首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The contributions of some amino acid residues in the A, B, G, and H helices to the formation of the folding nucleus and folding intermediate of apomyoglobin were estimated. The effects of point substitutions of Ala for hydrophobic amino acid residues on the structural stability of the native (N) protein and its folding intermediate (I), as well as on the folding/unfolding rates for four mutant apomyoglobin forms, were studied. The equilibrium and kinetic studies of the folding/unfolding rates of these mutant proteins in a wide range of urea concentrations demonstrated that their native state was considerably destabilized as compared with the wild-type protein, whereas the stability of the intermediate state changed moderately. It was shown that the amino acid residues in the A, G, and H helices contributed insignificantly to the stabilization of the apomyoglobin folding nucleus in the rate-limiting I ? N transition, taking place after the formation of the intermediate, whereas the residue of the B helix was of great importance in the formation of the folding nucleus in this transition.  相似文献   

2.
The impact on protein evolution of the physical laws that govern folding remains obscure. Here, by analyzing in silico-evolved sequences subjected to evolutionary pressure for fast folding, it is shown that: First, a subset of residues in the thermodynamic folding nucleus is mainly responsible for modulating the protein folding rate. Second and most important, the protein topology itself is of paramount importance in determining the location of these residues in the structure. Further stabilization of the interactions in this nucleus leads to fast folding sequences. Third, these nucleation points restrict the sequence space available to the protein during evolution. Correlated mutations between positions around these hot spots arise in a statistically significant manner, and most involve contacting residues. When a similar analysis is carried out on real proteins, qualitatively similar results are obtained.  相似文献   

3.
A crucial event in protein folding is the formation of a folding nucleus, which is a structured part of the protein chain in the transition state. We demonstrate a correlation between locations of residues involved in the folding nuclei and locations of predicted amyloidogenic regions. The average Phi-values are significantly greater inside amyloidogenic regions than outside them. We have found that fibril formation and normal folding involve many of the same key residues, giving an opportunity to outline the folding initiation site in protein chains. The search for folding initiation sites for apomyoglobin and ribonuclease. A coincides with the predictions made by other approaches.  相似文献   

4.
Coiled coils: a highly versatile protein folding motif   总被引:31,自引:0,他引:31  
The alpha-helical coiled coil is one of the principal subunit oligomerization motifs in proteins. Its most characteristic feature is a heptad repeat pattern of primarily apolar residues that constitute the oligomer interface. Despite its simplicity, it is a highly versatile folding motif: coiled-coil-containing proteins exhibit a broad range of different functions related to the specific 'design' of their coiled-coil domains. The architecture of a particular coiled-coil domain determines its oligomerization state, rigidity and ability to function as a molecular recognition system. Much progress has been made towards understanding the factors that determine coiled-coil formation and stability. Here we discuss this highly versatile protein folding and oligomerization motif with regard to its structural architecture and how this is related to its biological functions.  相似文献   

5.
To elucidate early nucleation stages in protein folding, multi-probed thermodynamic characterization was applied to the beta-hairpin structural formation of G-peptide, which is a C-terminal fragment of the B1 domain of streptococcal protein G. The segment corresponding to the sequence of G-peptide is believed to act as a nucleus during the folding process of the B1 domain. In spite of the broad thermal transition of G-peptide, nuclear magnetic resonance (NMR) melting measurements combined with our original analytical theory enabled us to obtain the thermodynamic properties of the beta-hairpin formation with considerable accuracy. Additionally, all the thermodynamic properties determined by every NMR probe on both the main-chain and the side-chains were quite similar, and also comparable to the values that were independently determined by calorimetric analysis of G-peptide. These results demonstrate that G-peptide folds cooperatively throughout the molecule. In other words, the formation of the beta-hairpin is interpreted as the fashion of a first-order phase transition between two states without any distinguishable intermediates. This cooperative formation of the short linear peptide consisting of only 16 residues provides insight into not only the first folding events of the B1 domain, but also the general principles of proteins in terms of structural hierarchy, stability and folding mechanism.  相似文献   

6.
Protein is the working molecule of the cell, and evolution is the hallmark of life. It is important to understand how protein folding and evolution influence each other. Several studies correlating experimental measurement of residue participation in folding nucleus and sequence conservation have reached different conclusions. These studies are based on assessment of sequence conservation at folding nucleus sites using entropy or relative entropy measurement derived from multiple sequence alignment. Here we report analysis of conservation of folding nucleus using an evolutionary model alternative to entropy-based approaches. We employ a continuous time Markov model of codon substitution to distinguish mutation fixed by evolution and mutation fixed by chance. This model takes into account bias in codon frequency, bias-favoring transition over transversion, as well as explicit phylogenetic information. We measure selection pressure using the ratio omega of synonymous versus non-synonymous substitution at individual residue site. The omega-values are estimated using the PAML method, a maximum-likelihood estimator. Our results show that there is little correlation between the extent of kinetic participation in protein folding nucleus as measured by experimental phi-value and selection pressure as measured by omega-value. In addition, two randomization tests failed to show that folding nucleus residues are significantly more conserved than the whole protein, or the median omega value of all residues in the protein. These results suggest that at the level of codon substitution, there is no indication that folding nucleus residues are significantly more conserved than other residues. We further reconstruct candidate ancestral residues of the folding nucleus and suggest possible test tube mutation studies for testing folding behavior of ancient folding nucleus.  相似文献   

7.
The thermodynamic stability of a protein provides an experimental metric for the relationship of protein sequence and native structure. We have investigated an approach based on an analysis of the structural database for stability engineering of an immunoglobulin variable domain. The most frequently occurring residues in specific positions of beta-turn motifs were predicted to increase the folding stability of mutants that were constructed by site-directed mutagenesis. Even in positions in which different residues are conserved in immunoglobulin sequences, the predictions were confirmed. Frequently, mutants with increased beta-turn propensities display increased folding cooperativities, suggesting pronounced effects on the unfolded state independent of the expected effect on conformational entropy. We conclude that structural motifs with predominantly local interactions can serve as templates with which patterns of sequence preferences can be extracted from the database of protein structures. Such preferences can predict the stability effects of mutations for protein engineering and design.  相似文献   

8.
Studies of circular permutants have demonstrated that the folding reaction of S6 from Thermus thermophilus (S6T) is malleable and responds in an ordered manner to changes of the sequence separation between interacting residues: the S6T permutants retain a common nucleation pattern in the form of a two-strand-helix motif that can be recruited from different parts of the structure. To further test the robustness of the two-strand-helix nucleus we have here determined the crystal structure and folding reaction of an evolutionary divergent S6 protein from the hyperthermophilic bacterium Aquifex aeolicus (S6A). Although the overall topology of S6A is very similar to that of S6T the architecture of the hydrophobic core is radically different by containing a large proportion of stacked Phe side-chains. Despite this disparate core composition, the folding rate constant and the kinetic m values of S6A are identical to those of S6T. The folding nucleus of S6A is also found to retain the characteristic two-strand-helix motif of the S6T permutants, but with a new structural emphasis. The results suggest that the protein folding reaction is linked to topology only in the sense that the native-state topology determines the repertoire of accessible nucleation motifs. If the native structure allows several equivalent ways of recruiting a productive nucleus the folding reaction is free to redistribute within these topological constraints.  相似文献   

9.
It has been difficult to obtain directly residue-specific information on side chain packing during a fast (ms) protein folding reaction. Such information is necessary to determine the extent to which structural changes in different parts of the protein molecule are coupled together in defining the cooperativity of the overall folding transition. In this study, structural changes occurring during the major fast folding reaction of the small protein barstar have been characterized at the level of individual residue side chains. A pulsed cysteine labeling methodology has been employed in conjunction with mass spectrometry. This provides, with ms temporal resolution, direct information on structure formation at 10 different locations in barstar during its folding. Cysteine residues located on the surface of native barstar, at four different positions, remain fully solvent-accessible throughout the folding process, indicating the absence of any ephemeral nonnative structure in which these four cysteine residues get transiently buried. For buried cysteine residues, the rates of the change in cysteine-thiol accessibility to rapid chemical labeling by the thiol reagent methyl methanethiosulfonate appear to be dependent upon the location of the cysteine residue in the protein and are different from the rate measured by the change in tryptophan fluorescence. But the rates vary over only a 3-fold range. Nevertheless, a comparison of the kinetics of the change in accessibility of the cysteine 3 thiol with those of the change in the fluorescence of tryptophan 53, as well as of their denaturant dependences, indicates that the major folding reaction comprises more than one step.  相似文献   

10.
BACKGROUND: Do proteins that have the same structure fold by the same pathway even when they are unrelated in sequence? To address this question, we are comparing the folding of a number of different immunoglobulin-like proteins. Here, we present a detailed protein engineering phi value analysis of the folding pathway of TI I27, an immunoglobulin domain from human cardiac titin. RESULTS: TI I27 folds rapidly via a kinetic intermediate that is destabilized by most mutations. The transition state for folding is remarkably native-like in terms of solvent accessibility. We use phi value analysis to map this transition state and show that it is highly structured; only a few residues close to the N-terminal region of the protein remain completely unfolded. Interestingly, most mutations cause the transition state to become less native-like. This anti-Hammond behavior can be used as a novel means of obtaining additional structural information about the transition state. CONCLUSIONS: The residues that are involved in nucleating the folding of TI I27 are structurally equivalent to the residues that form the folding nucleus in an evolutionary unrelated fibronectin type III protein. These residues form part of the common structural core of Ig-like domains. The data support the hypothesis that interactions essential for defining the structure of these beta sandwich proteins are also important in nucleation of folding.  相似文献   

11.
The human high-affinity copper transporter (hCtr1) is a membrane protein that is predicted to have three transmembrane helices and two methionine-rich metal binding motifs. As an oligomeric polytopic membrane protein, hCtr1 is a challenging system for experimental structure determination. The results of an initial application of solution-state NMR methods to a truncated construct containing residues 45-190 in micelles and site-directed mutagenesis of the two cysteine residues demonstrate that Cys-189 but not Cys-161 is essential for both dimer formation and proper folding of the protein.  相似文献   

12.
The human high-affinity copper transporter (hCtr1) is a membrane protein that is predicted to have three transmembrane helices and two methionine-rich metal binding motifs. As an oligomeric polytopic membrane protein, hCtr1 is a challenging system for experimental structure determination. The results of an initial application of solution-state NMR methods to a truncated construct containing residues 45-190 in micelles and site-directed mutagenesis of the two cysteine residues demonstrate that Cys-189 but not Cys-161 is essential for both dimer formation and proper folding of the protein.  相似文献   

13.
14.
Protein complementation assays (PCAs) based on split protein fragments have become powerful tools that facilitate the study and engineering of intracellular protein-protein interactions. These assays are based on the observation that a given protein can be split into two inactive fragments and these fragments can reassemble into the original properly folded and functional structure. However, one experimentally observed limitation of PCA systems is that the folding of a protein from its fragments is dramatically slower relative to that of the unsplit parent protein. This is due in part to a poor understanding of how PCA design parameters such as split site position in the primary sequence and size of the resulting fragments contribute to the efficiency of protein reassembly. We used a minimalist on-lattice model to analyze how the dynamics of the reassembly process for two model proteins was affected by the location of the split site. Our results demonstrate that the balanced distribution of the “folding nucleus,” a subset of residues that are critical to the formation of the transition state leading to productive folding, between protein fragments is key to their reassembly.  相似文献   

15.
The contact order is believed to be an important factor for understanding protein folding mechanisms. In our earlier work, we have shown that the long-range interactions play a vital role in protein folding. In this work, we analyzed the contribution of long-range contacts to determine the folding rate of two-state proteins. We found that the residues that are close in space and are separated by at least ten to 15 residues in sequence are important determinants of folding rates, suggesting the presence of a folding nucleus at an interval of approximately 25 residues. A novel parameter "long-range order" has been proposed to predict protein folding rates. This parameter shows as good a relationship with the folding rate of two-state proteins as contact order. Further, we examined the minimum limit of residue separation to determine the long-range contacts for different structural classes. We observed an excellent correlation between long-range order and folding rate for all classes of globular proteins. We suggest that in mixed-class proteins, a larger number of residues can serve as folding nuclei compared to all-alpha and all-beta proteins. A simple statistical method has been developed to predict the folding rates of two-state proteins using the long-range order that produces an agreement with experimental results that is better or comparable to other methods in the literature.  相似文献   

16.
Small zinc finger (ZnF) motifs are promising molecular scaffolds for protein design owing to their structural robustness and versatility. Moreover, their characterization provides important insights into protein folding in general. ZnF motifs usually possess an exceptional specificity and high affinity towards Zn(II) ion to drive folding. While the Zn(II) ion is canonically coordinated by two cysteine and two histidine residues, many other coordination spheres also exist in small ZnFs, all having four amino acid ligands. Here we used high‐resolution mass spectrometry to study metal ion binding specificity and primary coordination sphere robustness of a designed zinc finger, named MM1. Based on the results, MM1 possesses high specificity for zinc with sub‐micromolar binding affinity. Surprisingly, MM1 retains metal ion binding affinity even in the presence of selective alanine mutations of the primary zinc coordinating amino acid residues.  相似文献   

17.
To what extent does natural selection act to optimize the details of protein folding kinetics? In an effort to address this question, the relationship between an amino acid's evolutionary conservation and its role in protein folding kinetics has been investigated intensively. Despite this effort, no consensus has been reached regarding the degree to which residues involved in native-like transition state structure (the folding nucleus) are conserved. Here we report the results of an exhaustive, systematic study of sequence conservation among residues known to participate in the experimentally (Phi-value) defined folding nuclei of all of the appropriately characterized proteins reported to date. We observe no significant evidence that these residues exhibit any anomalous sequence conservation. We do observe, however, a significant bias in the existing kinetic data: the mean sequence conservation of the residues that have been the subject of kinetic characterization is greater than the mean sequence conservation of all residues in 13 of 14 proteins studied. This systematic experimental bias gives rise to the previous observation that the median conservation of residues reported to participate in the folding nucleus is greater than the median conservation of all of the residues in a protein. When this bias is corrected (by comparing, for example, the conservation of residues known to participate in the folding nucleus with that of other, kinetically characterized residues) the previously reported preferential conservation is effectively eliminated. In contrast to well-established theoretical expectations, both poorly and highly conserved residues are apparently equally likely to participate in the protein-folding nucleus.  相似文献   

18.
19.
Through extensive experiment, simulation, and analysis of protein S6 (1RIS), we find that variations in nucleation and folding pathway between circular permutations are determined principally by the restraints of topology and specific nucleation, and affected by changes in chain entropy. Simulations also relate topological features to experimentally measured stabilities. Despite many sizable changes in phi values and the structure of the transition state ensemble that result from permutation, we observe a common theme: the critical nucleus in each of the mutants share a subset of residues that can be mapped to the critical nucleus residues of the wild-type. Circular permutations create new N and C termini, which are the location of the largest disruption of the folding nucleus, leading to a decrease in both phi values and the role in nucleation. Mutant nuclei are built around the wild-type nucleus but are biased towards different parts of the S6 structure depending on the topological and entropic changes induced by the location of the new N and C termini.  相似文献   

20.
Collagen forms a characteristic triple helical structure and plays a central role for stabilizing the extra-cellular matrix. After a C-terminal nucleus formation folding proceeds to form long triple-helical fibers. The molecular details of triple helix folding process is of central importance for an understanding of several human diseases associated with misfolded or unstable collagen fibrils. However, the folding propagation is too rapid to be studied by experimental high resolution techniques. We employed multiple Molecular Dynamics simulations starting from unfolded peptides with an already formed nucleus to successfully follow the folding propagation in atomic detail. The triple helix folding was found to propagate involving first two chains forming a short transient template. Secondly, three residues of the third chain fold on this template with an overall mean propagation of ~75 ns per unit. The formation of loops with multiples of the repeating unit was found as a characteristic misfolding event especially when starting from an unstable nucleus. Central Gly→Ala or Gly→Thr substitutions resulted in reduced stability and folding rates due to structural deformations interfering with folding propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号