首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have previously reported the isolation of a hydrophobic, type-II collagen-binding glycoprotein of molecular weight 31,000 (31,000-mol-wt protein) from chick chondrocyte membranes (Mollenhauer, J., and K. von der Mark, EMBO Eur. Mol. Biol. Organ. J., 2:45-50). The function of this protein in anchoring pericellular type II collagen to the chondrocyte surface was inferred from its ability to bind native type-II collagen either when detergent solubilized or when inserted into liposomes. In the present study we have used specific antibodies to localize this protein, which we now call anchorin CII, to the surface of chondrocytes in both cartilage sections, and in cell culture. In immunofluorescence studies of isolated chondrocytes we observed a dense, punctate distribution of anchorin CII on the cell surface when chondrocytes were enclosed by a pericellular type II collagen matrix. Removal of the pericellular matrix with trypsin also removed anchorin CII. The membrane protein character of anchorin CII was indicated by the demonstration of antibody-induced patching and capping on the chondrocyte surface at 22 degrees C and 37 degrees C, respectively. In monolayer culture, the amount of anchorin CII appeared reduced on flattened chondrocytes lacking a pericellular type II collagen matrix but was prominent upon intercellular cell processes. Fab' fragments prepared from either anchorin CII antiserum or an antiserum directed against the entire chondrocyte membrane inhibited the attachment of chondrocytes to a type II collagen substrate. In each case, the inhibition of attachment was neutralized by preincubation of Fab' fragments with purified anchorin CII.  相似文献   

2.
An integral membrane glycoprotein of pig intestinal microvilli which exists in two polypeptide forms [mol. wt. 140 K and 200 K as measured by SDS-polyacrylamide gel electrophoresis (SDS-PAGE)] was purified to homogeneity and characterized. The 200-K form is probably a precursor of the 140-K species. We have localized the glycoprotein by electron microscope immunochemistry using specific antibodies and determined its topological organization with respect to the membrane bilayer. Triton X-100 treatments which solubilize most other microvillar membrane glycoproteins from purified, closed, right-side out vesicles do not efficiently extract this protein. The protein can be partially solubilized from the detergent-insoluble residue, either by treatment with proteases (trypsin or papain) or by exposure to low ionic strength buffer in the presence of chelating agents and detergents. Once solubilized by papain or trypsin, the protein co-migrates on SDS-PAGE with the protein obtained by low ionic strength extraction. However, the form of the protein released by papain does not bind detergents and exhibits hydrophilic properties. Our observations are consistent with the 140-K protein having a small hydrophobic domain that anchors it to the microvillar membrane. The 140-K glycoprotein binds in vitro to a 110-K protein of the core cytoskeleton residue. These observations suggest that the 140-K glycoprotein may be a transmembrane protein which may in vivo provide attachment sites for direct or indirect association with polypeptides of the microvillus cytoskeleton.  相似文献   

3.
Type X collagen was extracted with 1 M NaCl and 10 mM dithiothreitol at neutral pH from fetal human growth plate cartilage and purified to homogeneity by gel filtration and anion-exchange chromatography. The purified protein migrates in SDS/polyacrylamide gels with an apparent Mr of 66,000 under reducing conditions, and as a high-Mr oligomer under non-reducing conditions. Purified collagenase digests most of the molecule; pepsin digestion at 4 degrees C decreases the Mr of the monomer to 53,000. A rabbit antiserum was raised against purified human type X collagen; the IgG fraction was specific for this collagen by criteria of ELISA and immunoblotting after absorption with collagen types I, II, VI, IX and XI. Immunohistological studies localized type X collagen exclusively in the zone of hypertrophic and calcifying cartilage.  相似文献   

4.
The effect of chick embryo extract on the phenotypic expression of differentiated chondrocytes has been studied in consideration of the fact that these cells are well characterized by certain specific cell products, such as type H proteochondroitin sulfate and type II collagen. In this study, we utilized floating chondrocytes derived from chick embryonic sterna, which can be cultured in suspension with no apparent change in the type of cell products for at least a period of eight weeks, as described in a previous paper (1). In the presence of chick embryo extract in the medium, the floating chondrocytes became attached to the bottom of the culture dish, and the attached cells took on a fibroblast-like appearance. Biochemical analyses of the proteochondroitin sulfate and collagen synthesized by the attached cells revealed that if the culture medium was renewed everyday, the cells having a fibroblast-like appearance continued to synthesize type H proteochondroitin sulfate and type II collagen. When however, the medium was replaced every other day, the synthesis of both proteochondroitin sulfate and collagen by the attached cells switched from the chondrocyte type to the fibroblast type, i.e. the synthesis of type M proteochondroitin sulfate and type I collagen, with little change in the fibroblast-like appearance. The results show that the morphological features of chondrocytes are not necessarily associated with the biochemical properties of these cells, and further suggest that, in chick embryo extract, there is no modulator capable of acting directly on the chondrocytes to bring about phenotypic changes with respect to the synthesis of collagen and proteoglycans.  相似文献   

5.
The aim of this work was to prepare specific antibodies against skin and bone collagen (type I) and cartilage collagen (type II) for the study of differential collagen synthesis during development of the chick embryo by immunofluorescence. Antibodies against native type I collagen from chick cranial bone, and native pepsin-extracted type II collagen from chick sternal cartilage were raised in rabbits, rats, and guinea pigs. The antibodies, purified by cross-absorption on the heterologous collagen type, followed by absorption and elution from the homologous collagen type, were specific according to passive hemagglutination tests and indirect immunofluorescence staining of chick bone and cartilage tissues. Antibodies specific to type I collagen labeled bone trabeculae from tibia and perichondrium from sternal cartilage. Antibodies specific to type II collagen stained chondrocytes of sternal and epiphyseal cartilage, whereas fluorescence with intercellular cartilage collagen was obtained only after treatment with hyaluronidase. Applying type II collagen antibodies to sections of chick embryos, the earliest cartilage collagen found was in the notochord, at stage 15, followed by vertebral collagen secreted by sclerotome cells adjacent to the notochord from stage 25 onwards. Type I collagen was found in the dermatomal myotomal plate and presumptive dermis at stage 17, in limb mesenchyme at stage 24, and in the perichondrium of tibiae at stage 31.  相似文献   

6.
Interaction of intact type VI collagen with hyaluronan.   总被引:5,自引:0,他引:5  
The capacity of non-pepsinyzed type VI collagen to bind to hyaluronan was investigated. Type VI collagen was extracted from bovine meniscal cartilage with 6 M GuHCl and purified by extraction of PEG precipitates and dissociative Sephacryl S-500 HR chromatography. Type VI collagen, detected with a monoclonal antibody, bound in 0.5 M NaCl to hyaluronan-coated micro-wells, the degree of binding being higher at 37 degrees C than 23 degrees C and 4 degrees C. Incubation of type VI collagen in competitive inhibition assays with testicular hyaluronidase digests of hyaluronan in liquid phase, reduced binding of the protein to hyaluronan-coated microwells to background levels. Thus, non-pepsinyzed type VI collagen binds to hyaluronan in vitro.  相似文献   

7.
The lectin Maclura pomifera agglutinin (MPA) binds to the apical surface of pulmonary alveolar type II but not type I cells. We show that MPA binds to a single membrane glycoprotein in type II cells with a molecular mass of 230 kDa in the rabbit and 200 kDa in the rat. The glycoprotein has an abundance of terminal N-acetylgalactosamine residues. It is a hydrophilic integral membrane protein suggesting that it has an extensive extramembrane domain or is an ion channel. The glycoprotein is similar in rat and rabbit, with the exception that the rat glycoprotein is partially sialylated and is trypsin sensitive. The MPA-binding glycoprotein represents a new integral membrane marker of the apical domain of the pulmonary alveolar type II cell.  相似文献   

8.
A basement membrane-associated glycoprotein from skeletal muscle   总被引:2,自引:0,他引:2  
We have isolated a major glycoprotein that appears to be associated with rat skeletal muscle basement membrane. We determined that the glycoprotein was part of the muscle cell surface complex when we found it to be enriched in preparations of muscle ghosts. We isolate the glycoprotein from homogenized muscle preextracted with 4 M and 8 M urea. It elutes as a major component in the presence of 8 M urea/50 mM 2-mercaptoethanol. Its apparent molecular weight on sodium dodecyl sulfate gels is 130,000. Amino acid analysis indicates that it is not a collagen but that it does contain small amounts of hydroxyproline and hydroxylysine. There may be collagenous domains in the glycoprotein molecule, for it is cleaved into three fragments by purified bacterial collagenase. Immunoperoxidase staining confirms that the 130,000-dalton protein is localized at the surface of adult skeletal muscle cells. It is probably a general basement membrane-associated glycoprotein because we found material immunologically cross-reactive with the muscle glycoprotein in basement membrane regions of kidney, liver, brain, and small intestine. We have shown the glycoprotein to be distinct from fibronectin, laminin, and types I, III, IV, and V collagens in enzyme-linked immunosorbent assays.  相似文献   

9.
Hyaluronic acid binding protein (HABP) has been purified to homogeneity from normal adult rat kidney by hyaluronate Sepharose affinity chromatography, and its apparent molecular mass was found to be 68 kDa. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of HABP under reducing as well as nonreducing conditions revealed a single protein band of 34 kDa, thus indicating that kidney HABP is a homodimer and lacks interchain disulfide bond. Its glycoprotein nature was demonstrated by Con-A binding analysis. The pI value of kidney HABP was 6, indicating its acidic nature. Polyclonal antibodies were raised against it, and the monospecificity of the antibodies towards HABP was confirmed by Western blot analysis of tissue extracts. Immunoblot analysis has elucidated the occurrence of this glycoprotein in various tissues. Moreover, HABP present in these tissues are shown to be structurally and immunologically identical. However, this glycoprotein is antigenically distinct from other well characterized extracellular proteins, e.g., fibronectin, laminin and collagen type IV. With the help of enzyme-linked immunosorbent assay (ELISA) and iodinated [125I]HABP, it has been shown that kidney HABP binds specifically to hyaluronic acid (HA) amongst all the glycosaminoglycans (GAGs), however, HABP can interact with other matrix proteins, e.g., laminin, fibronectin, and collagen type IV. The apparent dissociation constants of HABP for HA, laminin, fibronectin, and collagen type IV were approximately in the range of 10(-9) M, and kinetic analysis showed that these binding interactions were complex and of positive cooperative nature. Indirect immunofluorescence staining demonstrated its localization on human fetus lung fibroblast cell surface. Detection of 34 kDa HABP in the serum-free supernatant culture medium of fibroblasts was further evident by immunoblot analysis, thus confirming the secretory nature of HABP and its occurrence in the extracellular matrix.  相似文献   

10.
Summary Collagen types II and X mRNAs have been demonstrated simultaneously in newly formed hypertrophic chondrocytes of embryonic chick vertebral cartilage using a double-fluorescence in situ hybridization technique. Digoxigenin- and biotin-labelled type-specific collagen II and X cDNA probes were used. In the embryonic chick vertebra at stage 45, two different fluorescence signals (Fluorescein isothiocyanate and Rhodamine) - one for collagen type II mRNA, the other for type X mRNA - showed differential distribution of the two collagen mRNAs in the proliferating and hypertrophic chondrocyte zones. Several layers of newly formed hypertrophic chondrocytes expressing both collagen types II and X genes were identified in the same section as two different fluorescent colour signals. Low levels of fluorescent signals for collagen type II mRNA were also detected in the hypertrophic chondrocyte zone. Cytological identification of maturing chondrocyte phenotypes, expressing collagen mRNAs, is easier in sections processed by non-radioactive in situ hybridization than in those subjected to radioactive in situ hybridization using 3H-labelled cDNA probes.This study demonstrates that double-fluorescence in situ hybridization is a useful tool for simultaneously detecting the expression of two collagen genes in the same chondrocyte population.  相似文献   

11.
A platelet membrane glycoprotein, 61 kDa, has been identified, which binds specifically to insoluble collagen. The detection of this protein was accomplished by incubating radiolabeled Triton-solubilized platelet supernatant with insoluble collagen, and, after washing the collagen pellet, extracting the 61-kDa glycoprotein from the pellet with sodium dodecyl sulfate buffer. The optimal conditions for specific binding were incubation of 120 micrograms of total platelet supernatant protein with 2 mg of collagen at 4 degrees C for 0.5 h in 0.5 ml of the incubating buffer (20 mM Tris, 150 mM NaCl, 2 mM CaCl2, 1 mM MgCl2, and 0.2% Triton, pH 7.4). The 61-kDa glycoprotein is cleaved by trypsin into a major peptide (44 kDa) and a smaller peptide(s) linked together by disulfide bonds in a molecule which still binds to collagen. When intact platelets are treated first with trypsin and then with dithiothreitol, the 44-kDa peptide is released and was shown to bind to collagen. We conclude that the 61-kDa glycoprotein is a platelet membrane protein which specifically interacts through its extracellular domain with insoluble collagen, and, thus, must be considered as a possible component of the initial platelet-matrix adhesion process which leads to platelet aggregation in vivo.  相似文献   

12.
A 120 kDa glycoprotein in the larval midgut membrane of the Iepidopteran Manduca sexta, previously identified as a putative receptor for Bacillus thuringiensis CrylA(c) δ-endotoxin, has been purified by a combination of protoxin affinity Chromatography and anion exchange chromatography. In immunoblotting experiments, the purified glycoprotein has the characteristics predicted of the receptor: it binds CrylA(c) toxin In the presence of GlcNAc but not GalNAc; it binds the lectin SBA; but it does not bind CrylB toxin. N-terminal and internal amino acid sequences obtained from the protein show a high degree of similarity with the enzyme aminopeptidase N (EC 3.4.11.2). When assayed for aminopeptidase activity, purified receptor preparations were enriched 5.3-fold compared to M. sexta brush border membrane vesicles. We propose that the receptor for CrylA(c) toxin in the brush border membrane of the lepidopteran M. sexta is the metalloprotease aminopeptidase N.  相似文献   

13.
Extracellular matrix formation by chondrocytes in monolayer culture   总被引:10,自引:6,他引:4       下载免费PDF全文
In previous studies were have reported on the secretion and extracellular deposition of type II collagen and fibronectin (Dessau et al., 1978, J. Cell Biol., 79:342-355) and chondroitin sulfate proteoglycan (CSPG) (Vertel and Dorfman, 1979, Proc. Natl. Acad. Sci. U. S. A. 76:1261-1264) in chondrocyte cultures. This study describes a combined effort to compare sequence and pattern of secretion and deposition of all three macromolecules in the same chondrocyte culture experiment. By immunofluorescence labeling experiments, we demonstrate that type II collagen, fibronectin, and CSPG reappear on the cell surface after enzymatic release of chondrocytes from embryonic chick cartilage but develop different patterns in the pericellular matrix. When chondrocytes spread on the culture dish, CSPG is deposited in the extracellular space as an amorphous mass and fibronectin forms fine, intercellular strands, whereas type II collagen disappears from the chondrocyte surface and remains absent from the extracellular space in early cultures. Only after cells in the center of chondrocyte colonies shape reassume spherical shape does the immunofluorescence reveal type II collagen in the refractile matrix characteristic of differentiated cartilage. By immunofluorescence double staining of the newly formed cartilage matrix, we demonstrate that CSPG spreads farther out into the extracellular space that type II collagen. Fibronectin finally disappears from the cartilage matrix.  相似文献   

14.
J A Finlay  M Strom  D E Ong  H F DeLuca 《Biochemistry》1990,29(20):4914-4921
Previously we purified and sequenced an 18-kDa chick duodenal protein that was modulated by 1,25-dihydroxyvitamin D3. The N-terminus of this protein has striking sequence homology to cellular retinol binding protein type II (CRBP II). Furthermore, this purified chick protein binds retinol. Antibodies have now been generated to the chick protein and used for immunoblot analysis to demonstrate that the chick protein has molecular weight, tissue distribution, and subcellular localization similar to rat CRBP II. These antibodies also cross-reacted with rat CRBP II. Antibodies to rat CRBP II cross-react with the chick protein. Northern analysis using a cDNA probe for rat CRBP II showed a single 860 base pair mRNA in both chick and rat intestinal RNA preparations. These results demonstrate that the 1,25-dihydroxyvitamin D3 modulated protein in chick embryonic organ culture is chick CRBP II. Pulse-chase experiments in chick embryonic duodenal organ culture strongly suggest that 1,25-dihydroxyvitamin D3 markedly decreases the synthesis of CRBP II, while not changing the degradation rate. The concentration of 1,25-dihydroxyvitamin D3 required for the decrease in CRBP II synthesis is approximately that required to stimulate calcium uptake into embryonic chick duodenal organ cultures.  相似文献   

15.
A disulfide-cross-linked collagen has been extracted with neutral salt solutions from organ cultures of embryonic chick sternal cartilage. This collagen, which we term pM collagen, is presumed to be the native extracellular precursor molecule to disulfide-cross-linked collagen fragments recently described. Cleavage of pM collagen under native conditions with pepsin gives rise to the collagen fragments M1 and M2, which had also been isolated from pepsin extracts of chick hyaline cartilage [K. von der Mark, M. van Menxel & H. Wiedemann (1982) Eur. J. Biochem. 124, 57-62]. Native pM collagen was purified by DEAE-cellulose chromatography and agarose gel filtration. On agarose and following polyacrylamide gel electrophoresis, the unreduced molecule migrates with an apparent Mr of 300 000. Reduction of disulfide bridges produces two subunits with Mr 80 000 (pMa) and 60 000 (pMb) when compared with collagen standards. Cyanogen bromide cleavage of pMa and pMb, excised from dodecyl sulfate gels, resulted in different peptide maps, indicating that both components are genetically distinct polypeptide chains. The occasional appearance of the unreduced pM collagen as a doublet band on dodecyl sulfate gels and the observation that pMa and pMb occur in non-stoichiometric ratios suggests that pMa and pMb form separate native molecules, although their incorporation into a single pM molecule cannot be excluded. Native pM collagen was completely digested with bacterial collagenase, and contained hydroxyproline and proline in a ratio of 1.15:1, indicating the absence of significant non-collagenous domains. Thus it represents, despite several pepsinlabile sites, more likely a largely triplehelical, processed form of collagen rather than a procollagen-like molecule containing globular domains. Processing of pM collagen to M1 and M2 fragments or other intermediate forms was not observed in cartilage organ culture or in chondrocyte cell cultures within 18 h.  相似文献   

16.
Neural cells in culture (NG-108, PC12, chick dorsal root ganglion, chick spinal cord, and rat astrocytes) bind laminin with an apparent Kd of congruent to 10(-9) M. Laminin affinity chromatography of chick brain membranes washed with 150 mM NaCl and eluted with 0.2 M glycine buffer, pH 3.5, yields a single protein with an apparent molecular mass of 67 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Isoelectric focusing and peptide mapping indicate that the 67-kDa protein is distinct from bovine serum albumin (68 kDa) but indistinguishable from high affinity laminin receptors isolated from skeletal muscle. After electroblotting onto nitrocellulose paper and probing with 125I-laminin, this putative laminin receptor binds laminin specifically (100 ng/ml). A second protein (congruent to 120-140 kDa) is also detected with 125I-laminin (100 ng/ml) in the laminin affinity-purified membrane proteins. Both 67- and congruent to 120-140-kDa proteins can be laminin affinity-purified from cultures enriched for neurons (greater than 90%) following metabolic labeling with [35S]methionine. Our data suggest that neural cells (dorsal root ganglion, central nervous system neurons, astrocytes, and several neural cell lines) have high affinity binding sites for laminin and that two membrane proteins, 67- and congruent to 120-140-kDa, are responsible at least in part for this binding.  相似文献   

17.
Chondronectin interactions with proteoglycan   总被引:1,自引:0,他引:1  
We have investigated whether proteoglycans are involved in the attachment of embryonic chick chondrocytes to type II collagen. Chondroitin sulfate proteoglycan, when added exogenously, promotes the binding of chondronectin, the chondrocyte attachment factor, to type II collagen substrates and thereby stimulates chondrocyte adhesion. Blockage of endogenous proteoglycan synthesis with beta-xylosides prevents chondronectin-mediated chondrocyte attachment, confirming that proteoglycan is required. The intact proteoglycan must be present since chondroitin sulfate glycosaminoglycans did not promote chondronectin-mediated cell attachment but, rather, inhibited it in a dose-dependent manner. This inhibition, however, could be overcome with excess exogenous proteoglycan. Consequently, chondronectin interacts with proteoglycan and then the complex interacts with the collagen substrate and with the cell surface to promote cell adhesion. Further evidence for a direct interaction of chondronectin with the glycosaminoglycan portion of the proteoglycan is the selective binding of chondronectin to dextran-Sepharose, dextran having been shown to inhibit attachment to an extent similar to that of chondroitin sulfate.  相似文献   

18.
The dedifferentiation of chondrocytes in culture is classically associated with a transition from a rounded to a spread morphology. However, the loss of chondroitin sulfate proteoglycan (CSPG) and type II collagen gene expression (markers of the differentiated chondrocyte) does not occur for all polygonal or fibroblast-like cells at the same stage of culture. Furthermore, it has been demonstrated that retinoic acid-dedifferentiated chondrocytes can reexpress type II collagen if treated by the microfilament disruptive drug dihydrocytochalasin B, without a return to the spherical shape. In the present study, we have investigated by fluorescent double-staining whether the synthesis of both CSPG and type II collagen by dedifferentiating chick chondrocytes in low density cultures is dependent on a type of actin organization. We report that the synthesis of CSPG and type II collagen synthesis is coincident with the presence of a faint microfibrillar actin architecture but is absent in chondrocytes showing well defined actin cables. This correlation was observed independently of the shapes exhibited by the cells. Moreover, type I collagen (marker of the dedifferentiated chondrocyte) is synthesized mainly in cells showing large actin cables. This study, performed in the absence of drugs, suggests that actin organization, rather than changes in cell shape, is involved in modulating the chondrogenic phenotype in vitro.  相似文献   

19.
Osteogenin, an extracellular matrix component of bone, is a heparin binding differentiation factor that initiates endochondral bone formation in rats when implanted subcutaneously with an insoluble collagenous matrix. We have examined the interaction of osteogenin with various extracellular matrix components including basement membranes. Osteogenin, purified from bovine bone, binds avidly to type IV collagen and to a lesser extent to both type I and IX collagens. Osteogenin binds equally well to both native and denatured type IV collagen. Both alpha 1 and alpha 2 chains of type IV collagen are recognized by osteogenin. Osteogenin binds to a collagen IV affinity column, and is eluted by 6.0 M urea with 1 M NaCl, pH 7.4, and the eluate contained the osteogenic activity as demonstrated in vivo. Binding of osteogenin to collagen IV is not influenced by either laminin or fibronectin. These results imply that osteogenin binding to extracellular matrix components including collagens I and IV and heparin may have physiological relevance, and such interactions may modulate its local action.  相似文献   

20.
Analyses were made of the minor collagens synthesized by cultures of chondrocytes derived from 14-day chick embryo sterna. Comparisons were made between control cultures, cultures grown for 9 days in 5-bromo-2'-deoxyuridine (BrdU) and clones of chondrocytes grown to senescence. Separation of minor collagens from interstitial collagens was achieved by differential salt precipitation in the presence of carrier collagens in acid conditions. The precipitate at 0.9 M NaCl 0.5 M acetic acid from control cultures was shown by CNBr peptide analysis to contain only the alpha 1(II) chain of type II collagen, whereas after BrdU treatment or growth to senescence synthesis of only alpha 1(I) and alpha 2(I) chains occurred. The synthesis of type III collagen was not detected. Analysis of the precipitate at 2.0 M NaCl, 0.5 M HAc from control cultures demonstrated the synthesis of 1 alpha, 2 alpha and 3 alpha chains together with the synthesis of short chain (SC) collagen of Mr 43000 after pepsin digestion. After BrdU treatment or growth to senescence alpha chains were isolated which possessed the migration positions on polyacrylamide gel electrophoresis (PAGE), or the elution positions on CM-cellulose chromatography, of the alpha 1(V) and alpha 2(V) chains of type V collagen. In addition, for BrdU-treated but not for control cultures, intracellular immunofluorescent staining was observed with a monoclonal antibody which specifically recognizes an epitope present in the triple helix of type V collagen. Synthesis of short chain (SC) collagen was not detected after BrdU treatment or growth to senescence. These results suggest that chick chondrocytes grown in conditions known to cause switching of collagen synthesis from type II to type I collagen also undergo a switch from the synthesis of 1 alpha, 2 alpha and 3 alpha chains to the synthesis of the alpha 1(V) and alpha 2(V) chains of type V collagen. It appears that there are several cartilage-specific collagens which together undergo a regulatory control to the synthesis of collagens typical of other connective tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号