首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Habitat structure is one of the fundamental factors determining the distribution of organisms at all spatial scales, and vegetation is of primary importance in shaping the structural environment for invertebrates in many systems. In the majority of biotopes, invertebrates live within vegetation stands of mixed species composition, making estimates of structural complexity difficult to obtain. Here we use fractal indices to describe the structural complexity of mixed stands of aquatic macrophytes, and these are employed to examine the effects of habitat complexity on the composition of free-living invertebrate assemblages that utilise the habitat in three dimensions. Macrophytes and associated invertebrates were sampled from shallow ponds in southwest England, and rapid digital image analysis was used to quantify the fractal complexity of all plant species recorded, allowing the complexity of vegetation stands to be reconstructed based on their species composition. Fractal indices were found to be significantly related to both invertebrate biomass–body size scaling and overall invertebrate biomass; more complex stands of macrophytes contained a greater number of small animals. Habitat complexity was unrelated to invertebrate taxon richness and macrophyte surface area and species richness were not correlated with any of the invertebrate community parameters. The biomass–body size scaling relationship of lentic macroinvertebrates matched those predicted by models incorporating both allometric scaling of resource use and the fractal dimension of a habitat, suggesting that both habitat fractal complexity and allometry may control density–body size scaling in lentic macroinvertebrate communities.  相似文献   

2.
1. Ship‐induced waves can affect the physical characteristics of lake and river shorelines, and laboratory studies have shown effects on littoral invertebrates. Here, we explored whether these effects could be observed under field conditions along a natural lake shore affected by wave sequences (trains) produced by boats. 2. Individuals of five invertebrate species (Bithynia tentaculata, Calopteryx splendens, Dikerogammarus villosus, Gammarus roeselii, Laccophilus hyalinus) were exposed to waves with increasing shear stress in five habitats differing in structural complexity. 3. Detachment of invertebrates increased with increasing shear stress and was best modelled using sigmoid response curves. Habitat structural complexity mitigated the effects of shear stress, and detachment rate was influenced more by habitat type than by species. A threshold (90% of the individual invertebrates unaffected) stress level of 0.64 N m?2 was found for a structurally complex reed habitat, compared to 0.37 N m?2 for a simple sand habitat. 4. Shear stress associated with wave trains created by recreational boating at a distance of 35 m from the shore and at a speed of 11 km h?1 resulted in 45% detachment of littoral invertebrates. Decreasing the boat‐to‐shore distance to 20 m increased wave shear stress by 30% and invertebrate detachments up to 75%. 5. Disturbance of littoral habitats and invertebrate assemblages are widespread in inland waters used for recreational and/or commercial navigation. Our findings show that the integrity of littoral zones of navigable surface waters could be much improved by implementing management measures such as physically protecting complex habitats with dense reed belts and tree roots, and reducing boat speeds and increasing their minimum shoreline distance.  相似文献   

3.
1. Aquatic plants are a key component of spatial heterogeneity in a waterscape, contributing to habitat complexity and helping determine diversity at various spatial scales. Theoretically, the more complex a habitat, the higher the number of species present. 2. Few empirical data are available to test the hypothesis that complexity increases diversity in aquatic communities (e.g. Jeffries, 1993 ). Fractal dimension has become widely applied in ecology as a tool to quantify the degree of complexity at different scales. 3. We investigated the hypothesis that complexity in vegetated habitat in two tropical lagoons mediates littoral invertebrate number of taxa (S) and density (N). Aquatic macrophyte habitat complexity was defined using a fractal dimension and a gradient of natural plant complexities. We also considered plant area, plant identity and, only for S, invertebrate density as additional explanatory variables. 4. Our results indicate that habitat complexity provided by the different architectures of aquatic plants, significantly affects both S and total N. However, number of individuals (as a result of passive sampling) also helps to account for S and, together with plant identity and area, contributes to the determination of N. We suggest that measurements of structural complexity, measured through fractal geometry, should be included in studies aimed at explaining attributes of attached invertebrates at small (e.g. plant or leaf) scales.  相似文献   

4.
In saline lakes, areal cover and both species and structural diversity of macrophytes often decline as salinity increases. To assess effects of the loss of certain macrophyte growth forms, we characterized benthic and epiphytic invertebrates in three growth forms (thin-stemmed emergents, erect aquatics, and low macroalgae) in oligosaline lakes (0.8–4.2 mS cm−1) of the Wyoming High Plains, USA. We also measured the biomass and taxonomic composition of epiphytic and benthic invertebrates in two erect aquatics with very similar structure that are found in both oligosaline (Potamogeton pectinatus) and mesosaline (9.3–23.5 mS cm−1) (Ruppia maritima) lakes. Although total biomass of epiphytic invertebrates varied among oligosaline lakes, the relative distribution of biomass among growth forms was similar. For epiphytic invertebrates, biomass per unit area of lake was lowest in emergents and equivalent in erect aquatics and low macroalgae; biomass per unit volume of macrophyte habitat was greatest in low macroalgae. For benthic invertebrates, biomass was less beneath low macroalgae than other growth forms. Taxonomic composition did not differ appreciably between growth forms for either benthic or epiphytic invertebrates, except that epiphytic gastropods were more abundant in erect aquatics. Total biomass of epiphytic and benthic invertebrates for the same growth form (erect aquatic) did not differ between oligosaline (Potamogeton pectinatus) and mesosaline (Ruppia maritima) lakes, but taxonomic composition did change. In the oligosaline to mesosaline range, direct toxic effects of salinity appeared important for some major taxa such as gastropods and amphipods. However, indirect effects of salinity, such as loss of macrophyte cover and typically higher nutrient levels at greater salinities, probably have larger impacts on total invertebrate biomass lake-wide.  相似文献   

5.
M. Jocque  R. Field 《Hydrobiologia》2014,730(1):153-166
Tank bromeliads (Bromeliaceae) often occur in high densities in the Neotropics and represent a key freshwater habitat in montane forests, housing quite complex invertebrate communities. We tested the extent to which there are species richness–altitude, richness–environment, richness–size, richness–habitat complexity and richness–isolation relationships for the aquatic invertebrate communities from 157 bromeliads in Cusuco National Park, Honduras. We found that invertebrate species richness and abundance correlated most strongly, and positively, with habitat size, which accounted for about a third of the variance in both. Apart from bromeliad size (equivalent of the species–area relationship), we found remarkably little evidence of classic biogeographic and ecological relationships with species richness in this system. Community composition correlated with altitude, bromeliad size and position, though less than 20% of the variation was accounted for by the tested variables. The turnover component of dissimilarity between the communities correlated with altitude, while the nestedness-resultant component was related to bromeliad size. The unexplained variance could reflect a large stochastic component in the system, associated with the ephemerality of the habitat patches (both the plants themselves and the fluctuations in their water content) and stochasticity due to the dispersal dynamics in the system. We conclude that there is a small contribution of classic biogeographic factors to the diversity and community composition of aquatic invertebrates communities in bromeliads. This may be due to the highly dynamic nature of this system, with small patch sizes and high emigration rates. The patterns may mostly be driven by factors affecting colonisation success.  相似文献   

6.
1. Habitat complexity is thought to exert a significant influence on ecological communities, but its operation under variable natural conditions is not well understood, particularly in freshwater. To elucidate the role of habitat complexity, in particular the fractal structure of surface irregularity, in a stream system, field colonisation experiments were conducted at three times of year (summer, winter and spring) using natural substrates with different levels of fractal dimension in a small coastal mountain stream of southern Japan. 2. In the winter experiment, comparison was also made between the standard (control) treatment and the resource‐preconditioning treatment whereby experimental plates were conditioned in the natural stream environment to allow the accumulation of potential food resources (algae and detritus) for 1 month prior to the experiment. 3. Species abundance patterns observed at different times of year showed little systematic variation with levels of habitat complexity but largely followed the patterns expected from, or lying in between, the Random Assortment model and the random fraction model. 4. Taxon richness and density increased with habitat complexity in all seasons except for density in spring. Different taxa showed different patterns of change with habitat complexity, which also varied with seasons. Biomass of invertebrates showed no systematic trend with an increase in habitat complexity. 5. Chlorophyll‐a concentrations tended to be lower in more complex habitats, particularly in summer. In contrast, fine particulate organic matter (FPOM) tended to increase with habitat complexity. However, the relationship between these potential food resources and invertebrate assemblages remain unclear. 6. While there were no significant differences in taxon richness and biomass of invertebrates between the resource‐preconditioning and the control treatment, density was higher in the former than in the latter. The abundance of relatively large, surface‐dwelling animals showed more marked temporal variation over the entire period of colonisation in the resource‐preconditioning treatment than in the control treatment. 7. Body size of invertebrates tended to decline with fractal complexity, indicating that crevice sizes could affect habitat use by benthic animals of different sizes. In addition, body size was larger in the resource‐preconditioning treatment than in the control treatment, suggesting that body size in invertebrate assemblages was controlled by a mixture of factors. Thus, the present study demonstrates that habitat structure affects benthic invertebrate assemblages in a complex manner.  相似文献   

7.
Habitat complexity is an important factor structuring local faunal assemblages. Many invasive plant species alter vegetation complexity because they are both functionally and structurally different from native flora. This study investigated the effects of an invasive grass (Andropogon gayanus Kunth.), which is invading undisturbed savannas in northern Australia. Although A. gayanus is a similar lifeform to that dominant in the native understory (i.e., a C4 grass), it is structurally different and significantly alters habitat complexity. We, therefore, hypothesized that there would be a substantial effect of the invasive grass on ant, spider, and other invertebrate assemblages. Contrary to our hypothesis, there was no effect of A. gayanus on ant species richness, abundance, or composition, nor were spiders or other invertebrates affected. Instead the change in weather conditions with season was more important in structuring the local invertebrate assemblages. Change in habitat complexity was most pronounced vertically, rather than horizontally at ground level, thus although there was a clear difference in the vertical structure between invaded and noninvaded habitats, the limited invertebrate response to different A. gayanus densities suggests some invertebrates are less sensitive to vertical changes in vegetation structure.  相似文献   

8.
Environmental heterogeneity in natural ecosystems influences several parameters at the population and community levels. In freshwater ecosystems, habitat heterogeneity can be provided by macrophyte species with different structural shapes. Previous studies suggest that aquatic plants with more complex architectures will support higher number, biomass, and taxon richness of macroinvertebrates than plants with simpler shape. We investigated the influence of macrophyte structural heterogeneity (quantified by fractal dimension) and food availability (represented by epiphytic biomass) on several parameters (number of individuals, biomass, body size distribution, taxon richness, and diversity) of the macroinvertebrate community in a Pampean stream. Four submerged macrophyte species (Egeria densa, Elodea ernstae, Ceratophyllum demersum, and Stuckenia striata) and associated macroinvertebrates were sampled in late spring, summer, and autumn. Plants were photographed and fractal dimension was estimated from the images by the box-counting method. Fractal dimension was independent of plant surface area per unit of macrophyte biomass and differed significantly among species. Mean fractal dimension varied between 1.29 and 1.62, and increased following the sequence E. densa → S. striata → E. ernstae → C. demersum. Macrophyte species with higher fractal dimension supported a greater abundance of macroinvertebrates, especially those of small body size (500–1,000 μm); but fractal dimension was unrelated to macroinvertebrate biomass, richness, and diversity. However, overall animal biomass was significantly associated to the epiphytic abundance. Consequently, macrophyte heterogeneity influences macroinvertebrate density and body size distribution, while animal biomass depends on epiphytic food resources provided by plants.  相似文献   

9.
10.
This study explores: (1) whether the abundance of macroinvertebrates differs between macrophytes differing in both morphological complexity and tolerance to nutrient enrichment; (2) whether the distribution of invertebrates between macrophytes is due to active habitat choice; and (3) whether invertebrates prefer structurally complex to simple macrophytes. Macroinvertebrate abundance was compared between two common soft-bottom plants of the Baltic Sea that are tolerant to eutrophication, Myriophyllum spicatum and Potamogeton pectinatus, and one common plant that is sensitive to eutrophication, Chara baltica. Both field sampling and habitat choice experiments were conducted. We recorded higher total macroinvertebrate abundance on the structurally complex M. spicatum than on the more simply structured P. pectinatus and C. baltica, but found no difference in macroinvertebrate abundance between P. pectinatus and C. baltica. In accordance with the field results, our experiment indicated that the crustacean Gammarus oceanicus actively chose M. spicatum over the other macrophytes. Besides, we found that G. oceanicus actively preferred complex to simply structured artificial plants, indicating that the animal distribution was at least partly driven by differences in morphological complexity between plant species. In contrast, the gastropod Theodoxus fluviatilis did not make an active habitat choice between the plants. Our findings suggest that human-induced changes in vegetation composition can affect the faunal community. Increased abundance of structurally complex macrophytes, for example, M. spicatum, can result in increased abundance of macroinvertebrates, particularly mobile arthropods that may actively choose a more structurally complex macrophyte.  相似文献   

11.
1. We examined the effect of the exotic macrophyte, para grass (Urochloa mutica), on benthic and epiphytic macroinvertebrates of a tropical floodplain in northern Australia. Macroinvertebrates were sampled from four grass communities: (1) para grass, (2) hymenachne (Hymenachne acutigluma), a native perennial; (3) rice (Oryza meridionalis), a native annual, and (4) areas where para grass had been sprayed with herbicide. 2. Macroinvertebrate richness, abundance and community similarity showed very few differences among the grass communities, particularly in the epiphytic habitat. Benthic invertebrates showed some differences among grasses, with lower richness and abundance and different community structure associated with hymenachne. Herbicide control of para grass had no apparent effect on benthic invertebrates but reduced the abundance of epiphytic invertebrates in the short term. 3. The results of this study indicate that para grass has very little impact on macroinvertebrate communities, despite the changes to macrophyte communities. This is probably because para grass has similar physical structure to the native grasses and because none of these grasses contribute directly to aquatic food webs. Control of para grass using herbicide has little impact on aquatic invertebrates. This suggests that predicting the impact of weed invasion in wetlands requires an understanding of both the functional properties of macrophytes and the habitat preferences of the macroinvertebrates.  相似文献   

12.
Ponds (lentic water bodies <2 ha) constitute a considerable biodiversity resource. Understanding the environmental factors that underlie this diversity is important in protecting and managing the habitat. We surveyed 425 ponds for biological and physical characteristics with 78 of those also surveyed for chemical characteristics. A total of 277 invertebrate species and 265 plant species were found. Species richness varied between 2 and 99 (mean 27.2 ± 0.6 SE) for invertebrates and 1 and 58 (mean 20.8 ± 0.4 SE) for plants. Generalised additive models were used to investigate variables that correlate with the species richness of plants and invertebrates, with additional models to investigate insect, Coleoptera, Odonata, Hemiptera, Trichoptera and Mollusca species richness. Models performed reasonably well for invertebrates in general (R 2 = 30.3%) but varied between lower-order invertebrate taxa (12.7–34.7%). Ponds with lower levels of shading and no history of drying contained higher numbers of species of plants and all invertebrate groups. Aquatic plant coverage positively correlated with species richness in all invertebrate groups apart from Trichoptera and the presence of fish was associated with high invertebrate species richness in all groups apart from Coleoptera. The addition of chemistry variables suggested non-linear relationships between oxygen demand and phosphate concentration and higher-order richness. We demonstrate that the composition of biological communities varies along with their species richness and that less diverse ponds are more variable compared to more diverse ponds. Variables positively correlated with richness of one taxon may be negatively correlated with that of another, making comprehensive management recommendations difficult. Promoting a high landscape-level pond biodiversity will involve the management of a high diversity of pond types within that landscape.  相似文献   

13.
Globally, moss associated invertebrates remain poorly studied and it is largely unknown to what extent their diversity is driven by local environmental conditions or the landscape context. Here, we investigated small scale drivers of invertebrate communities in a moss landscape in a temperate forest in Western Europe. By comparing replicate quadrats of 5 different moss species in a continuous moss landscape, we found that mosses differed in invertebrate density and community composition. Although, in general, richness was similar among moss species, some invertebrate taxa were significantly linked to certain moss species. Only moss biomass and not relative moisture content could explain differences in invertebrate densities among moss species. Second, we focused on invertebrate communities associated with the locally common moss species Kindbergia praelonga in isolated moss patches on dead tree trunks to look at effects of patch size, quality, heterogeneity and connectivity on invertebrate communities. Invertebrate richness was higher in patches under closed canopies than under more open canopies, presumably due to the higher input of leaf litter and/or lower evaporation. In addition, increased numbers of other moss species in the same patch seemed to promote invertebrate richness in K. praelonga, possibly due to mass effects. Since invertebrate richness was unaffected by patch size and isolation, dispersal was probably not limiting in this system with patches separated by tens of meters, or stochastic extinctions may be uncommon. Overall, we conclude that invertebrate composition in moss patches may not only depend on local patch conditions, in a particular moss species, but also on the presence of other moss species in the direct vicinity.  相似文献   

14.
Fragmentation of the forested landscape poses a threat to many aspects of biodiversity associated with old-growth forests Studies of the effects of forest fragmentation are often complicated by the variation in composition and age of patches and the matrix This study used a system of isolated stands where patch age and composition were similar and the matrix variability negligible The patches were composed of old-growth Picea abies stands of varying size and shape in a wetland matrix The study organisms were epiphytic crustose calicioid lichens (also known as Caliciales), many of which are very substrate-specific and restricted to old-growth stands The aim of the study was to measure the effect of patch size, patch isolation, habitat and substrate quality on the species riochness and composition of epiphytic calicioids Twenty-four patches ranging from 0 4 to 15 9 ha in size were studied All species of calicioid lichens were registered in 0 1 ha plots in each patch Isolation was measured as the percentage of available habitat within 400 m of a patch Twenty-two species were found with an average of 9 48 ± 0 26 (SE) species per patch and 292 ± 0 18 (SE) species per tree Species richness at patch level correlated with stand structure, primarily tree density, while number of species per tree (reflecting population size) was strongly correlated with island size and several stand variables There was no effect of isolation on species richness Species composition was influenced by both substrate variables and patch size The species composition on the islands showed a significant nestedness, i e species composition on species-poor islands constituted a non-random subset of the species composition on species-rich islands We propose that the explanation for the strong relationship between species richness at tree level and stand size is an edge effect which implies that unaffected interior areas only occur on large islands The different microclimate of the patch edge enables only the hardiest species to establish large populations there whilst shade and moisture demanding species are restricted to the interiors of larger islands  相似文献   

15.
16.
This study experimentally tested the impact of peat bog habitat loss and isolation on the invertebrate community associated with Sporadanthus ferrugineus (Restionaceae), a dominant indigenous plant species in peat bogs. Potted S. ferrugineus plants were exposed to invertebrates at various distances up to 800 m from an intact habitat (the source population) over 18 weeks. Invertebrates rapidly colonized the experimental plants, with all major orders and trophic groups present on S. ferrugineus within 6 weeks. However, with increasing distance away from the undisturbed habitat, there was a significant decrease in total species richness and abundance of invertebrates associated with the potted plants. Of the total taxa captured, only 38% were found on potted S. ferrugineus plants at 800 m compared with 62% found on potted plants 30 m from the intact peat bog. Predator species richness and the predator–prey ratio changed significantly with time available for colonization of potted plants but, more importantly, prey (herbivores and detritivores) and predator (including parasitoids) species richness, as well as the predator–prey ratio, declined significantly with increasing isolation from the peat bog. Thus, the degree of isolation of restoration areas from undisturbed habitat has a major impact on the rate and patterns of recovery in invertebrate community structure. The current recommended practice of restoring the mined area by establishing raised "habitat islands" 30 m apart should result in colonization by most invertebrates associated with S. ferrugineus , but only if the restoration islands are placed as stepping stones outward from existing areas of intact habitat.  相似文献   

17.
1. Ship‐induced waves disturb benthic invertebrate assemblages colonizing littoral zones of lakes and rivers. However, the impact of ship‐induced waves on invertebrates has rarely been quantified, and the influencing factors have not been addressed. 2. In an experimental wave tank, five benthic invertebrate species, Bithynia tentaculata, Calopteryx splendens, Dikerogammarus villosus, Gammarus roeseli and Laccophilus hyalinus, were exposed to waves of increasing shear stress (0.43–2.19 N m?2). Mean number of detached individuals was recorded for five littoral habitats [coarse woody debris (CWD), reeds, sand, stones and tree roots], representing different levels of structural complexity as quantified by their fractal dimensions (FD). 3. Results showed that detachment of invertebrates was significantly related to shear stress in all habitats except tree roots. Detachments averaged for the five species were significantly lower in habitats with a high degree of structural complexity, decreasing in the habitat sequence: sand, CWD, stones, reeds and tree roots. 4. Consistent with their different morphologies and methods of attachment to substrates, the five species displayed differences in their response to hydraulic stress that were dependent on habitat. 5. The increasing sheltering effect of structural habitat complexity was mirrored by increasing dissipation of the kinetic energy of waves; i.e. the FD of the habitat was positively correlated with shear stress reduction due to the flow resistance of the habitat. 6. Network habitats such as tree roots provided the best sheltering conditions against hydraulic disturbance, because they combined good refuge availability for all studied invertebrate species and maximal dissipation of kinetic wave energy. Consequently, persistent anthropogenic impacts, such as lakeshore modification or long‐term exposure to ship‐induced waves, which cause disappearance of complex littoral habitats such as tree roots or dense reed belts, will drastically increase the adverse effects of boating and ship traffic on littoral invertebrate assemblages.  相似文献   

18.
1. The colonization and dynamics of epiphytic aquatic macroinvertebrates are described on first-year and second-year shoots of an emergent macrophyte (Typha latifolia) in a Swiss pond. Effects of shoot senescence on composition, richness, density and biomass of the macroinvertebrates are quantified. 2. There were two phases of colonization: a short-term colonization process which corresponded with that usually observed on inert substrates and a longer term colonization process related to the attractiveness of the shoots for the colonizers. In this second process, the older shoots showed a higher attractiveness for most invertebrate taxa. 3. Taxa colonized the shoots at different rates. Rapid colonizers included the limpet Ferrissia wautieri and the mayfly Cloeon dipterum. Conversely, Oligochaeta, Chironomidae and Ceratopogonidae were particularly slow colonizers. 4. The older shoots supported a higher mean annual richness, abundance and biomass of invertebrates. Compared with younger shoots, the older shoots demonstrated a higher carrying capacity for most invertebrate taxa, as is the case for many other freshwater macrophytes.  相似文献   

19.
Effects of alien herbivores on plants are quite well known, especially on oceanic islands. Much less is known about the indirect effects of alien herbivores. Via indirect effects indigenous organisms can become more vulnerable to other ecological factors. We studied the effect of dense muskrat population on aquatic invertebrates in patches, which were in different succession phases after grazing. The succession was divided into three phases:(i) open-water area, (ii) mixed floating and submerged vegetation, and (iii) undisturbed Equisetum stands. Intensive muskrat grazing affected especially the size distribution of invertebrates. The proportion of small invertebrates was greatest in clear-cut areas, whereas that of large invertebrates was greatest in the Equisetum-stands. According to activity traps, the clear-cut areas harboured good populations of small perch, which are known as invertebrate predators. The study showed that the indirect effects of alien herbivore can be considerable. In this case, they seemed to be mediated to invertebrates through the change in vegetative habitat structure. This change rendered invertebrates more vulnerable to fish predation.  相似文献   

20.
Presence of habitat-forming macroalgae is supposed to mitigate effects of altered resources on benthic microalgae and their consumers. In a field experiment in a microtidal area of the Western Baltic Sea, we tested the interactive effects of nutrient enrichment, artificial shading, and habitat complexity on microalgal biomass and diversity as well as invertebrate abundance and richness. Habitat complexity comprised three levels, the presence of macroalgal canopy of Fucus vesiculosus, the presence of macroalgal propagules, and the absence of both (=control). Microalgal biomass (and richness) was significantly reduced by canopy presence (−88%, compared to control) and shading (−42%), with the highest biomass in the absence of both canopy and macroalgal propagules at ambient light. Within the microalgal assemblage, higher biomass was related to lower evenness (higher dominance). Density of two main invertebrate groups (snails and amphipods) strongly increased with canopy presence (on average from 53 to 154 individuals m−2 stone area for snails, and from 234 to 1203 individuals m−2 for amphipods) and so did invertebrate richness (from 4.3 to 10.3). Additionally, snail density doubled with increasing light availability. The snail responses to light and canopy were independent, the former relating to higher availability of microalgal prey, the latter to more structure. Microalgal taxon richness and biomass decreased with increasing invertebrate richness and with density of snails and amphipods. Our experiment thus showed that the presence of habitat-forming macroalgae alters biomass and diversity across trophic levels in benthic coastal communities as well as their response to resource manipulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号