首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of streptozotocin-induced diabetes on the fatty acid composition and metabolism in testes of rats on diets varying in protein content has been investigated. The protein content of the diet (40, 20, 5%) had little or no effect on essential fatty acid metabolism during the 2 weeks following injection of streptozotocin, but the 5% diet resulted in a high rate of mortality for diabetic rats. Increased amounts of octadeca-9,12-dienoic (linoleic or 18:2) acid and of eicosa-8,11,14-trienoic (dihomo-gamma-linolenic or 20:3) acid and decreased amounts of eicosa-5,8,11,14-tetraenoic (arachidonic or 20:4) acid were observed in testes of some but not all diabetic compared to pair-fed control rats 2 weeks after injection of streptozotocin. Incorporation of 14C from [14C]18:2 into testicular lipids of these rats was determined 26 hr after intratesticular injection. In some rats there was a greater amount of 14C in eicosa-11,14-dienoic acid (dihomolinoleic acid or 20:2) and 20:3 and less 14C in 20:4 of testes of diabetic than in those of control rats. The suggested impairment in conversion of 18:2 to 20:4 was studied further by using [14C]20:3 as the substrate for intratesticular injection. Four hours after administration of the [14C]polyene there was more 14C in 20:3 and less 14C in 20:4 and in docosa-7,10,13,16-tetraenoic (adrenic or 22:4) acid in testes of diabetic than in those of control rats. The results indicate that in diabetic rats at least one enzyme responsible for the decreased conversion of 18:2 to 20:4 is the delta 5-desaturase.  相似文献   

2.
The in vivo and in vitro effect of ACTH on the biosynthesis of polyunsaturated fatty acid of rat adrenal gland and liver was studied. The administration of ACTH to intact rats produced a significant decrease in the conversion of [1-14C]linoleic acid to gamma-linolenic acid, [1-14C]alpha-linolenic acid to octadeca-6,9,12,15-tetraenoic acid, and [1-14C]eicosa-8,11,14-trienoic acid to arachidonic acid in liver and adrenal microsomes. Isolated adrenocortical cells and hepatocytes obtained from animals treated with ACTH showed a decrease in the incorporation and desaturation of exogenous [1-14C]eicosa-8,11,14-trienoic acid. The addition of ACTH to the incubation medium of adrenocortical cells and hepatocytes isolated from untreated rats also caused a decrease in delta 5 desaturation activity. The effect of ACTH on adrenal and liver desaturases could be produced as a consequence of the release of glucocorticoids, already measured in the experiments. However, the in vitro experiments carried out with hepatocytes isolated from untreated rats, where corticosterone was absent, indicated that ACTH can depress delta 5 desaturation per se.  相似文献   

3.
The de novo biosynthesis of 6,9,12-linolenic acid, 11,14-eicosadienoic acid, 5,11,14-eicosatrienoic acid, and arachidonic acid was demonstrated in adult female cockroaches, Periplaneta americana. These four polyunsaturated fatty acids (PUFA) were present primarily in the phospholipid (PL) fraction of both males and females. They were purified by AgNO3 thin-layer chromatography and high pressure liquid chromatography. The double bond positions of the major isomer of eicosatrienoic acid were shown to be at the delta 5,11,14 positions by gas chromatography-mass spectrometry (GC-MS) of both methoxy and epoxide derivatives and gas-liquid chromatography (GLC) and GC-MS of ozonolysis products. The other PUFAs cochromatographed with standards on both packed and capillary GLC columns. The in vivo incorporation of [1-14C]acetate into 5,11,14-eicosatrienoic acid, 11,14-eicosadienoic acid, 6,9,12-linolenic acid, and arachidonic acid was demonstrated by radio-GLC and radio-HPLC and for 5,11,14-eicosatrienoic acid by radio-GLC of ozonolysis products. The latter technique clearly demonstrated that the entire eicosatrienoic acid molecule was labeled. Thoracic tissue contained the highest amount of radiolabeled 5,11,14-eicosatrienoic acid (1.6% of total radioactivity incorporated into PL) while radiolabeled 11,14-eicosadienoic acid was found primarily in abdominal epidermal tissue (2% of total radioactivity incorporated into PL). Radiolabeled arachidonic and 6,9,12-linolenic acids comprised 0.1 and 0.02%, respectively, of the total radioactivity in the PL fraction. These data document the de novo biosynthesis of di-, tri-, and tetraunsaturated fatty acids in the American cockroach, and indicate that this animal can desaturate on both sides of the delta 9 double bond of oleic acid.  相似文献   

4.
Prostaglandin biosynthesis from eicosa-8,11,14-trienoic acid in microsomes from bovine seminal vesicles is inhibited by acetylenic acids. Octadeca-6,9,12-triynoic acid and eicosa-8,11,14-triynoic acid are the most potent inhibitors. These acids both contain an ω-8 methylene group. Within the 20-carbon acetylenic acid series, inhibition decreases in the sequence eicosa-8,11,14-triynoic acid > eicosa-7,10,13-triynoic acid > eicosa-5,8,11-triynoic acid. Furthermore, eicosa-8,11,14-triynoic acid is a more potent inhibitor of arachidonic acid induced platelet aggregation than either eicosa-7,10,13-triynoic acid or eicosa-5,8,11-triynoic acid. The ω-8 methylene group is not the only determinent of inhibitory potency since docosa-10,13,16-triynoic acid is less potent than its 18 and 20 carbon analogs and all of these acids have an ω-8 methylene group.  相似文献   

5.
Eleven-day old rats were given intracranial injection of [1-14C]linoleic acid (all cis 9,12 octadecadienoic acid) and sacrificed after 8 h. Analysis of brain fatty acids showed that 16:0, 18:2, 20:2,20:3 and 20:4 were labeled. Separation by AgN03:Si02 TLC plates followed by reductive ozonolysis characterized thc polyunsaturated fatty acids as 18:2 (Δ9,12), 20:2 (Δ11,14), 20:3 (Δ8,11,14) and 20:4 (Δ5,8,11,14). A smaller amount of 18:3 (Δ6,9,12) was also identified. This initially suggested 20:2 (A1 1,14) as an intermediate in the optional pathway of biosynthesis of arachidonate. However, when [l-14C]eicosadienoic acid (Δ1 1,141 itself was injected in the brain it was converted to 20:3 (Δ5,11,14) (a non-methylene interrupted double bond system) rather than the expected 20:3 (Δ8,11,14). Only a small amount of arachidonate was formed from 20:2 (Δ11,14). Thus it was concluded that 20:2 (Δ11,14) was not an intermediate in the pathways of arachidonate biosynthesis due to lack of Δ5 desaturase in thc brain which agrees with the findings of SPKECRER & LEE (1975) in rat liver.  相似文献   

6.
The oxidative desaturation of [1-(14)C]eicosa-8,11-dienoic acid to eicosa-5,8,11-trienoic acid by rat liver microsomes was studied, and the kinetic conditions appropriate to measure the specific activity of the enzyme were determined. A comparative study of the effects of a balanced diet and essential fatty acid-free diets on the oxidative desaturation of oleic and linoleic acids at the 6,7 position and the oxidative desaturation of eicosadienoic acid at the 5,6 position were made. Eicosadienoic acid showed a higher conversion than oleic acid for all the diets. The conversion of oleic and linoleic acids to Delta6 acids was equally increased by fat-free diets with or without added methyl palmitate, whereas the oxidative 5-desaturation of eicosadienoic acid at the 5,6 position was not changed. The effect was apparently independent of the amount of endogenous free fatty acids. The results suggest that the rate-limiting and principal regulatory step in the biosynthesis of eicosa-5,8,11-trienoic acid is the 6-desaturation of oleic acid. The 5-desaturation of eicosadienoic acid was increased by a protein diet and decreased by alloxan diabetes to a lesser extent than the 6-desaturation of linoleic acid. The 5-desaturation of eicosadienoic acid would constitute a secondary regulatory step.  相似文献   

7.
Primary culture is a suitable system to study lipid metabolism and polyunsaturated fatty acid biosynthesis. Sertoli cell-enriched preparations were used to determine the fatty acid composition after 5 and 7 days in culture (serum free) as well as the uptake and metabolism of [1-14C]eicosa-8,11,14-trienoic acid. The addition of unlabeled linoleic acid (0.2 and 2.0 microg/ml) was also evaluated. Fatty acid methyl esters derived from cellular lipids were analyzed by gas liquid chromatography and radiochromatography. After 5 days in culture, cells had significantly less 18:2, 20:4, 22:5 and 24:5 and more 18:3, 20:3, 22:4 and 24:4 n-6 fatty acids than non-cultured cells. On day 7, an additional increment in 22:4 n-6 and a decrease in linoleic, gamma-linoleic and 24:4 n-6 fatty acids were observed. The presence of linoleic acid (low dose) produced a significant decrease in saturated and monounsaturated acids and an increase in 18:2, 20:4 and 22:5 n-6 fatty acids. At a high concentration almost all fatty acids belonging to 18:2 n-6 increased significantly. The drop in 20:4 n-6/20:3 n-6 ratio was considered as an indirect evidence of a Delta 5 desaturase activity depression. This assumption was corroborated by studying the transformation of [1-14C]eicosa-8,11,14-trienoic acid into 20:4, 22:4, 22:5, 24:4 and 24:5 n-6 fatty acids. We conclude that Sertoli cells after 7 days in culture evidenced changes in the fatty acid profile similar to those described under fat deprivation. The addition of linoleic acid reverted this pattern and indicated that the Delta 5 desaturase activity is a limiting step in the polyunsaturated fatty acid biosynthesis.  相似文献   

8.
The effect of glucocorticoids on the oxidative desaturation of fatty acids by liver microsomal preparations of rats has been studied. Hydrocortisone produced a significant decrease in the conversion of [1-14C]linoleic acid to gamma-linolenic acid and [1-14C]eicosa-8, 11, 14-trienoic acid to arachidonic acid. Triamcinolone and dexamethasaone were more active than hydrocortisone in depressing delta 6 and delta 5 fatty acid desaturating activity in liver microsomes. The glucocorticoids evoked a maximal response approximately 24 hr after admission. Palmitic acid conversion to palmitoleic acid showed no statistically significant changes by any of the glucocorticoids. The mechanism of action of glucocorticoids is apparently different from other hyperglycemic hormones that produce similar effects.  相似文献   

9.
Several grams of labelled trans linoleic and linolenic acids with high chemical and isomeric purities (>97%) have been prepared for human metabolism studies. A total of 12.5 g of (9Z, 12E)-[1-(13)C]-octadeca-9,12-dienoic acid and 6.3 g of (9Z,12Z, 15E)-[1-(13)C]-octadeca-9,12,15-trienoic acid were obtained in, respectively, seven steps (7.8% overall yield) and 11 steps (7% overall yield) from 7-bromo-heptan-1-ol. The trans bromo precursors used for the labelling were synthesised by using copper-catalysed couplings. The trans fatty acids were then obtained via the nitrile derivatives. A total of 23.5 g of (9Z,12Z)-[1-(13)C]-octadeca-9, 12-dienoic acid and 10.4 g of (9Z,12Z,15Z)-[1-(13)C]-octadeca-9,12, 15-trienoic acid were prepared in five steps in, respectively, 32 and 18% overall yield. Large quantities of bromo and chloro precursors were synthesised from the commercially available acid according to Barton's procedure. In all cases, the main impurities (>0.5%) of each labelled fatty acid have been characterised.  相似文献   

10.
1. The relationship between the rate of [1-14C] acetate incorporation into the fatty acids of renal papillary lipids and the acetate concentration in the medium has been measured. 2. [1-14C] acetate was incorporated mainly into fatty acids of phospholipids and triacylglycerols. Only a few per cent of the radioactivity was found in the free fatty acid fraction. 3. The major part of the [1-14C] acetate was found to be incorporated by a chain elongation of prevalent fatty acids. The major component of the poly-unsaturated fatty acids in triacylglycerols and the major product of fatty acid synthesis from [1-14C] acetate in vitro was demonstrated by mass spectrometry to be docosa-7,10,13,16-tetraenoic acid. 4. The radioactivity of docosa-7,10,13,16-tetraenoic acid accounted for 40% of total radioactivity in triacylglycerol fatty acids (lipid droplet fraction) and 20% of total radioactivity in membrane phospholipid fatty acids.  相似文献   

11.
The de novo biosynthesis of 5,11,14-eicosatrienoic acid (5,11,14-20:3), arachidonic acid (20:4(n - 6] and eicosadienoic acid (20:2(n - 6] and the elongation/desaturation of linoleic acid (18:2(n - 6] to 20:4(n - 6) and alpha-linolenic acid (18:3(n - 3] to eicosapentaenoic acid (20:5(n - 3] were demonstrated in adult males of the field cricket Teleogryllus commodus. Sodium [1-14C]acetate, [1-14C]18:2(n - 6) and [1-14C]18:3(n - 3) were injected into adult male crickets and after an incubation period, the testes and remaining tissues were extracted and the methyl esters obtained from the phospholipid and triacylglycerol fractions were analyzed. After 5 days of daily injections of [1-14C]acetate, the methyl esters of the triene and tetraene fatty acids from the testicular phospholipid fraction were purified by AgNO3-TLC and HPLC and analyzed by GLC, radio-HPLC, and radio-GLC of ozonolysis products. The results demonstrate the de novo biosynthesis of 20:2(n - 6), 20:4(n - 6) and an isomer of 20:3(n - 6) with double bonds in the 5,11,14 positions. the elongation/desaturation of 18:2(n - 6) to 20:4(n - 6) and 18:3(n - 3) to 20:5(n - 3) was demonstrated by analysis of the methyl esters derived from the testicular phospholipid fraction by radio-HPLC after injecting crickets with radiolabeled substrates.  相似文献   

12.
Evidence was obtained that Penicillium chrysogenum can produce linolenate by two biosynthetic pathways, i.e., by elongation of a shorter trienoic acid as well as direct desaturation of 18-C acids. In oxygen deficient cultures, exogenous hexadecatrienoate stimulated [1-14C]acetate incorporation into labeled octadecatrienoate and [U-14C]hexadecatrienoate with nonlabeled acetate yielded linolenate that had relatively little label in the 1-C position. With [1-14C]acetate as the only added substrate, oxygen deficiency inhibited incorporation of label into monoenoic and dienoic acids but not into trienoic acids. Incorporation of the [U-14C]linoleate into linolenate also was inhibited.In aerated cultures, 1-14C-label from laurate, palmitate, stearate, oleate, linoleate, and hexadecatrienoate was readily incorporated into linolenate. Decarboxylation and oxidation studies indicated that the longer acids were incorporated largely intact. [U-14C]Linoleate was incorporated into linolenate in which the fraction of label in 1-C was similar to that of the substrate. These data suggest that this mold has broader synthetic capabilities than do some chloroplast systems for the biosynthesis of linolenate.  相似文献   

13.
A general procedure for the synthesis of 2-trans polyenoic fatty acids and of dl-3-hydroxypolyenoic acids is described. The 2-trans acids are prepared by LiAlH(4) reduction of a suitable polyenoic fatty acid ester to the alcohol, formation of the tosylate, oxidation to the aldehyde, and Doebner condensation of the latter with malonic acid. The 3-hydroxy acids are obtained by reaction of the acyl chloride of a suitable polyenoic acid with the sodium enolate of methyl acetoacetate and sodium methoxide to give the 3-keto ester, the keto group of which is reduced with sodium borohydride to the alcohol. These procedures were applied to the synthesis of eicosa-2-trans-8, 11, 14-all cis-tetraenoic acid-3-(14)C and DL-3-hydroxy eicosa-8, 11, 14-trienoic acid-3-(14)C.  相似文献   

14.
The present work was undertaken to study the effect of anti-insulinic and glycogenolytic factors on the oxidative desaturation of fatty acids. The effects of glucagon and dibutyryl cyclic AMP on the desaturation of linoleic acid to gamma-linolenic acid, alpha-linolenic acid to octadeca-6,9,12,15-tetraenoic acid, stearic acid to oleic acid, and eicosa-8,11,14-trienoic acid to eicosa-5,8,11,14-tetraenoic acid by rat liver microsomal preparations were investigated. Fasted rats had low desaturating activity, but refeeding a fat-free diet enhanced the activity. Administration of glucagon or dibutyryl cyclic AMP abolished the increase of the 6-desaturase activity elicited by refeeding. However, a similar effect on the 9-desaturase and 5-desaturase activity was not observed. The relationship between these effects and glucose metabolism is discussed.  相似文献   

15.
p-Aminobenzoic acid was fed to normal and alloxan-induced diabetic rats injected with [omega-14C]labeled and [2-14C]labeled fatty acids. The p-acetamidobenzoic acid that was excreted was hydrolyzed to yield acetate which was degraded. The distribution of 14C in the acetates formed when an [omega-14C]labeled fatty acid was injected was similar to that when a [2-14C]labeled fatty acid was injected. This contrasts with the finding that in acetates from 2-acetamido-4-phenylbutyric acid excreted when 2-amino-4-phenylbutyric acid was fed, there was a difference in the distributions of 14C, a difference attributable to omega-oxidation of the fatty acid. Acetylation of p-aminobenzoic acid is then concluded to occur in a different cellular environment than that of 2-amino-4-phenylbutyric acid, one in which omega-oxidation is not functional. When 2-amino-4-phenylbutyric acid was fed and [6-14C]palmitic acid injected, rather than [16-14C]palmitic acid, the distribution of 14C in acetate was the same as when [2-14C]palmitic acid was injected. This indicates that the dicarboxylic acid formed on omega-oxidation of palmitic acid does not undergo beta-oxidation to form succinyl-CoA. Thus, glucose is not formed via omega-oxidation of long-chain fatty acid.  相似文献   

16.
The extent of mitochondrial and peroxisomal contribution to beta-oxidation of 18-, 20- and 24-carbon n-3 and n-6 polyunsaturated fatty acids (PUFAs) in intact rat hepatocytes is not fully clear. In this study, we analyzed radiolabeled acid soluble oxidation products by HPLC to identify mitochondrial and peroxisomal oxidation of 24:5n-3, 18- and 20-carbon n-3 and n-6 PUFAs. Mitochondrial fatty acid oxidation produced high levels of ketone bodies, tricarboxylic acid cycle intermediates and CO(2), while peroxisomal beta-oxidation released acetate. Inhibition of mitochondrial fatty acid oxidation with 2-tetradecylglycidic acid (TDGA), high amounts of [14C]acetate from oxidation of 24:5n-3, 18- and 20-carbon PUFAs were observed. In the absence of TDGA, high amounts of [14C]-labeled mitochondrial oxidation products were formed from oxidation of 24:5n-3, 18- and 20-carbon PUFAs. With 18:1n-9, high amounts of mitochondrial oxidation products were formed in the absence of TDGA, and TDGA strongly suppressed the oxidation of this fatty acid. Data of this study indicated that a shift in the partitioning from mitochondrial to peroxisomal oxidation differed for each individual fatty acid and is a specific property of 24:5n-3, 18- and 20-carbon n-3 and n-6 PUFAs.[14C]22:6n-3 was detected with [3-14C]24:5n-3, but not with [1-14C]24:5n-3 as the substrate, while [14C]16:0 was detected with [1-14C]24:5n-3, but not with [3-14C]24:5n-3 as the substrate. Furthermore, the amounts of 14CO(2) were similar when cells were incubated with [3-14C]24:5n-3 versus [1-14C]24:5n-3. These findings indicated that the proportion of 24:5n-3 oxidized in mitochondria was high, and that 24:5n-3 and 24:6n-3 were mostly beta-oxidized only one cycle in peroxisomes.  相似文献   

17.
1. The range of fatty acids formed by preparations of ultrasonically ruptured avocado mesocarp plastids was dependent on the substrate. Whereas [1-14C]palmitate and [14C]oleate were the major products obtained from [-14C]acetate and [1-14C]acetyl-CoA, the principal product from [2-14C]malonyl-CoA was [14-C]stearate. 2. Ultracentrifugation of the ruptured plastids at 105000g gave a supernatant that formed mainly stearate from [2-14C]malonyl-CoA and to a lesser extent from [1-14C]acetate. The incorporation of [1-14C]acetate into stearate by this fraction was inhibited by avidin. 3. The 105000g precipitate of the disrupted plastids incorporated [1-14C]acetate into a mixture of fatty acids that contained largely [14C]plamitate and [14C]oleate. The formation of [14C]palmitate and [14C]oleate by disrupted plastids was unaffected by avidin. 4. The soluble fatty acid synthetase was precipitated from the 105000g supernatant in the 35-65%-saturated-(NH4)2SO4 fraction and showed an absolute requirement for acyl-carrier protein. 5. Both fractions synthesized fatty acids de novo.  相似文献   

18.
Three 14C-labeled 22-carbon polyunsaturated fatty acids, 7,10,13,16-[14C]docosatetraenoic acid (22:4(n-6)), 7,10,13,16,19-[14C]docosapentaenoic acid (22:5(n-3)), and 4,7,10,13,16,19-[14C]docosahexaenoic acid (22:6(n-3)), were compared with [3H]arachidonic acid (20:4(n-6] and [14C]linoleic acid (18:2(n-6)) to characterize their incorporation into the lipids of Ehrlich ascites cells. The relatively rapid incorporation of the labeled 22-carbon acids into phosphatidic acid indicated that substantial amounts of these acids may be incorporated through the de novo pathway of phospholipid synthesis. In marked contrast to 20:4(n-6), the 22-carbon acids were incorporated much less into choline glycerophospholipids (CGP) and inositol glycerophospholipids (IGP). No selective preference was apparent for the (n-3) or (n-6) type of fatty acids. The amounts of the acids incorporated into diacylglycerophosphoethanolamine were in the order of: 22:6(n-3) greater than 20:4(n-6) much greater than 22:5(n-3) greater than or equal to 22:4(n-6) greater than 18:2(n-6), whereas for alkylacylglycerophosphoethanolamine they were in the order of: 22:4(n-6) greater than 22:6(n-3) greater than 22:5(n-3) much greater than 20:4(n-6) greater than 18:2(n-6). Of the mechanisms possibly responsible for the selective entry of 22-carbon acids into ethanolamine glycerophospholipids, the most reasonable explanation was that the cytidine-mediated ethanolamine phosphotransferase may have a unique double selectivity: for hexaenoic species of diacylglycerol and for 22-carbon polyunsaturated fatty acid-containing species of alkylacylglycerol. The relative distribution of fatty acids between newly incorporated and already maintained lipid classes suggested that IGP may function in Ehrlich cells as an intermediate pool for the retention of polyunsaturated fatty acids in glycerolipids.  相似文献   

19.
In vivo biosynthesis of -linolenic acid in plants   总被引:6,自引:0,他引:6  
[1-14C]acetate was readily incorporated into unsaturated fatty acids by leaf slices of spinach, barley and whole cells of Chlorellapyrenoidosa and Candidabogoriensis. In these systems the [14C] label in newly synthesized oleate and linoleate was approximately equally distributed in the C1–9 and the C10–18 fragments obtained by reductive ozonolysis of these acids, whereas in a-linolenic acid over 90% of the total [14C] was localized in the C1–9 fragment. While [1-14C]oleic acid was converted by whole cells of Chlorella to [1-14C]linoleic and [1-14C]linolenic acids, [U-14C]oleic acid yielded [U-14C]linoleic acid but a-linolenic acid was labeled only in the carboxyl terminal carbon atoms. When spinach leaf slices were supplied with carboxyl labeled octanoic, decanoic, dodecanoic, tetradecanoic and octadecanoic acids, only the first three acids were converted to a-linolenic acids while the last two acids were ineffective. Thus we suggest that (a) linoleic acid is not the precursor of a-linolenic acid and (b) 12:3(3, 6, 9) is the earliest permissible trienoic acid which is then elongated to a-linolenic acid.  相似文献   

20.
We report here a study of the incorporation and metabolism of various long chain fatty acids in SK-Hep-1 cultured hepatoma cells. Medium supplementation with radiolabelled palmitic, stearic, linoleic, -linolenic and eicosa-8, 11,14-trienoic acids (1 µM, 24 H) resulted in an active uptake of each of these precursors by the cultures. Subsequent analysis of the cellular lipids indicated that they exhibit almost all the enzymic activities of polyunsaturated fatty acid metabolism that are characteristic of normal hepatic cells. With respect to the desaturation capacities of this cell line, although -linolenic acid reacted more extensively than did linoleic acid and the conversion of 8,11,14-eicosatrienoic acid by the 5 specific enzyme was more avid than had been previously seen in normal rat or human liver: the saturated fatty acids constituted relatively poor substrates, being preferentially chain-elongated rather than (mono) desaturated at the 9 position. Analysis of the fatty acid profiles of total cellular lipids and of various lipid subclasses, however, revealed a relative paucity of essential fatty acids when compared with the abundance of endogenous monoenoic acids (particularly oleic). Of the total cellular fatty acids, 58% were present in the form of phospholipids; with 33% of the remaining 42% (i.e., the neutral lipids) being associated with triacylglycerol fraction. Within the total lipids, phosphatidyl-choline and phosphatidyl-ethanolamine were the major sites for the incorporation of all metabolic products derived from the incubated radiolabelled 16- and 18-carbon fatty acid precursors, whereas the phosphatidyl-inositol fraction was the predominat recipient of nascent arachidonic acid when the eicosatrienoate was the substrate. The express purpose of this investigation was to characterize the biochemical routes involved in the anabolism of various essential fatty acids in the human hepatocyte, through the use of cultured human hepatoma cells as an experimental model system. In view of the similarities between certain aspects of the polyunsaturated fatty acid metabolism of these cells and the corresponding properties of other mammalian hepatic or liver-derived tissues, the data presented here would thus constitute a significant beginning alone those lines. Moreover, considering the extreme difficulty in obtaining for such investigation relevant tissue samples from normal human sources, we regard these results — and the availability for use of this particular human hepatoma cell line — as important new developments in the effort to characterize a useful experimental model both for gaining immediate information and for designing future experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号