spectrometric peaks present in the MPK4-treated MKS1, but not in the control peptide map of untreated MKS1, were fragmented. Fragmentation spectra were subjected to a MASCOT database search which identified three of the twelve Ser-Pro serine residues (Ser72, Ser108, Ser120) in the phosphorylated form.  相似文献   

9.
The regulatory domain of cystic fibrosis transmembrane conductance regulator (CFTR) regulates channel activity when several serines are phosphorylated by cAMP-dependent protein kinase. To further define the functional role of individual phosphoserines, we studied CFTR containing previously studied and new serine to alanine mutations. We expressed these constructs in Fischer rat thyroid epithelia and measured transepithelial Cl(-) current. Mutation of four in vivo phosphorylation sites, Ser(660), Ser(737), Ser(795), and Ser(813) (S-Quad-A), substantially decreased cAMP-stimulated current, suggesting that these four sites account for most of the phosphorylation-dependent response. Mutation of either Ser(660) or Ser(813) alone significantly decreased current, indicating that these residues play a key role in phosphorylation-dependent stimulation. However, neither Ser(660) nor Ser(813) alone increased current to wild-type levels; both residues were required. Changing Ser(737) to alanine increased current above wild-type levels, suggesting that phosphorylation of Ser(737) may inhibit current in wild-type CFTR. These data help define the functional role of regulatory domain phosphoserines and suggest interactions between individual phosphoserines.  相似文献   

10.
The involvement of serine and threonine phosphorylation in human sperm capacitation was investigated. Anti-phosphoserine monoclonal antibody (mAb) recognized six protein bands in the 43-55-kDa, 94 +/- 2-kDa, 110-kDa, and 190-kDa molecular regions, in addition to a faint band each in the 18-kDa and 35-kDa regions. Anti-phosphothreonine mAb recognized protein bands in six similar regions, except that the 18-kDa, 35-kDa, and 94 +/- 2-kDa protein bands were sharper and thicker, and an additional band was observed in the 110-kDa molecular region. In the 43-55-kDa molecular region, there was a well-characterized glycoprotein, designated fertilization antigen, that showed a further increase in serine/threonine phosphorylation after exposure to solubilized human zona pellucida. In a cell-free in vitro kinase assay carried out on beads or in solution, four to eight proteins belonging to similar molecular regions, namely 20 +/- 2 kDa, 43-55 kDa, 94 +/- 2 kDa, and 110 +/- 10 kDa, as well as in 80 +/- 4 and 210 +/- 10 kDa regions, were phosphorylated at dual residues (serine/tyrosine and threonine/tyrosine). Capacitation increased the intensity of serine/threonine phosphorylation per sperm cell, increased the number of sperm cells that were phosphorylated, and induced a subcellular shift in the serine/threonine-specific fluorescence. These findings indicate that protein serine/threonine phosphorylation is involved and may have a physiological role in sperm capacitation.  相似文献   

11.
Previous studies have shown that rat glycine N-methyltransferase (GNMT) is phosphorylated in vivo, and could be phosphorylated in vitro on serine residues with a significant increase of enzyme activity, but no phosphorylation sites were identified. In this work the identification of the specific phosphorylation sites of rat GNMT is reported. Three different preparations of rat GNMT were analyzed: (1) purified from liver by standard methods of protein purification, (2) prepared from isolated hepatocytes and from liver tissue by immunoprecipitation, and (3) recombinant protein expressed in Escherichia coli. We measured the molecular weights of protein isoforms using electrospray mass spectrometry and used liquid chromatography-tandem mass spectrometry (LC-MS/MS) of peptides resulting from tryptic and chymotryptic digests. We also performed chemical analysis of phosphoamino acids and protein sequencing. In all samples, the phosphorylated serine residues 71, 182, and 241 were found. In GNMT prepared from liver tissue and hepatocytes an S9 additional residue was found to be phosphorylated. In hepatocytes and in recombinant GNMT S139 was detected. Serine 9 was also identified as a target for cAMP-dependent protein kinase in vitro. The positions of these phosphorylated residues in the tertiary structure of GNMT indicate their possible effect on enzyme conformation and activity.  相似文献   

12.
The present studies demonstrate that matrix Gla protein (MGP), a 10-kDa vitamin K-dependent protein, is phosphorylated at 3 serine residues near its N-terminus. Phosphoserine was identified at residues 3, 6, and 9 of bovine, human, rat, and lamb MGP by N-terminal protein sequencing. All 3 modified serines are in tandemly repeated Ser-X-Glu sequences. Two of the serines phosphorylated in shark MGP, residues 2 and 5, also have glutamate residues in the n + 2 position in tandemly repeated Ser-X-Glu sequences, whereas the third, shark residue 3, would acquire an acidic phosphoserine in the n + 2 position upon phosphorylation of serine 5. The recognition motif found for MGP phosphorylation, Ser-X-Glu/Ser(P), has been seen previously in milk caseins, salivary proteins, and a number of regulatory peptides. A review of the literature has revealed an intriguing dichotomy in the extent of serine phosphorylation among secreted proteins that are phosphorylated at Ser-X-Glu/Ser(P) sequences. Those phosphoproteins secreted into milk or saliva are fully phosphorylated at each target serine, whereas phosphoproteins secreted into the extracellular environment of cells are partially phosphorylated at target serine residues, as we show here for MGP and others have shown for regulatory peptides and the insulin-like growth factor binding protein 1. We propose that the extent of serine phosphorylation regulates the activity of proteins secreted into the extracellular environment of cells, and that partial phosphorylation can therefore be explained by the need to ensure that the phosphoprotein be poised to gain or lose activity with regulated changes in phosphorylation status.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A new procedure has been developed for identifying phosphoserine residues in proteins, and is used to analyse the in vivo phosphorylation state of inhibitor-2. The method employs reverse-phase liquid chromatography to resolve phosphorylated and dephosphorylated forms of peptides and fast-atom bombardment mass spectrometry (FABMS) to identify phosphorylated derivatives. The positions of phosphorylation sites within peptides are located by gas-phase sequencer analysis after conversion of phosphoserine residues to S-ethylcysteine. The phosphorylation sites on inhibitor-2 were identified as serines-86, -120 and -121, the three residues phosphorylated in vitro by casein kinase-II. Serine-86 was phosphorylated to 0.7 mol/mol and serines-120 and -121 each to 0.3 mol/mol. These values were not altered significantly by intravenous injection of adrenalin or insulin. No phosphate was present in the region comprising residues 1-49, even after injection of adrenalin, demonstrating that inhibitor-2 is not a substrate for cyclic AMP-dependent protein kinase in vivo. The absence of phosphotyrosine also indicated that inhibitor-2 is not a physiological substrate for the insulin receptor. Surprisingly, no phosphate was present at threonine-72, the residue phosphorylated in vitro by glycogen synthase kinase-3, after injection of either propranolol, adrenalin or insulin. The implications of this finding for the in vivo activation of protein phosphatase 1I (the 1:1 complex between inhibitor-2 and the catalytic subunit of protein phosphatase-1) are discussed. FABMS analysis of inhibitor-2 confirmed the accuracy of the primary structure reported previously, and showed that the only post-translational modifications were an N-acetyl moiety and the three phosphoserine residues. FABMS also demonstrated the presence of an additional serine residue at the C-terminus, and showed that 50% of isolated inhibitor-2 molecules lack the C-terminal Ser-Ser dipeptide.  相似文献   

14.
Microtubule-associated protein 2 (MAP2) is an excellent substrate for both cyclic-AMP (cAMP)-dependent and Ca2+/calmodulin-dependent kinases. A recently purified cytosolic Ca2+/calmodulin-dependent kinase (now designated CaM kinase II) phosphorylates MAP2 as a major substrate. We now report that microtubule-associated cAMP-dependent and calmodulin-dependent protein kinases phosphorylate MAP2 on separate sites. Tryptic phosphopeptide digestion and two-dimensional phosphopeptide mapping revealed 11 major peptides phosphorylated by microtubule-associated cAMP-dependent kinase and five major peptide species phosphorylated by calmodulin-dependent kinase. All 11 of the cAMP-dependently phosphorylated peptides were phosphorylated on serine residues, whereas four of five major peptides phosphorylated by the calmodulin-dependent kinase were phosphorylated on threonine. Only one peptide spot phosphorylated by both kinases was indistinguishable by both migration and phosphoamino acid site. The results indicate that cAMP-dependent and calmodulin-dependent kinases may regulate microtubule and cytoskeletal dynamics by phosphorylation of MAP2 at distinct sites.  相似文献   

15.
The in vivo phosphorylation state of glycogen synthase was re-examined by fast-atom-bombardment mass spectrometry and a procedure in which phosphoserine residues are first converted to S-ethylcysteine. In animals injected with the beta-adrenergic antagonist propranolol, the phosphorylation sites in the N-terminal (N) and C-terminal (C) cyanogen bromide peptides were identified as the serine residues at N7, the region C28-C39, C42, C46 and C100. In animals injected with adrenalin, the phosphorylation of N7 increased from 0.6 to 0.8 mol/mol, the region C28-C39 from 0.7 to 1.2 mol/mol and C100 from 0.3 to 0.6 mol/mol. The phosphorylation states of C42 (0.7 mol/mol) and C46 (0.9 mol/mol) were unchanged. In addition, two further serine residues became phosphorylated at positions N10 (0.5 mol/mol) and C87 (0.5 mol/mol), which were not phosphorylated in the absence of adrenalin. Residues N10 and C42 have not been recognized as in vivo sites of phosphorylation previously. The results suggest that N10 is phosphorylated by a novel protein kinase which may be activated by cyclic-AMP-dependent protein kinase. The phosphorylation of C42 is likely to be catalysed by glycogen synthase kinase 3. The protein kinases responsible for phosphorylating N7, the region C28-C39, C46, C87 and C100 in vivo and the molecular mechanisms by which adrenalin inactivates glycogen synthase in vivo are discussed. Residue N3, a major site phosphorylated by casein kinase-I in vitro is not phosphorylated in vivo. This and other evidence indicates that casein kinase-I is not a glycogen synthase kinase in vivo.  相似文献   

16.
Purified acetylcholine receptor is rapidly and specifically phosphorylated by partially purified protein kinase C, the Ca2+/phospholipid-dependent enzyme. The receptor delta subunit is the major target for phosphorylation and is phosphorylated on serine residues to a final stoichiometry of 0.4 mol of phosphate/mol of subunit. Phosphorylation is dose-dependent with a Km value of 0.2 microM. Proteolytic digestion of the delta subunit phosphorylated by either protein kinase C or the cAMP-dependent protein kinase yielded a similar pattern of phosphorylated fragments. The amino acids phosphorylated by either kinase co-localized within a 15-kDa proteolytic fragment of the delta subunit. This fragment was visualized by immunoblotting with antibodies against a synthetic peptide corresponding to residues 354-367 of the receptor delta subunit. This sequence, which contains 3 consecutive serine residues, was recently shown to include the cAMP-dependent protein kinase phosphorylation site (Souroujon, M. C., Neumann, D., Pizzighella, S., Fridkin, M., and Fuchs, S. (1986) EMBO J. 5, 543-546). Concomitantly, the synthetic peptide 354-367 was specifically phosphorylated in a Ca2+- and phospholipid-dependent manner by protein kinase C. Furthermore, antibodies directed against this peptide inhibited phosphorylation of the intact receptor by protein kinase C. We thus conclude that both the cAMP-dependent protein kinase and protein kinase C phosphorylation sites reside in very close proximity within the 3 adjacent serine residues at positions 360, 361, and 362 of the delta subunit of the acetylcholine receptor.  相似文献   

17.
The complete amino acid sequence of the macaque proline-rich phosphoglycoprotein (MPRP) was determined by automated Edman degradation of the protein, fragments F-1 and F-2 derived from the protein by an intrinsic salivary protease, and chymotryptic, tryptic, Staphylococcus aureus V8 protease, and endoproteinase lysine-C peptides. MPRP contains 115 amino acid residues including phosphorylated serine at residues 1, 2, 6, 12, and 15, and 6 O-glycosidic carbohydrate units at residues 69, 75, 87 (threonine) and 96, 103, and 106 (serine). The Mr of the polypeptide moiety of the protein is 12,656. The amino-terminal domain contains all 5 phosphoserine residues and most of the other negatively charged and hydrophilic residues, whereas the carboxyl-terminal domain contains 24 of 25 proline residues, and 6 O-glycosidic oligosaccharides. Comparison of MPRP with the four major anionic proline-rich proteins (PRPs) from human glandular secretion shows that 57% of the amino acid residues are identical if gaps are introduced to maximize homology, suggesting that these proteins are phylogenetically related. Significant structural and functional differences occur between the macaque and human proteins. MPRP has 5 phosphoserines, PRPs have 2. MPRP is a glycoprotein, PRPs are not. MPRP inhibits the spontaneous precipitation (primary precipitation) of calcium phosphate salts from supersaturated solutions in addition to inhibiting seeded crystal growth (secondary precipitation) (Oppenheim, F. G., Offner, G. D., and Troxler, R. F. (1982) J. Biol. Chem. 257, 9271-9282), whereas PRPs inhibit only secondary precipitation. MPRP is the only major anionic proline-rich protein in macaque glandular secretion; in contrast, there are four major anionic PRPs and these display a genetic polymorphism. The significance of these structural differences with respect to biological function and the possible relationship of MPRP to salivary mucins are discussed.  相似文献   

18.
1. Fourteen peptides were isolated from the egg jelly of sea urchins, Pseudocentrotus depressus, Strongylocentrotus purpuratus, Hemicentrotus pulcherrimus and Anthocidaris crassispina and their amino acid sequences were determined. 2. The peptides stimulated H. pulcherrimus sperm respiration one half-maximally at about 8-60 pM. 3. Addition of speract to intact spermatozoa of P. depressus, H. pulcherrimus and A. crassispina resulted in the appearance of a newly stained protein (Mr 128,000 for P. depressus, Mr 128,000 for H. pulcherrimus and Mr 131,000 for A. crassispina) on sodium dodecyl sulfate-polyacrylamide gels.  相似文献   

19.
The cAMP-dependent protein kinase catalytic subunit phosphorylates serine residues more efficiently than threonine residues in synthetic peptides. In marked contrast, both amino acids are phosphorylated at similar rates when contained within the appropriate intact protein substrate. The structural basis for the discriminatory behavior observed in small peptides has been investigated and found to be a result of intrapeptide steric interactions in the vicinity of the threonine alcohol moiety. Leu-Arg-Arg-Gly-Thr-Leu-Gly, which is nearly free of these interactions, is phosphorylated at a rate that is almost comparable to its serine-containing counterpart.  相似文献   

20.
The herpes simplex virus type 1 (HSV-1) regulatory protein ICP27 is a 63-kDa phosphoprotein required for viral replication. ICP27 has been shown to contain both stable phosphate groups and phosphate groups that cycle on and off during infection (K. W. Wilcox, A. Kohn, E. Sklyanskaya, and B. Roizman, J. Virol. 33:167-182, 1980). Despite extensive genetic analysis of the ICP27 gene, there is no information available about the sites of the ICP27 molecule that are phosphorylated during viral infection. In this study, we mapped several of the phosphorylation sites of ICP27 following in vivo radiolabeling. Phosphoamino acid analysis showed that serine is the only amino acid that is phosphorylated during infection. Two-dimensional phosphopeptide mapping showed a complex tryptic phosphopeptide pattern with at least four major peptides and several minor peptides. In addition, ICP27 purified from transfected cells yielded a similar phosphopeptide pattern, suggesting that cellular kinases phosphorylate ICP27 during viral infection. In vitro labeling showed that protein kinase A (PKA), PKC, and casein kinase II (CKII) were able to differentially phosphorylate ICP27, resulting in distinct phosphopeptide patterns. The major phosphorylation sites of ICP27 appeared to cluster in the N-terminal portion of the protein, such that a frameshift mutant that encodes amino acids 1 to 163 yielded a phosphopeptide pattern very similar to that seen with the wild-type protein. Further, using small deletion and point mutations in kinase consensus sites, we have elucidated individual serine residues that are phosphorylated in vivo. Specifically, the serine at residue 114 was highly phosphorylated by PKA and the serine residues at positions 16 and 18 serve as targets for CKII phosphorylation in vivo. These kinase consensus site mutants were still capable of complementing the growth of an ICP27-null mutant virus. Interestingly, phosphorylation of the serine at residue 114, which lies within the major nuclear localization signal, appeared to modulate the efficiency of nuclear import of ICP27.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号