首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To investigate the influence of a specific ecological niche, the wine grape, on the survival and development of Saccharomyces cerevisiae. METHODS AND RESULTS: A strain with a rare phenotype was sprayed onto the grape surfaces and monitored through two vintages using a specific indicative medium and analysing the internal transcribed spacer regions in the 5.8S rDNA. During the ripening process, there was a progressive colonization of the surface of the undamaged and damaged grapes by epiphytic yeasts, up to the time of harvest. The damaged wine grapes showed a much greater epiphytic yeast population. However, the inoculated S. cerevisiae strain showed a scarce persistence on both undamaged and damaged wine grapes, and the damaged grapes did not appear to improve the grape surface colonization of this strain. CONCLUSIONS: Results indicated that wine grape is not a favourable ecological niche for the development and colonization of S. cerevisiae species. SIGNIFICANCE AND IMPACT OF THE STUDY: Results of this work are further evidence that S. cerevisiae is not specifically associated with natural environments such as damaged and undamaged wine grapes.  相似文献   

2.
The budding yeast, Saccharomyces cerevisiae, is a leading system in genetics, genomics and molecular biology and is becoming a powerful tool to illuminate ecological and evolutionary principles. However, little is known of the ecology and population structure of this species in nature. Here, we present a field survey of this yeast at an unprecedented scale and have performed population genetics analysis of Chinese wild isolates with different ecological and geographical origins. We also included a set of worldwide isolates that represent the maximum genetic variation of S. cerevisiae documented so far. We clearly show that S. cerevisiae is a ubiquitous species in nature, occurring in highly diversified substrates from human‐associated environments as well as habitats remote from human activity. Chinese isolates of S. cerevisiae exhibited strong population structure with nearly double the combined genetic variation of isolates from the rest of the world. We identified eight new distinct wild lineages (CHN I–VIII) from a set of 99 characterized Chinese isolates. Isolates from primeval forests occur in ancient and significantly diverged basal lineages, while those from human‐associated environments generally cluster in less differentiated domestic or mosaic groups. Basal lineages from primeval forests are usually inbred, exhibit lineage‐specific karyotypes and are partially reproductively isolated. Our results suggest that greatly diverged populations of wild S. cerevisiae exist independently of and predate domesticated isolates. We find that China harbours a reservoir of natural genetic variation of S. cerevisiae and perhaps gives an indication of the origin of the species.  相似文献   

3.
Fermented beverages and foods have played a significant role in most societies worldwide for millennia. To better understand how the yeast species Saccharomyces cerevisiae, the main fermenting agent, evolved along this historical and expansion process, we analysed the genetic diversity among 651 strains from 56 different geographical origins, worldwide. Their genotyping at 12 microsatellite loci revealed 575 distinct genotypes organized in subgroups of yeast types, i.e. bread, beer, wine, sake. Some of these groups presented unexpected relatedness: Bread strains displayed a combination of alleles intermediate between beer and wine strains, and strains used for rice wine and sake were most closely related to beer and bread strains. However, up to 28% of genetic diversity between these technological groups was associated with geographical differences which suggests local domestications. Focusing on wine yeasts, a group of Lebanese strains were basal in an F(ST) tree, suggesting a Mesopotamia-based origin of most wine strains. In Europe, migration of wine strains occurred through the Danube Valley, and around the Mediterranean Sea. An approximate Bayesian computation approach suggested a postglacial divergence (most probable period 10,000-12,000 bp). As our results suggest intimate association between man and wine yeast across centuries, we hypothesize that yeast followed man and vine migrations as a commensal member of grapevine flora.  相似文献   

4.
5.
Tremendous advances in genetic and genomic techniques have resulted in the capacity to identify genes involved in adaptive evolution across numerous biological systems. One of the next major steps in evolutionary biology will be to determine how landscape-level geographical and environmental features are involved in the distribution of this functional adaptive genetic variation. Here, I outline how an emerging synthesis of multiple disciplines has and will continue to facilitate a deeper understanding of the ways in which heterogeneity of the natural landscapes mould the genomes of organisms.  相似文献   

6.
Gene-expression variation in natural populations is widespread, and its phenotypic effects can be acted upon by natural selection. Only a few naturally segregating genetic differences associated with expression variation have been identified at the molecular level. We have identified a single nucleotide insertion in a vineyard isolate of Saccharomyces cerevisiae that has cascading effects through the gene-expression network. This allele is responsible for about 45% (103/230) of the genes that show differential gene expression among the homozygous diploid progeny produced by a vineyard isolate. Using isogenic laboratory strains, we confirm that this allele causes dramatic differences in gene-expression levels of key genes involved in amino acid biosynthesis. The mutation is a frameshift mutation in a mononucleotide run of eight consecutive T's in the coding region of the gene SSY1 , which encodes a key component of a plasma-membrane sensor of extracellular amino acids. The potentially high rate of replication slippage of this mononucleotide repeat, combined with its relatively mild effects on growth rate in heterozygous genotypes, is sufficient to account for the persistence of this phenotype at low frequencies in natural populations.  相似文献   

7.
酿酒酵母基因组学研究进展   总被引:4,自引:0,他引:4  
周璐  李越中 《生命科学》1999,11(2):87-91
酿酒酵母是第一个完成基因组测序的真核生物,在基因组序列信息研究上取得了重大的进展,并且成为后基因组研究的主要模式材料,在基因功能、转录组、蛋白质组等方面获得了许多重要的成果,为高等生物,以及人基因组的研究提供了很好的借鉴,并为深入认识酵母以及生命的进化提供了基本的信息。  相似文献   

8.
We characterized high malic acid-producing strains of Saccharomyces cerevisiae isolated from sake mash. We compared the gene expression of these strains with those of the parental strain by DNA microarray, and found that stress response genes, such as HSP12, were commonly upregulated in the high malate-producing strains, whereas thiamine synthesis genes, such as THI4 and SNZ2, were downregulated in these strains.  相似文献   

9.
Mutants resistant to the amino acid analogues dl-thiaisoleucine, dl-4-azaleucine, 5,5,5-trifluoro-dl-leucine and l-O-methylthreonine, were isolated from Saccharomyces cerevisiae wine yeast strains. The fermentative production of secondary metabolites by the mutants was tested in grape must. Higher alcohols, acetaldehyde and acetic acid concentration varied depending on strain and analogue. Most of the mutants produced increased amounts of amyl alcohol. A remarkable variability in the level of n-propanol, isobutanol, acetaldehyde and acetic acid was observed. In practical application, the use of mutants resistant to amino acid analogues can improve the quality of wines by reducing or increasing the presence of some secondary compounds.  相似文献   

10.
M J Penninckx  C J Jaspers 《Biochimie》1985,67(9):999-1006
In a foregoing paper we have shown the presence in the yeast Saccharomyces cerevisiae of an enzyme catalyzing the hydrolysis of L-gamma-glutamyl-p-nitroanilide, but apparently distinct from gamma-glutamyltranspeptidase. The cellular level of this enzyme was not regulated by the nature of the nitrogen source supplied to the yeast cell. Purification was attempted, using ion exchange chromatography on DEAE Sephadex A 50, salt precipitations and successive chromatographies on DEAE Sephadex 6B and Sephadex G 100. The apparent molecular weight of the purified enzyme was 14,800 as determined by gel filtration. As shown by kinetic studies and thin layer chromatography, the enzyme preparation exhibited only hydrolytic activity against gamma-glutamylarylamide and L-glutamine with an optimal pH of about seven. Various gamma-glutamylaminoacids, amides, dipeptides and glutathione were inactive as substrates and no transferase activity was detected. The yeast gamma-glutamylarylamidase was activated by SH protective agents, dithiothreitol and reduced glutathione. Oxidized glutathione, ophtalmic acid and various gamma-glutamylaminoacids inhibited competitively the enzyme. The activity was also inhibited by L-gamma-glutamyl-o-(carboxy)phenylhydrazide and the couple serine-borate, both transition-state analogs of gamma-glutamyltranspeptidase. Diazooxonorleucine, reactive analog of glutamine, inactivated the enzyme. The physiological role of yeast gamma-glutamylarylamidase-glutaminase is still undefined but is most probably unrelated to the bulk assimilation of glutamine by yeast cells.  相似文献   

11.
12.
AIMS: Isolation and characterization of indigenous Saccharomyces cerevisiae strains from 12 grape varieties grown in an experimental vineyard of Apulia. METHODS AND RESULTS: Thirty to 40 colonies from each of the 12 fermentations were obtained at the end stage of spontaneous fermentation. By using morphological and physiological methods and by the PCR analysis of internal transcribed ITS1-5,8S-ITS2, the isolates belonging to Saccharomyces genus were identified. These isolates were further characterized by amplification with S. cerevisiae species- and delta element-specific primers, thus allowing the identification of S. cerevisiae strains selected from each of the 12 fermentations. By means of RFLP analysis of mtDNA, each S. cerevisiae population isolated from a single fermentation appeared to constitute a genetically homogenous group. The comparison of the 12 cultivar-specific mtDNA RFLP patterns, allowed classifying the 12 S. cerevisiae populations into three genetically homogenous groups. The isolated strains fermented vigorously in synthetic and grape juice medium and showed high alcohol and sulphur dioxide (SO(2)) resistance and low hydrogen sulphite (H(2)S) production. CONCLUSIONS: The molecular analysis, in conjunction with the traditional morphological and physiological methods, was useful in discriminating at strain level the indigenous population of S. cerevisiae present in a vineyard of Apulia. The dominant S. cerevisiae strains identified in the 12 fermented musts showed potentially important oenological characteristics. SIGNIFICANCE AND IMPACT OF THE STUDY: The characterization of natural S. cerevisiae strains from several typical Italian grapes grown in a restricted experimental vineyard is an important step towards the preservation and exploitation of yeast biodiversity of Apulia, a relevant wine-producing region. The close relationship between the S. cerevisiae strains from different grapes grown in the same vineyard indicated that the occurrence of native strains is representative of the area rather than of the variety of grapes.  相似文献   

13.
14.
A thermotolerant Saccharomyces cerevisiae yeast strain, YK60‐1, was bred from a parental strain, MT8‐1, via stepwise adaptation. YK60‐1 grew at 40°C, a temperature at which MT8‐1 could not grow at all. YK60‐1 exhibited faster growth than MT8‐1 at 30°C. To investigate the mechanisms how MT8‐1 acquired thermotolerance, DNA microarray analysis was performed. The analysis revealed the induction of stress‐responsive genes such as those encoding heat shock proteins and trehalose biosynthetic enzymes in YK60‐1. Furthermore, nontargeting metabolome analysis showed that YK60‐1 accumulated more trehalose, a metabolite that contributes to stress tolerance in yeast, than MT8‐1. In conclusion, S. cerevisiae MT8‐1 acquired thermotolerance by induction of specific stress‐responsive genes and enhanced intracellular trehalose levels. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1116–1123, 2013  相似文献   

15.
The laboratory strain of S. cerevisiae, IM1-8b, showed pectolytic activity in the presence of either glucose, fructose, or sucrose as the carbon source, but not with galactose. The enzyme activity was rapidly lost with shaking. The optimum pH and temperature for activity were 4.5 and 45°C, respectively. The enzyme was an endopolygalacturonase, since it preferentially hydrolysed pectate over pectin and decreased the viscosity of a 5% polygalacturonic solution by about 30% in 30min producing oligogalacturonic acid and digalacturonic acid as end-products.  相似文献   

16.
The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion.  相似文献   

17.
Abstract

The budding yeast Saccharomyces cerevisiae is now widely used as a model organism in the study of gene structure, function, and regulation in addition to its more traditional use as a workhorse of the brewing and baking industries. In this article the plethora of methods available for manipulating the genome of S. cerevisiae are reviewed. This will include a discussion of methods for manipulating individual genes and whole chromosomes, and will address both classic genetic and recombinant DNA-based methods. Furthermore, a critical evaluation of the various genetic strategies for genetically manipulating this simple eukaryote will be included, highlighting the requirements of both the new and the more traditional biotechnology industries.  相似文献   

18.
The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans.  相似文献   

19.
Saccharomyces cerevisiae T206 K+R+, a K2 killer yeast, was differentiated from other NCYC killer strains of S. cerevisiae on the basis of CHEF-karyotyping and mycoviral RNA separations. Genomic DNA of strain T206 was resolved into 13 chromosome bands, ranging from approximately 0.2 to 2.2 Mb. The resident virus in strain T206 yielded L and M RNA species of approximately 5.1 kb and 2.0 kb, respectively. In micro-scale vinifications, strain T206 showed a lethal effect on a K-R- mesophilic wine yeast. Metabolite accumulation and toxin activity were measured over a narrow pH range of 3.2 to 3.5. Contrary to known fermentation trends, the challenged fermentations were neither stuck nor protracted although over 70% of the cell population was killed. Toxin-sensitive cells showed cytosolic efflux.  相似文献   

20.
Accumulation and secretion of beta-glucanases have been studied in vivo by using a thermosensitive secretory mutant of Saccharomyces cerevisiae blocked at the endoplasmic reticulum level (sec 18-1). When incubated at the restrictive temperature no accumulation of active glucanases was observed. Following a shift to permissive conditions in the presence of cycloheximide a rise in the internal activity took place. The increase in total glucanase activity was partially due to the activation of an exo-glucanase that hydrolyzes PNPG. It is concluded that glucanases are synthesized in inactive precursor forms and are converted to the active forms in their secretory pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号