首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated whether cell-permeable, synthetic ceramide (C6 ceramide) could induce apoptosis in Fas-resistant Hodgkin's disease (HD)-derived cell lines. Despite strongly expressing the Fas-receptor, two of three HD-derived cell lines were resistant to Fas-mediated apoptosis. This resistance to Fas could not be attributed to differential Fas isoform generation patterns between the Fas-resistant and the Fas-sensitive cell lines. The Fas-resistant cell lines did not demonstrate the presence of Fas exon 8 deletion. Bcl-2 and BclxL levels were comparable between the Fas-resistant and the Fas-sensitive cell lines. C6 ceramide could induce apoptosis in both Fas-resistant cell lines and this was associated with a decrease in BclxL level. Caspase-1, caspase-3, or pan-caspase inhibitors could not prevent ceramide-induced apoptosis. Furthur, ceramide treatment did not lead to cleavage of caspase 3 or poly(ADP-ribose) polymerase, but caused a loss in mitochondrial transmembrane potential which could not be prevented by caspase inhibitors. Thus, we conclude that ceramide-induced apoptosis in Fas-resistant HD cell lines is caspase independent.  相似文献   

2.
Distinct molecular mechanisms of Fas resistance in murine B lymphoma cells   总被引:5,自引:0,他引:5  
A panel of murine B lymphoma cell lines, which express different levels of Fas, was extensively studied for sensitivity to Fas-mediated death signals via an anti-Fas mAb and Fas ligand-bearing cell lines. Expression of the Fas receptor on the B lymphoma cell lines did not correlate with their capacity to undergo Fas-mediated apoptosis. Moreover, Fas-associated death domain protein recruitment to the death-inducing signaling complex (DISC) complex occurred in all cell lines expressing Fas, regardless of whether they were sensitive to Fas-mediated death. Interestingly, the protein synthesis inhibitor, cycloheximide, and protein kinase C inhibitors, such as bisindolylmaleimide, rendered one of the resistant cell lines, CH33, sensitive to signals from the Fas receptor, although the levels of Fas were unchanged. This suggests that constitutive PKC activation plays a role in Fas resistance, perhaps by up-regulating NF-kappaB or Bcl-2 family members. Interestingly, CH33 demonstrated caspase 8 activity upon engagement of the Fas receptor in the absence of pharmacological manipulation, suggesting that the block in apoptosis is downstream of the DISC complex. In contrast, the fact that Fas-associated death domain protein was recruited to the DISC complex in other resistant lines, such as WEHI-231, with no caspase 8 activation indicates that these cells may be blocked within the DISC complex. Indeed, Western blot analysis showed that WEHI-231 expressed an isoform of FLICE-like inhibitory protein (cFLIPL), an antiapoptotic protein within the DISC. These studies provide evidence that murine B lymphoma cells utilize different molecular mechanisms along the Fas-signaling cascade to block apoptosis.  相似文献   

3.
FADD is required for multiple signaling events downstream of the receptor Fas.   总被引:13,自引:0,他引:13  
To identify essential components of the Fas-induced apoptotic signaling pathway, Jurkat T lymphocytes were chemically mutagenized and selected for clones that were resistant to Fas-induced apoptosis. We obtained five cell lines that contain mutations in the adaptor FADD. All five cell lines did not express FADD by immunoblot analysis and were completely resistant to Fas-induced death. Complementation of the FADD mutant cell lines with wild-type FADD restored Fas-mediated apoptosis. Fas activation of caspase-2, caspase-3, caspase-7, and caspase-8 and the proteolytic cleavage of substrates such as BID, protein kinase Cdelta, and poly(ADP-ribose) polymerase were completely defective in the FADD mutant cell lines. In addition, Fas activation of the stress kinases p38 and c-Jun NH2 kinase and the generation of ceramide in response to Fas ligation were blocked in the FADD mutant cell lines. These data indicate that FADD is essential for multiple signaling events downstream of Fas.  相似文献   

4.
Cross-linking of cell surface Fas molecules by Fas ligand or by agonistic anti-Fas Abs induces cell death by apoptosis. We found that a serine protease inhibitor, N-tosyl-L-lysine chloromethyl ketone (TLCK), dramatically enhances Fas-mediated apoptosis in the human T cell line Jurkat and in various B cell lines resistant to Fas-mediated apoptosis. The enhancing effect of TLCK is specific to Fas-induced cell death, with no effect seen on TNF-alpha or TNF-related apoptosis-inducing ligand-induced apoptosis. TLCK treatment had no effect on Fas expression levels on the cell surface, and neither promoted death-inducing signaling complex formation nor decreased expression levels of cellular inhibitors of apoptosis (FLICE inhibitory protein, X chromosome-linked inhibitor of apoptosis, and Bcl-2). Activation of the Fas-mediated apoptotic pathway by anti-Fas Ab is accompanied by aggregation of Fas molecules to form oligomers that are stable to boiling in SDS and beta-ME. Fas aggregation is often considered to be required for Fas-mediated apoptosis. However, sensitization of cells to Fas-mediated apoptosis by TLCK or other agents (cycloheximide, protein kinase C inhibitors) causes less Fas aggregation during the apoptotic process compared with that in nonsensitized cells. These results show that Fas aggregation and Fas-mediated apoptosis are not directly correlated and may even be inversely correlated.  相似文献   

5.
6.
Ceramide is a key mediator of apoptosis, yet its role in Fas-mediated apoptosis is controversial. Some reports have indicated that ceramide is either a primary signaling molecule in Fas-induced cell death, or that it functions upstream of Fas by increasing FasL expression. Other studies have suggested that ceramide is not relevant to Fas-induced cell death. We have approached this problem by studying ceramide-induced apoptosis in unique Jurkat cell clones selected for resistance to membrane-bound FasL-induced death. Resistance of the mutant Jurkat cells was specific for FasL killing, since the mutant clones were sensitive to other apoptotic stimuli such as cycloheximide and staurosporine. We tested the effects of serum withdrawal, one of the strongest inducers of ceramide, and of exogenous ceramide on apoptosis of both wild-type and FasL-resistant clones. Wild-type Jurkat cells were remarkably sensitive to serum withdrawal and to exogenous ceramide. In contrast all FasL-resistant mutant clones were resistant to these apoptosis-inducing conditions. In contrast to previous work, we did not detect an increase in FasL in either wild-type or mutant clones. Moreover activation of stress-activated protein kinases (JNK/SAPKs) after serum withdrawal and exogenous ceramide treatment was detected only in the wild-type and not in the resistant clones. Because of the parallel resistance of the mutant clones to Fas and to ceramide-induced apoptosis, our data support the notion that ceramide is a second messenger for the Fas/FasL pathway and that serum withdrawal, through production of ceramide, shares a common step with the Fas-mediated apoptotic pathway. Finally, our data suggest that activation of JNK/SAPKs is a common mediator of the three pathways tested.  相似文献   

7.
Fas-mediated apoptosis has been proposed to play an important role in the pathogenesis of Hashimoto's thyroiditis. Normal thyroid cells are resistant to Fas-mediated apoptosis in vitro but can be sensitized by the unique combination of interferon-gamma and IL-1beta cytokines. We sought to examine the mechanism of this sensitization and apoptosis signaling in primary human thyroid cells. Without the addition of cytokines, agonist anti-Fas antibody treatment of the thyroid cells resulted in the cleavage of proximal caspases, but this did not lead to the activation of caspase 7 and caspase 3. Apoptosis associated with the cleavage of caspases 7, 3, and Bid, and the activation of mitochondria in response to anti-Fas antibody occurred only after cytokine pretreatment. Cell surface expression of Fas, the cytoplasmic concentrations of procaspases 7, 8, and 10, and the proapoptotic molecule Bid were markedly enhanced by the presence of the cytokines. In contrast, P44/p42 MAPK (Erk) appeared to provide protection from Fas-mediated apoptosis because an MAPK kinase inhibitor (U0126) sensitized thyroid cells to anti-Fas antibody. In conclusion, Fas signaling is blocked in normal thyroid cells at a point after the activation of proximal caspases. Interferon-gamma/IL-1beta pretreatment sensitizes human thyroid cells to Fas-mediated apoptosis in a complex manner that overcomes this blockade through increased expression of cell surface Fas receptor, increases in proapoptotic molecules that result in mitochondrial activation, and late caspase cleavage. This process involves Bcl-2 family proteins and appears to be compatible with type II apoptosis regulation.  相似文献   

8.
The expression of genes that regulate Fas-induced apoptosis has been examined in 10 human cultured colon carcinoma cell lines with defined and varied sensitivity to the cytolytic anti-Fas MoAb CH-11. Four lines demonstrated sensitivity to CH-11 (HT29, GC3/c1, TS-, Thy4), and six were resistant to the induction of apoptosis vis Fas. In nine lines expressing Fas, PCR-sequencing indicated that the death domain contained wt sequences. Downstream of Fas, expression of FADD/MORT1 and FLICE, essential components of the DISC, and negative regulators of Fas signalling including sFas, FAP-1 and Bcl-2, showed no correlation between levels of expression and sensitivity to Fas-mediated cytotoxicity. However, levels of the Fas antigen varied by >1000-fold, and correlated with CH-11 sensitivity. Following fourfold elevation in Fas expression in HT29 cells treated with interferon-gamma, a synergistic effect on Fas-mediated apoptosis was obtained when CH-11 and interferon-gamma were combined.  相似文献   

9.
The death receptor CD95 (APO-1/Fas), the anticancer drug etoposide, and gamma-radiation induce apoptosis in the human T cell line Jurkat. Variant clones selected for resistance to CD95-induced apoptosis proved cross-resistant to etoposide- and radiation-induced apoptosis, suggesting that the apoptosis pathways induced by these distinct stimuli have critical component(s) in common. The pathways do not converge at the level of CD95 ligation or caspase-8 signaling. Whereas caspase-8 function was required for CD95-mediated cytochrome c release, effector caspase activation, and apoptosis, these responses were unaffected in etoposide-treated and irradiated cells when caspase-8 was inhibited by FLIPL. Both effector caspase processing and cytochrome c release were inhibited in the resistant variant cells as well as in Bcl-2 transfectants, suggesting that, in Jurkat cells, the apoptosis signaling pathways activated by CD95, etoposide, and gamma-radiation are under common mitochondrial control. All three stimuli induced ceramide production in wild-type cells, but not in resistant variant cells. Exogenous ceramide bypassed apoptosis resistance in the variant cells, but not in Bcl-2-transfected cells, suggesting that apoptosis signaling induced by CD95, etoposide, and gamma-radiation is subject to common regulation at a level different from that targeted by Bcl-2.  相似文献   

10.
In this study, we examined the role of Fas apoptotic inhibitory molecule 2 (Faim2), an inhibitor of the Fas signaling pathway, and its regulation by stress kinase signaling during Fas-mediated apoptosis of 661W cells, an immortalized photoreceptor-like cell line Treatment of 661W cells with a Fas-activating antibody led to increased levels of Faim2. Both ERK and JNK stress kinase pathways were activated in Fas-treated 661W cells, but only the inhibition of the ERK pathway reduced the levels of Faim2. Blocking the ERK pathway using a pharmacological inhibitor increased the susceptibility of 661W cells to Fas-induced caspase activation and apoptosis. When the levels of Faim2 were reduced in 661W cells by siRNA knockdown, Fas activating antibody treatment resulted in earlier and more robust caspase activation, and increased cell death. These results demonstrate that Faim2 acts as a neuroprotectant during Fas-mediated apoptosis of 661W cells. The expression of Faim2 is triggered, at least in part, by Fas-receptor activation and subsequent ERK signaling. Our findings identify a novel protective pathway that auto-regulates Fas-induced photoreceptor apoptosis in vitro. Modulation of this pathway to increase Faim2 expression may be a potential therapeutic option to prevent photoreceptor death.  相似文献   

11.
Post-transplant lymphoproliferative disorder is characterized by the outgrowth of EBV-infected B cell lymphomas in immunosuppressed transplant recipients. Using a panel of EBV-infected spontaneous lymphoblastoid cell lines (SLCL) derived from post-transplant lymphoproliferative disorder patients, we assessed the sensitivity of such lymphomas to Fas-mediated cell death. Treatment with either an agonist anti-Fas mAb or Fas ligand-expressing cells identifies two subsets of SLCL based on their sensitivity or resistance to Fas-driven apoptosis. Fas resistance in these cells cannot be attributed to reduced Fas expression or to mutations in the Fas molecule itself. In addition, all SLCL are sensitive to staurosporine-induced cell death, indicating that there is no global defect in apoptosis. Although all SLCL express comparable levels of Fas signaling molecules including Fas-associated death domain protein, caspase 8, and caspase 3, Fas-resistant SLCL exhibit a block in Fas-signaling before caspase 3 activation. In two SLCL, this block results in impaired assembly of the death-inducing signaling complex, resulting in reduced caspase 8 activation. In a third Fas-resistant SLCL, caspase 3 activation is hindered despite intact death-inducing signaling complex formation and caspase 8 activation. Whereas multiple mechanisms exist by which tumor cells can evade Fas-mediated apoptosis, these studies suggest that the proximal Fas-signaling pathway is impeded in Fas-resistant post-transplant lymphoproliferative disorder-associated EBV(+) B cell lymphomas.  相似文献   

12.
alpha-Fetoprotein (AFP) is an oncoembryonal protein with multiple cell growth regulating, differentiating and immunosuppressive activities. Previous studies have shown that treatment of tumor cells in vitro with 1-10 microM AFP produces significant suppression of tumor cell growth by inducing dose-dependent cytotoxicity, but the molecular mechanisms underlying these AFP functions are obscure. Here, we show that AFP cytotoxicity is closely related to apoptosis, as shown by cell morphology, nuclear DNA fragmentation and caspase-3-like activity resulting in cleavage of poly(ADP-ribose) polymerase. Apoptosis was significantly inhibited by a CPP32 family protease inhibitor whereas a general caspase inhibitor had no inhibitory effect, showing some enhancement of AFP-mediated cell death. Using fluorogenic caspase substrates, we found that caspase-3-like proteases were activated as early as 4 h after treatment of Raji cells with 15 microM AFP, whereas caspase-1, caspase-8, and caspase-9-like activity was not detected during the time interval 0.5-17 h. AFP treatment of Raji cells increased Bcl-2 protein, showing that AFP-induced apoptosis is not explained by downregulation of the Bcl-2 gene. This also suggests that AFP operates downstream of the Bcl-2-sensitive step. AFP notably decreased basal levels of soluble and membrane-bound Fas ligand. Incubation of AFP-sensitive tumor cells (HepG2, Raji) with neutralizing anti-Fas, anti-tumor necrosis factor receptor (TNFR)1 or anti-TNFR2 mAb did not prevent AFP-induced apoptosis, demonstrating its independence of Fas-dependent and TNFR-dependent signaling. In addition, it was found that cells resistant to TNF-induced (Raji) or Fas-induced (MCF-7) apoptosis are, nevertheless, sensitive to AFP-mediated cell death. In contrast, cells sensitive to Fas-mediated cell death (Jurkat) are completely resistant to AFP. Taken as a whole, our data demonstrate that: (a) AFP induces apoptosis in tumor cells independently of Fas/Fas ligand or TNFR/TNF signaling pathways, and (b) AFP-mediated cell death involves activation of the effector caspase-3-like proteases, but is independent of upstream activation of the initiator caspase-1, caspase-8, and caspase-9-like proteases.  相似文献   

13.
Salivary epithelial cells from patients with primary Sj?gren's syndrome (SS) undergo Fas-mediated apoptosis. Bcl-2 and Bcl-xL are apoptosis suppressing oncogenes. Very little is known about the role of these oncogene molecules in salivary epithelial cells. To investigate the possible prevention of salivary glandular destruction in SS by Bcl-2 and Bcl-xL, stable transfectants expressing these molecules were made from HSY cells, a human salivary epithelial cell line. HSY cells were transfected with an expression vector for human Bcl-2 or Bcl-xL. Stable transfectants were selected and apoptosis was induced by anti-Fas antibody. Apoptosis was quantified by propidium iodide staining followed by flow cytometry. Caspase activity was detected by immunohistochemical analysis and enzyme cleavage of DEVD-AMC, a fluorescent substrate. Response to carbachol, a muscarinic receptor agonist, and EGF was measured by Ca2+ mobilization and influx. Fas-mediated apoptosis was significantly inhibited in Bcl-2 and Bcl-xL transfectants compared to wild-type and control transfectants (empty vector). Surprisingly, caspase activity was not inhibited in Bcl-2 and Bcl-xL transfectants. Activation of the Fas pathway in the Bcl-2 and Bcl-xL transfectants by antibody also inhibited carbachol and EGF responsiveness (i.e., Ca2+ mobilization and/or influx) by 50-60%. This Fas-mediated inhibition of cell activation was partially or completely restored by specific peptide interference of caspase enzyme activity. The prevention of Fas-mediated apoptosis by the overexpression of Bcl-2 and Bcl-xL in salivary gland epithelial cells results in injured cells expressing caspase activity and unable to respond normally to receptor agonists. Such damaged cells may exist in SS patients and could explain the severe dryness out of proportion to the actual number of apoptotic cells seen on salivary gland biopsy.  相似文献   

14.
Inhibition of Fas-mediated apoptosis in B cell lymphomas by thiol antioxidants (glutathione and N-acetylcysteine) supported previous studies, suggesting that Fas-stimulated ROS generation may play a role in Fas-mediated apoptosis. Thus, the goal of the current study was to determine if Fas stimulation could induce ROS generation and what role, if any, it played in apoptosis. Fas crosslinking induced rapid generation of ROS (within 15 min) well before the appearance of characteristic apoptotic changes. Overexpression of catalase or superoxide dismutase suggested that Fas induced production of both superoxide anion and hydrogen peroxide. ROS generation was only observed, however, in cells that were sensitive to apoptosis and not in B cells inherently resistant to anti-Fas or in those in which resistance was induced by B cell receptor crosslinking. The exogenous addition of 250 microM hydrogen peroxide could reverse the resistant phenotype and sensitize cells to Fas-induced apoptosis. In Fas-sensitive cells, depletion of endogenous antioxidant defenses with buthionine sulfoximine increased the sensitivity to Fas-induced apoptosis, while overexpression of antioxidant enzymes and antiapoptotic proteins suggested a role for Fas-induced production of hydrogen peroxide in apoptosis. Further analysis suggested a redox-sensitive step early in Fas signaling at the level of initiator caspase (caspase-8) activation. Thus, the data suggest that the level of oxidative stress, either from exogenous sources or generated endogenously upon receptor stimulation, regulates the sensitivity to Fas-mediated apoptosis.  相似文献   

15.
There is growing evidence which suggests that dysregulation of apoptosis may lead to several disease states including cancer. To investigate the mechanism controlling the induction of cell death, apoptosis defective/resistant (Apt-) mutants were isolated and characterized in this study. FDC-P1, a mouse myeloid cell line that depends upon IL-3 for survival and growth but undergoes apoptosis when deprived of growth factor, was mutagenized by treatment with ethyl methane sulfonate. We selected cells that survived the growth factor deprivation but did not grow without the factor. Surviving cells were cloned by limiting dilution and four clones that showed the least morphological characteristics and biochemical changes of apoptosis were chosen. Unlike the parent FDC-P1, these mutants were cross resistant to apoptosis induced by a variety of antitumor drugs such as Adriamycin, Dexamethasone, VP-16, as well as reactive oxygen species (ROS) generated by xanthine/xanthine oxidase (X/XO). We used one of these Apt- mutant to test candidate death genes. Our findings suggest that the preferential increase in Bax/Bcl-2 ratio, p53, c-Myc, Caspase-3 and decrease in AP-1 on treatment with various anticancer drugs may contribute to the preferential apoptotic response in FDC-P1 cells but to varying degrees. Whereas, the higher constitutive level of antioxidant enzymes superoxide dismutase and catalase in the Apt- mutant may contribute at least in part to its resistance.  相似文献   

16.
Fas (CD95) mediates apoptosis of many cell types, but the susceptibility of cells to killing by Fas ligand and anti-Fas antibodies is highly variable. Jurkat T cells lacking CD47 (integrin-associated protein) are relatively resistant to Fas-mediated death but are efficiently killed by Fas ligand or anti-Fas IgM (CH11) upon expression of CD47. Lack of CD47 impairs events downstream of Fas activation including caspase activation, poly-(ADP-ribose) polymerase cleavage, cytochrome c release from mitochondria, loss of mitochondrial membrane potential, and DNA cleavage. Neither CD47 signaling nor raft association of CD47 is required to enable Fas apoptosis. CH11 induces association of Fas and CD47. Primary T cells from CD47-null mice are also protected from Fas-mediated killing relative to wild type T cells. Thus CD47 associates with Fas upon its activation and augments Fas-mediated apoptosis.  相似文献   

17.
Memory T cells respond in several functionally different ways from naive T cells and thus function as efficient effector cells. In this study we showed that primed T cells were more resistant to Fas-mediated activation-induced cell death (AICD) than naive T cells using OVA-specific TCR transgenic DO10 mice and Fas-deficient DO10 lpr/lpr mice. We found that apoptosis was efficiently induced in activated naive T cells at 48 and 72 h after Ag restimulation (OVA peptide; 0.3 and 3 microM), whereas apoptosis was not significantly increased in activated primed T cells at 24-72 h after Ag restimulation. We further showed that the resistance to AICD in primed T cells was due to the decreased sensitivity to apoptosis induced by Fas-mediated signals, but TCR-mediated signaling equally activated both naive and primed T cells to induce Fas and Fas ligand expressions. Furthermore, we demonstrated that primed T cells expressed higher levels of Fas-associated death domain-like IL-1beta-converting enzyme inhibitory protein (FLIP), an inhibitor of Fas-mediated apoptosis, at 24-48 h after Ag restimulation than naive T cells. In addition, Bcl-2 expression was equally observed between activated naive and primed T cells after Ag restimulation. Thus, these results indicate that naive T cells are sensitive to Fas-mediated AICD and are easily deleted by Ag restimulation, while primed/memory T cells express higher levels of FLIP after Ag restimulation, are resistant to Fas-mediated AICD, and thus function as efficient effector cells for a longer period.  相似文献   

18.
Superoxide anion is a natural inhibitor of FAS-mediated cell death.   总被引:4,自引:0,他引:4       下载免费PDF全文
The cell surface receptor Fas is a major trigger of apoptosis. However, expression of the Fas receptor in many tumor cell types does not correlate with sensitivity to Fas-mediated cell death. Because a prooxidant state is a common feature of tumor cells, we examined the role of intracellular reactive oxygen intermediates in the regulation of Fas-mediated cytotoxicity. Our results show that an oxidative stress induced by increasing the intracellular superoxide anion (O2-) concentration can abrogate Fas-mediated apoptosis in cells which are constitutively sensitive to Fas. Conversely, an O2- concentration decrease is observed to sensitize cells which are naturally resistant to Fas signals. These observations suggest that intracellular O2- may play a key role in regulating cell sensitivity to a potentially lethal signal and provide tumor cells with a natural, inducible mechanism of resistance to Fas-mediated apoptosis.  相似文献   

19.
20.
Although induction of apoptosis by bovine ephemeral fever virus (BEFV) in several cell lines has been previously demonstrated by our laboratory, less information is available on the process of BEFV-induced apoptosis in terms of cellular pathways and specific proteins involved. In order to determine the step in viral life cycle at which apoptosis of infected cells is triggered, chemical and physical agents were used to block viral infection. Treatment of BHK-21 infected cells with ammonium chloride (NH4Cl) or cells infected with UV-inactivated BEFV was seen to abrogate virus apoptosis induction, suggesting that virus uncoating and gene expression are required for the induction of apoptosis. Using soluble death receptors Fc:Fas chimera to block Fas signaling, BEFV-induced apoptosis was inhibited in cells. BEFV infection of BHK-21 cells results in the Fas-dependent activation of caspase 8 and cleavage of Bid. This initiated the dissipation of the membrane potential and the release of cytochrome c but not AIF or Smac/DIABLO from mitochondrial into cytoplasm leading to activation of caspase 9. Combined activation of the death receptor and mitochondrial pathways results in activation of the downstream effecter caspase 3 leading to cleavage of PARP. Fas-mediated BEFV-induced apoptosis could be suppressed by the overexpression of Bcl-2 or by treatment with caspase inhibitors and soluble death receptors Fc:Fas chimera. Taken together, this study provided first evidence demonstrating that BEFV-induced apoptosis requires viral gene expression and occurs through the activation of Fas and mitochondrion-mediated caspase-dependent pathways. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号