共查询到20条相似文献,搜索用时 9 毫秒
1.
The mitotic spindle is made of microtubules (MTs) nucleated through different pathways involving the centrosomes, the chromosomes or the walls of pre-existing MTs. MCRS1 is a RanGTP target that specifically associates with the chromosome-driven MTs protecting them from MT depolymerases. MCRS1 is also needed for the control of kinetochore fiber (K-fiber) MT minus-ends dynamics in metaphase. Here, we investigated the regulation of MCRS1 activity in M-phase. We show that MCRS1 is phosphorylated by the Aurora-A kinase in mitosis on Ser35/36. Although this phosphorylation has no role on MCRS1 localization to chromosomal MTs and K-fiber minus-ends, we show that it regulates MCRS1 activity in mitosis. We conclude that Aurora-A activity is particularly important in the tuning of K-fiber minus-ends dynamics in mitosis. 相似文献
2.
Suzanne Vigneron Estelle Brioudes Andrew Burgess Jean‐Claude Labbé Anna Castro 《The EMBO journal》2009,28(18):2786-2793
Greatwall (GW) is a new kinase that has an important function in the activation and the maintenance of cyclin B–Cdc2 activity. Although the mechanism by which it induces this effect is unknown, it has been suggested that GW could maintain cyclin B–Cdc2 activity by regulating its activation loop. Using Xenopus egg extracts, we show that GW depletion promotes mitotic exit, even in the presence of a high cyclin B–Cdc2 activity by inducing dephosphorylation of mitotic substrates. These results indicate that GW does not maintain the mitotic state by regulating the cyclin B–Cdc2 activation loop but by regulating a phosphatase. This phosphatase is PP2A; we show that (1) PP2A binds GW, (2) the inhibition or the specific depletion of this phosphatase from mitotic extracts rescues the phenotype induced by GW inactivation and (3) the PP2A‐dependent dephosphorylation of cyclin B–Cdc2 substrates is increased in GW‐depleted Xenopus egg extracts. These results suggest that mitotic entry and maintenance is not only mediated by the activation of cyclin B–Cdc2 but also by the regulation of PP2A by GW. 相似文献
3.
Distinct roles of PP1 and PP2A-like phosphatases in control of microtubule dynamics during mitosis. 总被引:11,自引:2,他引:11 下载免费PDF全文
R Tournebize S S Andersen F Verde M Dorée E Karsenti A A Hyman 《The EMBO journal》1997,16(18):5537-5549
Assembly of a mitotic spindle requires the accurate regulation of microtubule dynamics which is accomplished, at least in part, by phosphorylation-dephosphorylation reactions. Here we have investigated the role of serine-threonine phosphatases in the control of microtubule dynamics using specific inhibitors in Xenopus egg extracts. Type 2A phosphatases are required to maintain the short steady-state length of microtubules in mitosis by regulating the level of microtubule catastrophes, in part by controlling the the microtubule-destabilizing activity and phosphorylation of Op18/stathmin. Type 1 phosphatases are only required for control of microtubule dynamics during the transitions into and out of mitosis. Thus, although both type 2A and type 1 phosphatases are involved in the regulation of microtubule dynamics, they have distinct, non-overlapping roles. 相似文献
4.
Drosophila Aurora-A is required for centrosome maturation and actin-dependent asymmetric protein localization during mitosis 总被引:9,自引:0,他引:9
BACKGROUND: During asymmetric cell division in the Drosophila nervous system, Numb segregates into one of two daughter cells where it is required for the establishment of the correct cell fate. Numb is uniformly cortical in interphase, but in late prophase, the protein concentrates in the cortical area overlying one of two centrosomes in an actin/myosin-dependent manner. What triggers the asymmetric localization of Numb at the onset of mitosis is unclear. RESULTS: We show here that the mitotic kinase Aurora-A is required for the asymmetric localization of Numb. In Drosophila sensory organ precursor (SOP) cells mutant for the aurora-A allele aurA(37), Numb is uniformly localized around the cell cortex during mitosis and segregates into both daughter cells, leading to cell fate transformations in the SOP lineage. aurA(37) mutant cells also fail to recruit Centrosomin (Cnn) and gamma-Tubulin to centrosomes during mitosis, leading to spindle morphology defects. However, Numb still localizes asymmetrically in cnn mutants or after disruption of microtubules, indicating that there are two independent functions for Aurora-A in centrosome maturation and asymmetric protein localization during mitosis. Using photobleaching of a GFP-Aurora fusion protein, we show that two rapidly exchanging pools of Aurora-A are present in the cytoplasm and at the centrosome and might carry out these two functions. CONCLUSIONS: Our results suggest that activation of the Aurora-A kinase at the onset of mitosis is required for the actin-dependent asymmetric localization of Numb. Aurora-A is also involved in centrosome maturation and spindle assembly, indicating that it regulates both actin- and microtubule-dependent processes in mitotic cells. 相似文献
5.
Calmodulin activation of Aurora-A kinase (AURKA) is required during ciliary disassembly and in mitosis 总被引:2,自引:0,他引:2
Plotnikova OV Nikonova AS Loskutov YV Kozyulina PY Pugacheva EN Golemis EA 《Molecular biology of the cell》2012,23(14):2658-2670
The centrosomal Aurora-A kinase (AURKA) regulates mitotic progression, and overexpression and hyperactivation of AURKA commonly promotes genomic instability in many tumors. Although most studies of AURKA focus on its role in mitosis, some recent work identified unexpected nonmitotic activities of AURKA. Among these, a role for basal body-localized AURKA in regulating ciliary disassembly in interphase cells has highlighted a role in regulating cellular responsiveness to growth factors and mechanical cues. The mechanism of AURKA activation involves interactions with multiple partner proteins and is not well understood, particularly in interphase cells. We show here that AURKA activation at the basal body in ciliary disassembly requires interactions with Ca(2+) and calmodulin (CaM) and that Ca(2+)/CaM are important mediators of the ciliary disassembly process. We also show that Ca(2+)/CaM binding is required for AURKA activation in mitosis and that inhibition of CaM activity reduces interaction between AURKA and its activator, NEDD9. Finally, mutated derivatives of AURKA impaired for CaM binding and/or CaM-dependent activation cause defects in mitotic progression, cytokinesis, and ciliary resorption. These results define Ca(2+)/CaM as important regulators of AURKA activation in mitotic and nonmitotic signaling. 相似文献
6.
《Cell cycle (Georgetown, Tex.)》2013,12(3):296-303
Aurora-A and Plk1 are centrosomal kinases involved in centrosome maturation and spindle assembly. The microtubule-binding protein TPX2 interacts with, and activates, Aurora-A. Here we have used RNA interference-mediated inactivation to investigate whether Aurora-A, Plk1 and TPX2 act independently or are part of one signalling cascade in spindle formation in mammalian cells. We have identified both specific, and overlapping, roles of each single regulator in centrosome maturation and spindle formation: (i) Aurora-A and TPX2 are required for centriole cohesion and spindle bipolarity; (ii) TPX2, besides its known role in microtubule organization, is also involved in centrosome maturation; (iii) finally, Plk1 controls the localization of Aurora-A to centrosomes, as well as TPX2 recruitment to microtubules. Based on these results therefore a hierachical functional relation between Plk1 and the Aurora-A/TPX2 pathway emerges. 相似文献
7.
Ezgi Kunttas‐Tatli Anasua Bose Bhaskar Kahali Clifton P. Bishop Ashok P. Bidwai 《Genesis (New York, N.Y. : 2000)》2009,47(10):647-658
Repression by E(spl)M8 during inhibitory Notch (N) signaling (lateral inhibition) is regulated, in part, by protein kinase CK2, but the involvement of a phosphatase has been unclear. The studies we report here employ Tik, a unique dominant‐negative (DN) mutation in the catalytic subunit of CK2, in a Gal4‐UAS based assay for impaired lateral inhibition. Specifically, overexpression of Tik elicits ectopic bristles in N+ flies and suppresses the retinal defects of the gain‐of‐function allele Nspl. Functional dissection of the two substitutions in Tik (M161K and E165D), suggests that both mutations contribute to its DN effects. While the former replacement compromises CK2 activity by impairing ATP‐binding, the latter affects a conserved motif implicated in binding the phosphatase PP2A. Accordingly, overexpression of microtubule star (mts), the PP2A catalytic subunit closely mimics the phenotypic effects of loss of CK2 functions in N+ or Nspl flies, and elicits notched wings, a characteristic of N mutations. Our findings suggest antagonistic roles for CK2 and PP2A during inhibitory N signaling. genesis 47:647–658, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
8.
Yumi Ueki Michael A Hadders Melanie B Weisser Isha Nasa Paula SoteloParrilla Lauren E Cressey Tanmay Gupta Emil P T Hertz Thomas Kruse Guillermo Montoya A Arockia Jeyaprakash Arminja Kettenbach Susanne M A Lens Jakob Nilsson 《EMBO reports》2021,22(7)
The shugoshin proteins are universal protectors of centromeric cohesin during mitosis and meiosis. The binding of human hSgo1 to the PP2A‐B56 phosphatase through a coiled‐coil (CC) region mediates cohesion protection during mitosis. Here we undertook a structure function analysis of the PP2A‐B56‐hSgo1 complex, revealing unanticipated aspects of complex formation and function. We establish that a highly conserved pocket on the B56 regulatory subunit is required for hSgo1 binding and cohesion protection during mitosis in human somatic cells. Consistent with this, we show that hSgo1 blocks the binding of PP2A‐B56 substrates containing a canonical B56 binding motif. We find that PP2A‐B56 bound to hSgo1 dephosphorylates Cdk1 sites on hSgo1 itself to modulate cohesin interactions. Collectively our work provides important insight into cohesion protection during mitosis. 相似文献
9.
Touré A Mzali R Liot C Seguin L Morin L Crouin C Chen-Yang I Tsay YG Dorseuil O Gacon G Bertoglio J 《FEBS letters》2008,582(8):1182-1188
MgcRacGAP, a Rho GAP essential to cytokinesis, works both as a Rho GTPase regulator and as a scaffolding protein. MgcRacGAP interacts with MKLP1 to form the centralspindlin complex and associates with the RhoGEF Ect2. The GAP activity of MgcRacGAP is regulated by Aurora B phosphorylation. We have isolated B56epsilon, a PP2A regulatory subunit, as a new MgcRacGAP partner. We report here that (i) MgcRacGAP is phosphorylated by Aurora B and Cdk1, (ii) PP2A dephosphorylates Aurora B and Cdk1 phosphorylated sites and (iii) inhibition of PP2A abrogates MgcRacGAP/Ect2 interaction. Therefore, PP2A may regulate cytokinesis by dephosphorylating MgcRacGAP and its interacting partners. 相似文献
10.
11.
S Giovinazzi V M Morozov M K Summers W C Reinhold A M Ishov 《Cell death and differentiation》2013,20(5):721-731
A large number of patients are resistant to taxane-based chemotherapy. Functional mitotic checkpoints are essential for taxane sensitivity. Thus, mitotic regulators are potential markers for therapy response and could be targeted for anticancer therapy. In this study, we identified a novel function of ubiquitin (Ub)-specific processing protease-7 (USP7) that interacts and cooperates with protein death domain-associated protein (Daxx) in the regulation of mitosis and taxane resistance. Depletion of USP7 impairs mitotic progression, stabilizes cyclin B and reduces stability of the mitotic E3 Ub ligase, checkpoint with forkhead and Ring-finger (CHFR). Consequently, cells with depleted USP7 accumulate Aurora-A kinase, a CHFR substrate, thus elevating multipolar mitoses. We further show that these effects are independent of the USP7 substrate p53. Thus, USP7 and Daxx are necessary to regulate proper execution of mitosis, partially via regulation of CHFR and Aurora-A kinase stability. Results from colony formation assay, in silico analysis across the NCI60 platform and in breast cancer patients suggest that USP7 levels inversely correlate with response to taxanes, pointing at the USP7 protein as a potential predictive factor for taxane response in cancer patients. In addition, we demonstrated that inhibition of Aurora-A attenuates USP7-mediated taxane resistance, suggesting that combinatorial drug regimens of Taxol and Aurora-A inhibitors may improve the outcome of chemotherapy response in cancer patients resistant to taxane treatment. Finally, our study offers novel insights on USP7 inhibition as cancer therapy. 相似文献
12.
Phosphorylation regulates the dynamic interaction of RCC1 with chromosomes during mitosis 总被引:6,自引:0,他引:6
Hutchins JR Moore WJ Hood FE Wilson JS Andrews PD Swedlow JR Clarke PR 《Current biology : CB》2004,14(12):1099-1104
The small GTPase Ran has multiple roles during the cell division cycle, including nuclear transport, mitotic spindle assembly, and nuclear envelope formation. However, regulation of Ran during cell division is poorly understood. Ran-GTP is generated by the guanine nucleotide exchange factor RCC1, the localization of which to chromosomes is necessary for the fidelity of mitosis in human cells. Using photobleaching techniques, we show that the chromosomal interaction of human RCC1 fused to green fluorescent protein (GFP) changes during progression through mitosis by being highly dynamic during metaphase and more stable toward the end of mitosis. The interaction of RCC1 with chromosomes involves the interface of RCC1 with Ran and requires an N-terminal region containing a nuclear localization signal. We show that this region contains sites phosphorylated by mitotic protein kinases. One site, serine 11, is targeted by CDK1/cyclin B and is phosphorylated in mitotic human cells. Phosphorylation of the N-terminal region of RCC1 inhibits its binding to importin alpha/beta and maintains the mobility of RCC1 during metaphase. This mechanism may be important for the localized generation of Ran-GTP on chromatin after nuclear envelope breakdown and may play a role in the coordination of progression through mitosis. 相似文献
13.
The human NAD+-dependent protein deacetylase SIRT2 resides predominantly in the cytoplasm where it functions as a tubulin deacetylase. Here we report that SIRT2 maintains a largely cytoplasmic localization during interphase by active nuclear export in a Crm1-dependent manner. We identified a functional, leptomycin B-sensitive, nuclear export signal sequence within SIRT2. During the cell cycle, SIRT2 becomes enriched in the nucleus and is associated with mitotic structures, beginning with the centrosome during prophase, the mitotic spindle during metaphase, and the midbody during cytokinesis. Cells overexpressing wild-type or a catalytically inactive SIRT2 exhibit an increase in multinucleated cells. The findings suggest a novel mechanism of regulating SIRT2 function by nucleo-cytoplasmic shuttling, as well as a role for SIRT2 in the nucleus during interphase and throughout mitosis. 相似文献
14.
Otto Kauko Tuuli Halonen Grzegorz Sarek Päivi M Ojala Zihe Rao Wenqing Xu Jukka Westermarck 《EMBO reports》2017,18(3):437-450
Protein phosphatase 2A (PP2A) is a critical human tumor suppressor. Cancerous inhibitor of PP2A (CIP2A) supports the activity of several critical cancer drivers (Akt, MYC, E2F1) and promotes malignancy in most cancer types via PP2A inhibition. However, the 3D structure of CIP2A has not been solved, and it remains enigmatic how it interacts with PP2A. Here, we show by yeast two‐hybrid assays, and subsequent validation experiments, that CIP2A forms homodimers. The homodimerization of CIP2A is confirmed by solving the crystal structure of an N‐terminal CIP2A fragment (amino acids 1–560) at 3.0 Å resolution, and by subsequent structure‐based mutational analyses of the dimerization interface. We further describe that the CIP2A dimer interacts with the PP2A subunits B56α and B56γ. CIP2A binds to the B56 proteins via a conserved N‐terminal region, and dimerization promotes B56 binding. Intriguingly, inhibition of either CIP2A dimerization or B56α/γ expression destabilizes CIP2A, indicating opportunities for controlled degradation. These results provide the first structure–function analysis of the interaction of CIP2A with PP2A/B56 and have direct implications for its targeting in cancer therapy. 相似文献
15.
16.
Inhibitor-2 (I-2) is a regulator of protein phosphatase type-1 (PP1), known to be phosphorylated in vitro by multiple kinases. In particular Thr72 is a Thr-Pro phosphorylation site conserved from yeast to human, but there is no evidence that this phosphorylation responds to any physiological signals. Here, we used electrophoretic mobility shift and immunoblotting with a site-specific phospho-Thr72 antibody to establish Thr72 phosphorylation in HeLa cells and show a 25-fold increase in phosphorylation during mitosis. Mass spectrometry demonstrated I-2 in actively growing HeLa cells was also phosphorylated at three other sites, Ser120, Ser121, and an additional Ser located between residues 70 and 90. In vitro kinase assays using recombinant I-2 as a substrate showed that the Thr72 kinase(s) was activated during mitosis, and sensitivity to kinase inhibitors indicated that the principal I-2 Thr72 kinase was not GSK3 but instead a member of the cyclin-dependent protein kinase family. Immunocytochemistry confirmed Thr72 phosphorylation of I-2 during mitosis, with peak intensity at prophase, and revealed subcellular concentration of the phospho-Thr72 I-2 at centrosomes. Together, the data show dynamic changes in I-2 phosphorylation during mitosis and localization of phosphorylated I-2 at centrosomes, suggesting involvement in mammalian cell division. 相似文献
17.
An Tang Peiliang Shi Anying Song Dayuan Zou Yue Zhou Pengyu Gu 《Cell cycle (Georgetown, Tex.)》2016,15(11):1450-1461
Studies using in vitro cultured oocytes have indicated that the protein phosphatase 2A (PP2A), a major serine/threonine protein phosphatase, participates in multiple steps of meiosis. Details of oocyte maturation regulation by PP2A remain unclear and an in vivo model can provide more convincing information. Here, we inactivated PP2A by mutating genes encoding for its catalytic subunits (PP2Acs) in mouse oocytes. We found that eliminating both PP2Acs caused female infertility. Oocytes lacking PP2Acs failed to complete 1st meiotic division due to chromosome misalignment and abnormal spindle assembly. In mitosis, PP2A counteracts Aurora kinase B/C (AurkB/C) to facilitate correct kinetochore-microtubule (KT-MT) attachment. In meiosis I in oocyte, we found that PP2Ac deficiency destabilized KT-MT attachments. Chemical inhibition of AurkB/C in PP2Ac-null oocytes partly restored the formation of lateral/merotelic KT-MT attachments but not correct KT-MT attachments. Taken together, our findings demonstrate that PP2Acs are essential for chromosome alignments and regulate the formation of correct KT-MT attachments in meiosis I in oocytes. 相似文献
18.
Malek Kamoun Mohammed Filali Michael V. Murray Sita Awasthi Brian E. Wadzinski 《Biochemical and biophysical research communications》2013
Protein phosphorylation and dephosphorylation are both important for multiple steps in the splicing pathway. Members of the PP1 and PP2A subfamilies of phospho-serine/threonine phosphatases play essential but redundant roles in the second step of the splicing reaction. PP6, a member of the PP2A subfamily, is the mammalian homolog of yeast Sit4p and ppe1, which are involved in cell cycle regulation; however, the involvement of PP6 in the splicing pathway remains unclear. Here we show that PP2A family members physically associate with the spliceosome throughout the splicing reaction. PP2A holoenzyme and PP6 were found stably associated with U1 snRNP. Together our findings indicate that these phosphatases regulate splicing catalysis involving U1 snRNP and suggest an important evolutionary conserved role of PP2A family phosphatases in pre-mRNA splicing. 相似文献
19.
To maintain cellular homeostasis against the demands of the extracellular environment, a precise regulation of kinases and phosphatases is essential. In cell cycle regulation mechanisms, activation of the cyclin-dependent kinase (CDK1) and cyclin B complex (CDK1:cyclin B) causes a remarkable change in protein phosphorylation. Activation of CDK1:cyclin B is regulated by two auto-amplification loops-CDK1:cyclin B activates Cdc25, its own activating phosphatase, and inhibits Wee1, its own inhibiting kinase. Recent biological evidence has revealed that the inhibition of its counteracting phosphatase activity also occurs, and it is parallel to CDK1:cyclin B activation during mitosis. Phosphatase regulation of mitotic kinases and their substrates is essential to ensure that the progression of the cell cycle is ordered. Outlining how the mutual control of kinases and phosphatases governs the localization and timing of cell division will give us a new understanding about cell cycle regulation. [BMB Reports 2013; 46(6): 289-294] 相似文献
20.
T N Davis 《The Journal of cell biology》1992,118(3):607-617
Although rare, a recessive temperature-sensitive calmodulin mutant has been isolated in Saccharomyces cerevisiae. The mutant carries two mutations in CMD1, isoleucine 100 is changed to asparagine and glutamic acid 104 is changed to valine. Neither mutation alone conferred temperature sensitivity. A single mutation that allowed production of an intact but defective protein was not identified. At the nonpermissive temperature, the temperature-sensitive mutant displayed multiple defects. Bud formation and growth was delayed, but this defect was not responsible for the temperature-sensitive lethality. Cells synchronized in G1 progressed through the cell cycle and retained viability until the movement of the nucleus to the neck between the mother cell and the large bud. After nuclear movement, less than 5% of the cells survived the first mitosis and could form colonies when returned to permissive conditions. The duplicated DNA was dispersed along the spindle, extending from mother to daughter cell. Cells synchronized in G2/M lost viability immediately upon the shift to the nonpermissive temperature. At a semipermissive temperature, the mutant showed approximately a 10-fold increase in the rate of chromosome loss compared to a wild-type strain. The mitotic phenotype is very similar to yeast mutants that are defective in chromosome disjunction. The mutant also showed defects in cytokinesis. 相似文献