首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deubiquitinating enzymes (DUBs) proteolytically cleave ubiquitin from ubiquitinated proteins, and inhibition of DUBs that rescue oncogenic proteins from proteasomal degradation is of emerging therapeutic interest. Recently, USP2 and UCH37 have been shown to deubiquitinate tumor-growth-promoting proteins, and other DUBs have been shown to be overexpressed in cancer cells. Therefore inhibition of DUBs is of interest as a potential therapeutic strategy for treating cancer. DUBs require the presence of properly folded ubiquitin protein in the substrate for efficient proteolysis, which precludes the use of synthetic peptide substrates in DUB activity assays. Because of the requirement for full-length ubiquitin, substrates suitable for use in fluorescent assays to identify or study DUB inhibitors have been difficult to prepare. We describe the development of a time-resolved fluorescence resonance energy transfer (FRET)-based DUB substrate that incorporates full-length ubiquitin that is site-specifically labeled using genetically encoded yellow fluorescent protein (YFP) and a chemically attached terbium donor. The intact substrate shows a high degree of FRET between terbium and YFP, whereas DUB-dependent cleavage leads to a decrease in FRET.  相似文献   

2.
Proteomics, the study of protein function on a global scale, will play an important role in furthering our understanding of gene functions, complex biological pathways, and discovery of novel drug targets. A number of techniques have been developed for proteomic studies to identify and analyze proteins, compare protein expression levels, and study protein-protein interactions. Recent developments have applied a DNA array-type approach to immobilize proteins on a surface for high-throughput analysis. Here we report the development and construction of protein chips using derivatized glass and nitrocellulose-coated slides and the employment of recombinant proteins fused with green and red fluorescent proteins for detection. Fluorescent signals were found to be proportional to the amount of arrayed proteins and could be readily detected with a conventional fluorescence slide scanner. This technique allows the investigation of protein-protein interactions without the need for additional labeling steps of probe proteins.  相似文献   

3.
Oxidative protein folding in the luminal compartment of the endoplasmic reticulum is thought to be mediated by a proteinaceous electron relay system composed by PDI and ER oxidoreductin 1 (Ero1), transferring electrons from the cysteinyl residues of substrate proteins to oxygen. However, recent observations revealed that Ero1 isoforms are dispensable. Endoplasmic reticulum is known as a generator and accumulator of low molecular weight oxidants; some of them have already been shown to promote oxidative folding. On the basis of these observations a new theory of oxidative folding is proposed where the oxidative power is provided by the stochastic contribution of prooxidants.  相似文献   

4.
The surprising complexity of peroxisome biogenesis   总被引:7,自引:0,他引:7  
Peroxisomes are small organelles with a single boundary membrane. All of their matrix proteins are nuclear-encoded, synthesized on free ribosomes in the cytosol, and post-translationally transported into the organelle. This may sound familiar, but in fact, peroxisome biogenesis is proving to be surprisingly unique. First, there are several classes of plant peroxisomes, each specialized for a different metabolic function and sequestering specific matrix enzymes. Second, although the mechanisms of peroxisomal protein import are conserved between the classes, multiple pathways of protein targeting and translocation have been defined. At least two different types of targeting signals direct proteins to the peroxisome matrix. The most common peroxisomal targeting signal is a tripeptide limited to the carboxyl terminus of the protein. Some peroxisomal proteins possess an amino-terminal signal which may be cleaved after import. Each targeting signal interacts with a different cytosolic receptor; other cytosolic factors or chaperones may also form a complex with the peroxisomal protein before it docks on the membrane. Peroxisomes have the unusual capacity to import proteins that are fully folded or assembled into oligomers. Although at least 20 proteins (mostly peroxins) are required for peroxisome biogenesis, the role of only a few of these have been determined. Future efforts will be directed towards an understanding of how these proteins interact and contribute to the complex process of protein import into peroxisomes.  相似文献   

5.
6.
Although GroE chaperonins and osmolytes had been used separately as protein folding aids, combining these two methods provides a considerable advantage for folding proteins that cannot fold with either osmolytes or chaperonins alone. This technique rapidly identifies superior folding solution conditions for a broad array of proteins that are difficult or impossible to fold by other methods. While testing the broad applicability of this technique, we have discovered that osmolytes greatly simplify the chaperonin reaction by eliminating the requirement for the co-chaperonin GroES which is normally involved in encapsulating folding proteins within the GroEL–GroES cavity. Therefore, combinations of soluble or immobilized GroEL, osmolytes and ATP or even ADP are sufficient to refold the test proteins. The first step in the chaperonin/osmolyte process is to form a stable long-lived chaperonin–substrate protein complex in the absence of nucleotide. In the second step, different osmolyte solutions are added along with nucleotides, thus forming a ‘folding array’ to identify superior folding conditions. The stable chaperonin–substrate protein complex can be concentrated or immobilized prior to osmolyte addition. This procedure prevents-off pathway aggregation during folding/refolding reactions and more importantly allows one to refold proteins at concentrations (~mg/ml) that are substantially higher than the critical aggregation concentration for given protein. This technique can be used for successful refolding of proteins from purified inclusion bodies. Recently, other investigators have used our chaperonin/osmolyte method to demonstrate that a mutant protein that misfolds in human disease can be rescued by GroEL/osmolyte system. Soluble or immobilized GroEL can be easily removed from the released folded protein using simple separation techniques. The method allows for isolation of folded monomeric or oligomeric proteins in quantities sufficient for X-ray crystallography or NMR structural determinations.  相似文献   

7.
Hydrophobic interactions between molecular chaperones and their nonnative substrates have been believed to be mainly responsible for both substrate recognition and stabilization against aggregation. However, the hydrophobic contact area between DnaK and its substrate proteins is very limited and other factors of DnaK for the substrate stabilization could not be excluded. Here, we covalently fused DnaK to the N-termini of aggregation-prone proteins in vivo. In the context of a fusion protein, DnaK has the ability to efficiently solubilize its linked proteins. The point mutation of the residue of DnaK critical for the substrate recognition and the deletion of the C-terminal substrate-binding domain did not have significant effect on the solubilizing ability of DnaK. The results imply that other factors of DnaK, distinct from the hydrophobic shielding of folding intermediates, also contributes to stabilization of its noncovalently bound substrates against aggregation. Elucidation of the nature of these factors would further enhance our understanding of the substrate stabilization of DnaK for expedited protein folding.  相似文献   

8.
Genetic evidence suggests that the high-affinity L-histidine transport in Salmonella typhimurium requires the participation of a periplasmic binding protein (histidine-binding protein J) and two other proteins (P and Q proteins). The histidine-binding protein J binds L-histidine as the first step in the high-affinity active transport of this amino acid across the cytoplasmic membrane. High-resolution proton nuclear magnetic resonance spectroscopy at 600 MHz is used to investigate the conformations of this protein in the absence and presence of substrate. Previous nuclear magnetic resonance results reported by this laboratory have shown that there are extensive spectral changes in this protein upon the addition of L-histidine. When resonances from individual amino acid residues of a protein can be resolved in the proton nuclear magnetic resonance spectrum, a great deal of detailed information about substrate-induced structural changes can be obtained. In order to gain a deeper insight into the nature of these structural changes, deuterated phenylalanine or tyrosine has been incorporated into the bacteria. Proton nuclear magnetic resonance spectra of selectively deuterated histidine-binding protein J were obtained and compared to the normal protein. Several of the proton resonances have been assigned to the various aromatic amino acid residues of this protein. A model for the high-affinity transport of L-histidine across the cytoplasmic membrane of S typhimurium is proposed. This model, which is a version of the pore model, assumes that both P and Q proteins are membrane-bound and that the interface between these two proteins forms the channel for the passage of substrate. The histidine-binding protein J serves as the “key” for the opening of the channel for the passage of L-histidine. In the absence of substrate, this channel or gate is closed owing to a lack of appropriate interactions among these three proteins. The channel can be opened upon receiving a specific signal from the “key”; namely, the substrate-induced conformational changes in the histidine-binding protein J molecule. This model is consistent with available experimental evidence for the high-affinity transport of L-histidine across the cytoplasmic membrane of S typhimurium.  相似文献   

9.
For high-throughput protein structural analysis, it is indispensable to develop a reliable protein overexpression system. Although many protein overexpression systems, such as that involving Escherichia coli cells, have been developed, the number of overexpressed proteins showing the same biological activities as those of the native proteins is limited. A novel wheat germ cell-free protein synthesis system was developed recently, and most of the proteins functioning in solution were synthesized as soluble forms. This suggests the applicability of this protein synthesis method to determination of the solution structures of functional proteins. To examine this possibility, we have synthesized two (15)N-labeled proteins and obtained (1)H-(15)N HSQC spectra for them. The structural analysis of these proteins has already progressed with an E. coli overexpression system, and (1)H-(15)N HSQC spectra for biologically active proteins have already been obtained. Comparing the spectra, we have shown that proteins synthesized with a wheat germ cell-free system have the proper protein folding and enough biological activity. This is the first experimental evidence of the applicability of the wheat germ cell-free protein synthesis system to high-throughput protein structural analysis.  相似文献   

10.
11.
The issue of amino acid depth in proteins gives important insights to our understanding of protein’s three-dimensional structure. There has already been much research done in mathematical and statistical sciences regarding the general definitions, properties and algorithms describing the particle depth of spatially extended systems. We constructed a method of calculating the amino acids depths and applied it to a set of 527 protein structures. We propose the introduction of amino acid depth tendency factors for three-dimensional structures of proteins. The depth tendency factors relate not only to the hydrophobicity indices but also to the electrostatic charge. We found a relationship between the protein size and the number of residues using the distance between the deepest residue and surface residues. We made a prediction regarding the number of residues on the surface of a protein, the deepest amino acid, and the average depth, all of which are fitted well to a linear functional relationship with the length of the protein. Finally, we have predicted the depths of multiple peptides in protein’s three-dimension structure. Electronic supplementary material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

12.
F-box蛋白家族的功能研究进展   总被引:5,自引:0,他引:5  
F-box蛋白是一类含有F-box基序(motif),在泛素介导的蛋白质水解过程中具有底物识别特性的蛋白质家族.这类蛋白质在细胞时相转换、信号传导、发育等多种生理过程中都具有重要功能.  相似文献   

13.
We have demonstrated the location of a cyclic AMP independent serine/threonine protein kinase (ecto-CIK) on the outer surface of mature goat spermatozoa. We purified and characterized the major physiological protein substrate (MPS) of ecto-CIK. 32P-labeled membrane proteins phosphorylated by endogenous ecto-CIK of intact cauda-epididymal spermatozoa was solubilized with 1% Triton X-100 and then fractionated by following several chromatographic techniques like Sephacryl S-300 molecular sieve chromatography, DEAE-cellulose ion-exchange chromatography and chromatofocussing. The MPS of ecto-CIK has been purified to apparent homogeneity and it was found to be a monomeric protein of 100 kDa. Three isoforms of MPS have been found with pI of 6.37, 6.05, and 5.14 and all these isoforms served as the specific substrate of ecto-CIK. The ecto-kinase has nearly 30 times greater affinity for MPS as compared to casein the most potent exogenous protein substrate. Addition of MPS (pI 5.14) antibody caused head-to-head sperm agglutination. The Fv/Fab fragment of anti-MPS caused significant inhibition of sperm motility. The data show that MPS is an ecto-protein localized on the sperm head. MPS may thus play an important role for the regulation of sperm-egg interaction.  相似文献   

14.
Although cell-free protein synthesis has been practiced for decades as a research tool, only recently have advances suggested its feasibility for commercial protein production. This focused review, based on the 2005 Amgen Award lecture, summarizes the relevant progress from the Swartz laboratory. When our program began, projected costs were much too high, proteins with disulfide bonds could not be folded effectively, and no economical scale-up technologies were available. By focusing on basic biochemical reactions and by controlling cell-free metabolism, these limitations have been methodically addressed. Amino acid supply has been stabilized and central metabolism activated to dramatically reduce substrate costs. Control of the sulfhydral redox potential has been gained and a robust disulfide isomerase added to facilitate oxidative protein folding. Finally, simple scale-up technologies have been developed. These advances not only suggest production feasibility for pharmaceutical proteins, they also provide enabling technology for producing patient-specific vaccines, for evolving new enzymes to enable biological hydrogen production from sunlight, and for developing new and highly effective water filters. Although many challenges remain, this newly expanded ability to activate and control protein production holds much promise for both research and commercial applications.  相似文献   

15.
Many research efforts in the last years have been directed towards understanding the factors determining protein misfolding and amyloid formation. Protein stability and amino acid composition have been identified as the two major factors in vitro. The research of our group has been focused on understanding the relationship between amino acid sequence and amyloid formation. Our approach has been the design of simple model systems that reproduce the biophysical properties of natural amyloids. An amyloid sequence pattern was extracted that can be used to detect amyloidogenic hexapeptide stretches in proteins. We have added evidence supporting that these amyloidogenic stretches can trigger amyloid formation by nonamyloidogenic proteins. Some experimental results in other amyloid proteins will be analyzed under the conclusions obtained in these studies. Our conclusions together with evidences from other groups suggest that amyloid formation is the result of the interplay between a decrease of protein stability, and the presence of highly amyloidogenic regions in proteins. As many of these results have been obtained in vitro, the challenge for the next years will be to demonstrate their validity in in vivo systems.  相似文献   

16.
There have been repeated observations that proteins are surprisingly robust to site mutations, enduring significant numbers of substitutions with little change in structure, stability, or function. These results are almost paradoxical in light of what is known about random heteropolymers and the sensitivity of their properties to seemingly trivial mutations. To address this discrepancy, the preservation of biological protein properties in the presence of mutation has been interpreted as indicating the independence of selective pressure on such properties. Such results also lead to the prediction that de novo protein design should be relatively easy, in contrast to what is observed. Here, we use a computational model with lattice proteins to demonstrate how this robustness can result from population dynamics during the evolutionary process. As a result, sequence plasticity may be a characteristic of evolutionarily derived proteins and not necessarily a property of designed proteins. This suggests that this robustness must be re-interpreted in evolutionary terms, and has consequences for our understanding of both in vivo and in vitro protein evolution.  相似文献   

17.
Various studies suggest that the hydrophobic effect plays a major role in driving the folding of proteins. In the past, however, it has been challenging to translate this understanding into a predictive, quantitative theory of how the full pattern of sequence hydrophobicity in a protein shapes functionally important features of its tertiary structure. Here, we extend and apply such a phenomenological theory of the sequence‐structure relationship in globular protein domains, which had previously been applied to the study of allosteric motion. In an effort to optimize parameters for the model, we first analyze the patterns of backbone burial found in single‐domain crystal structures, and discover that classic hydrophobicity scales derived from bulk physicochemical properties of amino acids are already nearly optimal for prediction of burial using the model. Subsequently, we apply the model to studying structural fluctuations in proteins and establish a means of identifying ligand‐binding and protein–protein interaction sites using this approach.  相似文献   

18.
Binding proteins, which are located in the periplasmic space of Gram-negative bacteria, are essential components of osmotic shock-sensitive active transport systems and Chemotaxis. Described briefly herein are the high resolution molecular structures of four binding proteins specific for (i) L-arabinose, (ii) sulphate, (iii) D-galactose, and (iv) leucine, isoleucine or valine which we have recently determined. The first three proteins contained bound substrates. Several novel substrate binding properties of the arabinose- and sulphate-binding proteins as revealed by structure refinement at 1.7 Å resolution are also presented. These results have profound significance in understanding both protein structures and substrate-protein interactions.  相似文献   

19.
20.
Mammalian spermatozoa have been shown to possess cAMP-dependent protein kinase (A-PK) and endogenous substrate proteins for this enzyme. A study of the kinase system was undertaken to determine changes that may be associated with sperm maturation by comparing immature testicular with mature cauda epididymal and ejaculated spermatozoa. Absolute activity levels of A-PK, stimulated over a concentration range of 10?9 to 10?5 M, was significantly greater in testicular than ejaculated spermatozoa. At an optimal cAMP concentration (10?6M), testicular spermatozoa had significantly greater amounts of cAMP-dependent protein kinase activity than did cauda or ejaculated spermatozoa. Electrophoretic analysis and autoradiography of NP-40-soluble protein extracts revealed the presence of two substrate proteins (Mr = 62,000 and 44,000) in all three types of spermatozoa. In addition, a phosphoprotein (Mr = 20,000) was detected in mature cauda and ejaculated but not immature testicular spermatozoa. The phosphorylation of these substrate proteins was both dose and time dependent. Examination of cyclic AMP phosphodiesterase activity revealed significantly higher levels in testicular than ejaculated spermatozoa. These results indicate marked alterations in cAMP-modulated protein phosphorylation and dephosphorylation systems in ram spermatozoa during epididymal maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号