首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Journal of biomechanics》2014,47(16):3891-3897
This study attempted to estimate TMJ loading during incisal loading using a custom load-cell device and surface electromyographic (sEMG) recordings of the main jaw closers to assess the outcome correlation. Study participants were 23 healthy volunteers. The incisal loads having submaximal and mean intensity were recorded using a calibrated electronic load cell; simultaneously, surface electromyography (sEMG) of the right and left masseter and temporalis muscles was recorded. Readings of the resting, clenching in maximal and submaximal intercuspal positions and mean (50%) incisal loads were recorded. Clenching sEMG activity was used as a reference for normalization. The mean (SD) submaximal incisal load recorded was 498 (305.78) N, and the mean at 50% of the submaximal load was 268.93 (147.37) N. Mean (SD) sEMG activity during submaximal clenching was 141.23 (87.76) μV, with no significant differences between the four muscles. During submaximal voluntary incisal loading, the normalized mean sEMG activity was 49.99 (34.54) µV %, and 27.17(15.29) µV % during mean (50%) effort. The incisal load was generated mainly by the masseter muscles, as these showed a positive correlation during mean but not during submaximal effort. In the edge-to-edge jaw position, the mean incisal load effort seems to be physiological, but excessive TMJ loads can be expected from chronic or excessive incisal loading. In conclusion, incisal loads require the activity of the masseter muscles, which show a positive correlation between sEMG activity and effective incisal loads during mean, but not during submaximal, effort, and the masseter muscles are dominant over the temporalis muscles during submaximal incisal biting.  相似文献   

2.
Most previously published electromyographic (EMG) studies have indicated that the temporalis muscles in humans become almost electrically quiet during incisai biting. These data have led various workers to conclude that these muscles may contribute little to the incisai bite force. The feeding behavior and comparative anatomy of the incisors and temporalis muscles of certain catarrhine primates, however, suggest that the temporalis muscle is an important and powerful contributor to the bite force during incision. One purpose of this study is to analyze the EMG activity of the masseter and temporalis muscles in both humans and macaques with the intention of focusing on the conflict between published EMG data on humans and inferences of muscle function based on the comparative anatomy and behavior of catarrhine primates. The EMG data collected from humans in the present study indicate that, in five of seven subjects, the masseter,anterior temporalis, and posterior temporalis muscles are very active during apple incision (i.e., relative to EMG activity levels during apple and almond mastication). In the other two human subjects the EMG levels of these muscles are lower during incision than during mastication, but in no instance are these muscles ever close to becoming electrically quiet. The EMG data on macaques indicate that, in all six subjects, the masseter, anterior temporalis, and posterior temporalis muscles are very active during incision. These data are in general agreement with inferences on muscle function that have been drawn from the comparative anatomy and behavior of primates, but they do not agree with previous experimental data. The reason for this disagreement is probably due to differences in the experimental procedure. In previous studies subjects simply bit isometrically on their incisors and the resulting EMG pattern was compared to the pattern associated with powerful clenching in centric occlusion. In the present study the subjects incised into actual food objects, and the resulting EMG pattern was compared to the pattern associated with mastication of various foods. It is not surprising that these two procedures result in markedly different EMG patterns, which in turn result in markedly different interpretations of jaw-muscle function. In an attempt to explain the evolution of the postorbital septum in anthropoids, it has been suggested that the anterior temporalis is more active than the masseter during incision (Cachel, 1979). The human and macaque EMG data do not support this hypothesis; during incision, the two muscles show no consistent differences in humans and the masseter appears to be in fact more active than the anterior temporalis in macaques.  相似文献   

3.
The masticatory muscles in 132 anesthetized male and female rhesus monkeys ranging in age from juvenile to adult were unilaterally stimulated. Muscle forces and speeds were measured with a bite force transducer positioned at the incisors, premolars, and molars during twitch and tetanic contractions. Lateral cephalographs of all animals were used to estimate the orientation and mechanical advantage of the masticatory muscles. Results showed that maximal occlusal forces increased at a greater rate than body weight during growth. However, maximal occlusal forces increased isometrically relative to mandibular length. Mean forces at the incisors ranged from 70.3 newtons (n) in juveniles up to 139.9 n in adult males. Forces at the molars were 2-2.5 times greater than at the incisors. Time-to-peak tension decreased with increasing body size from 44.1 msec in juveniles to 37.4 msec in adult females to 31.0 msec in adult males. Regression analysis showed that adult males have faster muscles than adult females or juveniles even when corrected for body size. Temporalis and masseter orientation was found to change little throughout growth. The mechanical advantage of the masseter and temporalis muscles for producing occlusal forces on the distal molars improved between juveniles and adults, which is contrary to findings of Oyen et al. (Growth 43:174-187, 1979). Among adults, females had a greater mechanical advantage of the masseter muscles than males.  相似文献   

4.
We examined masseter and temporalis recruitment and firing patterns during chewing in five male Belanger's treeshrews (Tupaia belangeri), using electromyography (EMG). During chewing, the working-side masseters tend to show almost three times more scaled EMG activity than the balancing-side masseters. Similarly, the working-side temporalis muscles have more than twice the scaled EMG activity of the balancing-side temporalis. The relatively higher activity in the working-side muscles suggests that treeshrews recruit less force from their balancing-side muscles during chewing. Most of the jaw-closing muscles in treeshrews can be sorted into an early-firing or late-firing group, based on occurrence of peak activity during the chewing cycle. Specifically, the first group of jaw-closing muscles to reach peak activity consists of the working-side anterior and posterior temporalis and the balancing-side superficial masseter. The balancing-side anterior and posterior temporalis and the working-side superficial masseter peak later in the power stroke. The working-side deep masseter peaks, on average, slightly before the working-side superficial masseter. The balancing-side deep masseter typically peaks early, at about the same time as the balancing-side superficial masseter. Thus, treeshrews are unlike nonhuman anthropoids that peak their working-side deep masseters early and their balancing-side deep masseters late in the power stroke. Because in anthropoids the late firing of the balancing-side deep masseter contributes to wishboning of the symphysis, the treeshrew EMG data suggest that treeshrews do not routinely wishbone their symphyses during chewing. Based on the treeshrew EMG data, we speculate that during chewing, primitive euprimates 1) recruited more force from the working-side jaw-closing muscles as compared to the balancing-side muscles, 2) fired an early group of jaw-closing muscles followed by a second group of muscles that peaked later in the power stroke, 3) did not fire their working-side deep masseter significantly earlier than their working-side superficial masseter, and 4) did not routinely fire their balancing-side deep masseter after the working-side superficial masseter.  相似文献   

5.
The use of surface electromyography (sEMG) to identify subjects with chronic temporomandibular disorders (TMD) is controversial. The main objective of this study is to determine the diagnostic accuracy of EMG to differentiate between healthy subjects and those with TMD.This study evaluated 53 individuals with TMD who were referred to the university service and who fulfilled the eligibility criteria during the period of the study. Thirty-eight dental students were also recruited satisfying same eligibility criteria but without TMD. The inclusion criteria were to be fully dentate, have normal occlusion, and be righthanded. The exclusion criteria were periodontal pathology, caries or damaged dental tissues, orthodontic therapy, maxillofacial disease, botulinum A toxin therapy, and psychological disorders.The means of the masseter muscles, right (RM) and left (LM), and temporalis muscles, right (RT) and left (LT), and intraindividual indexes during resting and during clenching were calculated. Raw sEMG activity was used to determine the cutoff points and calculate the diagnostic accuracy of sEMG. The diagnostic accuracy of these variables for a diagnosis of TMD was evaluated by using the Receiver Operating Characteristic (ROC) curve and the area under it (AUC). A new transformed diagnostic variable was obtained by using the Generalized Additive Models (GAM). Optimal cutoff points were obtained where the sensitivity and specificity were similar and by the Youden index. The highest estimated AUC was 0.660 (95% CI 0.605–0.871) corresponding to the rLT variable during rest. When rLT and rACTIVITY (differences divided by sums of temporalis versus masseter muscles) were considered as a linear combination, the AUC increased to 0.742 (95% CI; 0.783–0.934).In conclusion, the raw sEMG evaluation of rest provided moderate sensitivity and specificity to discriminate between healthy individuals and those with TMD. The use of the indexes (mainly assessing the dominance of temporalis over masseter muscles during rest) is strongly recommended to increase the discriminatory capacity of raw sEMG evaluation.  相似文献   

6.
Electromyographical (EMG) activity was recorded bilaterally from the masseter and temporalis muscles of alert ferrets (Mustela putorius furo) during mastication and crushing. Electromyographic activity was also recorded during biting while a bite-force transducer placed between the carnassial teeth registered forces ranging from 1.5 to 48.8 N. Linear regression analysis demonstrates that temporalis and masseter EMG activity are linearly related to bite force. Electromyographic activity from the balancing-side muscles is nearly equal to EMG activity of the working-side muscles during bone crushing with the carnassial teeth. It is hypothesized that a high percentage of balancing-side muscle activity in ferrets can be recruited during carnassial biting because the postglenoid process prevents ventral displacement of the working-side mandibular condyle.  相似文献   

7.
A synchronized system of EMG and jaw motion tracking device was used to observe some chewing parameters of jaw elevator muscles in 15 patients with temporomandibular joint and muscle pain dysfunction syndrome (TMJ) and 15 normal subjects. Duration of tooth contact (DTC), duration of muscle contraction before tooth contact (DMC), total duration of muscle contraction (DTM) and velocity of jaw movement during peanut chewing were observed. Symptoms of the TMJ patients included pain and tenderness at joints and muscles, and limitation and clicking at joints during jaw movements. It was found that the TMJ patients needed more numerous breaking off strokes before trituration at the occlusal level. There was a longer DMC in the earlier trituration period and TMJ patients had longer DMC than in normals. No difference was found between right and left side chewing or between temporalis and masseter muscles. DTM in the TMJ group was only slightly longer than in normals and the difference between early and late chewing periods was statistically not significant. DTC was only slightly shorter in the TMJ group while the difference between early and late chewing periods in both groups was significant. The average and maximum closing velocities were significantly lower in the TMJ group in both right and left chewing. The difference in the opening phase was not as significant. It was concluded that DMC and jaw closing velocity are more sensitive parameters than DTM and DTC on the diagnosis of TMJ dysfunction with or without occlusal interference. DTM and DTC are parameters more closely related to the influence of occlusal factors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The aim of present study was to evaluate the symmetry of masticatory muscles' activity at various clenching levels in the intercuspal position in patients with functional disorders and in healthy subjects. The purpose was also to determine the effect of full-arch maxillary stabilization splint on the asymmetry of masticatory muscle activity in patients with temporomandibular dysfunction. In this study 6 TMD patients and 12 healthy subjects were investigated. Surface EMG recordings were obtained from left and right anterior temporal, left and right masseter and from the sub-mandibular group in the region of the anterior belly of the digastric muscle on the left and right side during clenching with the maximum 100% voluntary contraction (MVC) as well as during clenching at 50% and 25% of the maximum activity in the position of maximal intercuspation of teeth. In order to quantify asymmetrical masticatory muscle activity, the asymmetry index (AI) was calculated for each subject and for each muscle from the average anterior temporal, masseter and digastric potentials recorded during each test (100% MVC, 50% MVC and 25% MVC). In the group of patients EMG recordings were repeated during and after the splint therapy. The asymmetries of masticatory muscle activity was present in both groups, but in the group of TMD patients the asymmetry indices for anterior temporal muscle at 100% MVC (p = 0.049) and 50% MVC (p = 0.031) were significantly higher. Results have shown that the use of splint suppressed the asymmetry of all muscles, as during the splint therapy the asymmetry indices were lowered. After the therapy, the level of temporal muscle symmetry during submaximal clenching in the intercuspal position increased significantly (p = 0.046). This investigation points out that electromyography may be a valuable method of documenting that asymmetric activity of masticatory muscles improves after occlusal splint therapy in patients with TMD.  相似文献   

9.
To assess the surface electromyographic spectral characteristics of masticatory and neck muscles during the performance of maximum voluntary clench (MVC) tasks, 29 healthy young adults (15 men, 14 women, mean age 22 years) were examined. Electromyography of masseter, temporalis and upper trapezius muscles was performed during 5-s MVCs either on cotton rolls or in intercuspal position. Using a fast Fourier transform, the median power frequency (MPF) was obtained for the first and last seconds of clench, and compared between sexes, muscles, sides, tests and time intervals using ANOVAs.On average, the MPFs did not differ between sexes or sides (p > 0.05), but significant effects of muscle (MPF temporalis larger than masseter, larger than trapezius muscles), test (larger MPFs when clenching in intercuspal position than when clenching on cotton rolls) and time (larger MPFs in the first than in the fifth second of clench) were found.In conclusion, a set of data to characterize the sEMG spectral characteristics of jaw and neck muscles in young adult subjects performing MVC tasks currently in use within the dental field was obtained. Reference values may assist in the assessment of patients with alterations in the cranio-cervical-mandibular system.  相似文献   

10.
Endurance and changes in electromyogram (EMG) power spectra were investigated during a fatiguing static contraction at 50% of the maximum EMG amplitude in two jaw-elevator muscles (masseter and temporalis) and five facial muscles (frontalis, corrugator supercilii, zygomaticus major, orbicularis oris, and buccinator). Relatively high endurance was found in orbicularis oris, frontalis, and corrugator supercilii muscles; intermediate endurance was found in zygomaticus major, buccinator, and temporalis muscles; and low endurance was found in the masseter muscle. The last muscle showed a relatively fast linear decrease of the median frequency of the power spectrum. The other muscles showed a much slower, exponential decrease. The median frequency appeared to reflect reliably the changes in the shape of the power spectra during fatigue. Large differences between the shape of power spectra of different muscles in the unfatigued state were found. These, however, were unrelated to endurance and degree of spectral shift during fatigue.  相似文献   

11.
Anthropoids and tarsiers are distinguished from all other vertebrates by the possession of a postorbital septum, which is formed by the frontal, alisphenoid, and zygomatic bones. Cartmill [(1980) In: Evolutionary Biology of the New World Monkeys and Continental Drift. New York: Plenum, p 243-274] suggested that the postorbital septum evolved in the stem lineage of tarsiers and anthropoids to insulate the eye from movements arising in the temporal fossa. Ross [(1996) Am J Phys Anthropol 91:305-324] suggested that the septum insulates the orbital contents from incursions by the line of action of the anterior temporal muscles caused by the unique combination of high degrees of orbital frontation and convergence. Both of these hypotheses must explain why insulation of the orbital contents could not be achieved by decreasing the size of the anterior temporal musculature with a corresponding increase in size of the remaining jaw adductors, rather than evolving a postorbital septum. One possibility is that the anterior temporalis is an important contributor to vertically directed bite forces during all biting and chewing activities. Another possibility is that reduction in anterior temporal musculature would compromise the ability to produce powerful bite forces, either at the incisors or along the postcanine toothrow. To evaluate these hypotheses, electromyographic (EMG) recordings were made from the masseter muscle and the anterior and posterior portions of the temporalis muscles of two owl monkeys, Aotus trivirgatus. The EMG data indicate that anterior temporalis activity relative to that of the superficial masseter is lower during incision than mastication. In addition, activity of the anterior temporalis is not consistently higher than the posterior temporalis during incision. The data indicate relatively greater activity of anterior temporalis compared to other muscles during isometric biting on the postcanine toothrow. This may be due to decreased activity in superficial masseter and posterior temporalis, rather than elevated anterior temporalis activity. The anterior temporalis is not consistently less variable in activity than the superficial masseter and posterior temporalis. The EMG data gathered here indicate no reason for suggesting that the anterior temporal muscles in anthropoids are utilized especially for incisal preparation of hard fruits. Maintenance of relatively high EMG activity in anterior temporalis across a wide range of biting behaviors is to be expected in a vertically oriented and rostrally positioned muscle such as this because, compared to the posterior temporalis, superficial masseter and medial pterygoid, it can contribute relatively larger vertical components of force to bites along the postcanine toothrow. The in vivo data do not support this hypothesis, possibly because of effects of bite point and bite force orientation.  相似文献   

12.
The study assessed the differences in electromyographic (EMG) activity recorded during clenching in women with chronic unilateral temporomandibular disorders (TMDs) as compared to control subjects. Seventy-five full dentate, normo-occlusion, right-handed, similarly aged female subjects were recruited. Twenty five subjects presented with right side TMD, 25 presented with left side TMD and 25 pain-free control subjects participated. Using integrated surface EMG over a 1 s contraction, the anterior temporalis and masseter muscles were evaluated bilaterally while subjects performed maximum voluntary clenching. Lower EMG activation was observed in patients with TMD as compared to control subjects (temporalis: 195.74 ± 18.57 vs. 275.74 ± 22.11, P = 0.011; masseters: 151.09 ± 17.37 vs. 283.29 ± 31.87, P < 0.001). An asymmetry index (SAI) was calculated to determine ratios of right to left sided activation. Patients with right-sided TMD demonstrated preferential use of their left-sided muscles (SAI ?5.35 ± 4.02) whereas patients with left-sided TMD demonstrated preferential use of their right-sided muscles (SAI 6.95 ± 2.82), (P = 0.016). This unilateral reduction in temporalis and masseter activity could be considered as a specific protective functional adaptation of the neuromuscular system due to nociceptive input. The asymmetry index (SAI) may be a useful measure in discriminating patients with right vs. left-sided TMD.  相似文献   

13.
Functional meaning and underlying mechanisms of jaw elevator silent period (SP) have still not been completely understood. Since complete denture wearers (CDWs) have no periodontal receptors in their jaws, the aim was to examine SPs in CDWs and to compare it with dentate individuals (DIs).Thirty six DIs (skeletal/occlusal Class I) and 24 eugnath CDWs participated. EMG signals were registered using the EMGA-1 apparatus from the left and the right side anterior temporalis (ATM) and masseter muscles (MM). Ten registrations of an open-close-clench (OCC) cycle were obtained for each individual. DIs had the average latency between 12.5 and 12.9 ms and always one single short inhibitory pause (IP) with complete inhibition of motoneurons (20.1–21.1 ms). On the other hand, in CDWs various types of SPs emerged: single or single prolonged SPs, double SPs, SPs with three IPs, periods of depressed muscle activity following the first, or the second IP, SPs with relative inhibition of motoneurons or even in several registrations the SP was missing. Unless more than one IP emerged, complete duration of inhibitory pauses (CDIP) was measured. CDIP varied from 37.17 to 42.49 ms. Average latencies were from 16.22 to 16.76 ms. Based on the results of this study it is obvious that both, the duration and the latencies were significantly longer in CDWs than in DIs (p < 0.05), which can be explained by different mechanisms responsible for the muscle reflex behaviour.  相似文献   

14.
Frontal plane mandibular movements during mastication and the associated electromyographic (EMG) activity for left and right superficial masseter, posterior temporalis, anterior temporalis, and anterior belly of the digastric (ABD) were studied for two adult male Macaca mulatta by the new technique of “contour” analysis. Contour analysis allowed graphic and quantitative portrayal of multiple chew cycle patterns of mandibular movement and EMG activity during active mastication. A series of computer programs (ATS, ATSED, ATSXYZ) facilitated the collection, editing and definition, and finally processing of these masticatory data into contour plots. These preliminary data indicated the essential symmetry of mandibular movement patterns, high chew cycle variability inferior to occlusion, multiple centers of intense EMG activity for balancing-side superficial masseter, and no difference between working-side anterior and posterior temporalis EMG patterns. Maximum EMG amplitude was found in the area of buccal phase power stroke (BPS). Maximum EMG amplitude for ABD was located medial and inferior to occlusion; all other muscle maximum amplitudes were buccal and inferior to occlusion. The location of maximum EMG amplitudes for superficial masseter and ABD were closer to occlusion (more superior) during mastication of carrot than were maximum amplitudes during biscuit mastication. The absence of any detectable shift of EMG maximum amplitude location between biscuit and carrot for posterior and anterior temporalis suggested, along with the continuous EMG activity of working-side posterior temporalis, a secondary role for the temporalis (compensation for superficial masseter activity) during active mastication.  相似文献   

15.
The major purpose of this study is to analyze anterior and posterior temporalis muscle force recruitment and firing patterns in various anthropoid and strepsirrhine primates. There are two specific goals for this project. First, we test the hypothesis that in addition to transversely directed muscle force, the evolution of symphyseal fusion in primates may also be linked to vertically directed balancing-side muscle force during chewing (Hylander et al. [2000] Am. J. Phys. Anthropol. 112:469-492). Second, we test the hypothesis of whether strepsirrhines retain the hypothesized primitive mammalian condition for the firing of the anterior temporalis, whereas anthropoids have the derived condition (Weijs [1994] Biomechanics of Feeding in Vertebrates; Berlin: Springer-Verlag, p. 282-320). Electromyographic (EMG) activities of the left and right anterior and posterior temporalis muscles were recorded and analyzed in baboons, macaques, owl monkeys, thick-tailed galagos, and ring-tailed lemurs. In addition, as we used the working-side superficial masseter as a reference muscle, we also recorded and analyzed EMG activity of the left and right superficial masseter in these primates. The data for the anterior temporalis provided no support for the hypothesis that symphyseal fusion in primates is linked to vertically directed jaw muscle forces during mastication. Thus, symphyseal fusion in primates is most likely mainly linked to the timing and recruitment of transversely directed forces from the balancing-side deep masseter (Hylander et al. [2000] Am. J. Phys. Anthropol. 112:469-492). In addition, our data demonstrate that the firing patterns for the working- and balancing-side anterior temporalis muscles are near identical in both strepsirrhines and anthropoids. Their working- and balancing-side anterior temporalis muscles fire asynchronously and reach peak activity during the power stroke. Similarly, their working- and balancing-side posterior temporalis muscles also fire asynchronously and reach peak activity during the power stroke. Compared to these strepsirrhines, however, the balancing-side posterior temporalis of anthropoids appears to have a relatively delayed firing pattern. Moreover, based on their smaller W/B ratios, anthropoids demonstrate a relative increase in muscle-force recruitment of the balancing-side posterior temporalis. This in turn suggests that anthropoids may emphasize the duration and magnitude of the power stroke during mastication. This hypothesis, however, requires additional testing. Furthermore, during the latter portion of the power stroke, the late activity of the balancing-side posterior temporalis of anthropoids apparently assists the balancing-side deep masseter in driving the working-side molars through the terminal portion of occlusion.  相似文献   

16.
The aim of the study was to evaluate the effect of bolus hardness on the kinematic of mastication and jaw-elevator muscle activity in subjects with normal dental occlusion and function. The mandibular motion and the surface EMG envelope of the masseter and temporalis anterior muscles were assessed in twelve subjects during mastication of a soft and hard bolus of the same size. When chewing the hard bolus, the chewing pattern in the frontal plane was significantly higher and wider, with smaller closure angle and higher peak velocity than when chewing the soft bolus. EMG peak amplitude of both the masseter and anterior temporalis muscles was higher for the side of the bolus but the contralateral side increased its activity significantly more than the ipsilateral side when the hardness of the bolus increased (for the masseter, mean ± SD: 130.4 ± 108.1% increase for the contralateral side and 29.6 ± 26.9% for the ipsilateral side). Moreover, the peak EMG activity for both muscles occurred more distant from the closure point with hard bolus. The increased activity of the contralateral side may help maintaining the mandibular equilibrium, with indirect participation to the power stroke generated by the chewing-side masseter. The results provide kinematic and EMG adaptations to bolus hardness in healthy subjects and can be used as normative data in the development of methods for early diagnosis of impaired chewing function.  相似文献   

17.
This study examined whether there is an association between surface electromyography (EMG) of masticatory muscles, orofacial myofunction status and temporomandibular disorder (TMD) severity scores. Forty-two women with TMD (mean 30 years, SD 8) and 18 healthy women (mean 26 years, SD 6) were examined. According to the Research Diagnostic Criteria for TMD (RDC/TMD), all patients had myogenous disorders plus disk displacements with reduction. Surface EMG of masseter and temporal muscles was performed during maximum teeth clenching either on cotton rolls or in intercuspal position. Standardized EMG indices were obtained. Validated protocols were used to determine the perception severity of TMD and to assess orofacial myofunctional status. TMD patients showed more asymmetry between right and left muscle pairs, and more unbalanced contractile activities of contralateral masseter and temporal muscles (p<0.05, t-test), worse orofacial myofunction status and higher TMD severity scores (p<0.05, Mann-Whitney test) than healthy subjects. Spearman coefficient revealed significant correlations between EMG indices, orofacial myofunctional status and TMD severity (p<0.05). In conclusion, these methods will provide useful information for TMD diagnosis and future therapeutic planning.  相似文献   

18.
The aims of this pilot study were to evaluate: (i) the reproducibility and variability of an electromyographical protocol developed for the assessment of submental muscles (SM) (ii) to apply the new protocol to maximal teeth clenching, a simple and largely studied static task in order to quantify the relative contribution of submental muscles. In 20 healthy subjects, aged 19–35 years, surface electromyography of SM, masseter (MM) and anterior temporalis (TA) muscles was performed during maximal voluntary clenching (MVC) with and without cotton rolls and the pushing of the tongue against the palate. Clenching on cotton rolls and pushing the tongue against the palate were used to standardise respectively MM and TA, and SM muscular potentials. The exercises were repeated in two appointments (T1–T2); submental muscles standardisation was also repeated twice (A-B) in each session to assess repeatability. Symmetry and activity were calculated for each couple of muscles. A two-way analysis of variance was computed for SM: no Factor 1 (T1 vs T2) or Factor 2 (A vs B) or F1 × F2 significant effects were found. SM recruitment was 31% of the maximal activity, with symmetry values larger than 80%. In conclusion, standardised electromyography allows a reliable assessment of Submental muscles activity.  相似文献   

19.
The masticatory motor patterns of three tammar wallabies and two red kangaroos were determined by analyzing the pattern of electromyographic (EMG) activity of the jaw adductors and correlating it with lower jaw movements, as recorded by digital video and videoradiography. Transverse jaw movements were limited by the width of the upper incisal arcade. Molars engaged in food breakdown during two distinct occlusal phases characterized by abrupt changes in the direction of working-side hemimandible movement. Separate orthal (Phase I) and transverse (Phase II) trajectories were observed. The working-side lower jaw initially was drawn laterally by the balancing-side medial pterygoid and then orthally by overlapping activity in the balancing- and working-side temporalis and the balancing-side superficial masseter and medial pterygoid. Transverse movement occurred principally via the working-side medial pterygoid and superficial masseter. This pattern contrasted to that of placental herbivores, which are known to break down food when they move the working-side lower jaw transversely along a relatively longer linear path without changing direction during the power stroke. The placental trajectory results from overlapping activity in the working- and balancing-side adductor muscles, suggesting that macropods and placental herbivores have modified the primitive masticatory motor pattern in different ways.  相似文献   

20.
Cerebral palsy (CP) is a term employed to define a group of non-progressive neuromotor disorders caused by damage to the immature or developing brain, with consequent limitations regarding movement and posture. CP may impair orapharygeal muscle tone, leading to a compromised chewing function and to sleep disorders (such as obstructive sleep apnea). Thirteen adults with CP underwent bilateral masseter and temporalis neuromuscular electrical stimulation (NMES) therapy. The effects on the masticatory muscles and sleep variables were evaluated using electromyography (EMG) and polysomnography (PSG), respectively, prior and after 2 months of NMES. EMG consisted of 3 tests in different positions: rest, mouth opening and maximum clenching effort (MCE). EMG values in the rest position were 100% higher than values recorded prior to therapy for all muscles analyzed (p < 0.05); mean mouth opening increased from 38.0 ± 8.0 to 44.0 ± 10.0 cm (p = 0.03). A significant difference in MCE was found only for the right masseter. PSG revealed an improved in the AHI from 7.2±7.0/h to 2.3±1.5/h (p < 0.05); total sleep time improved from 185 min to 250 min (p = 0.04) and minimun SaO2 improved from 83.6 ± 3.0 to 86.4 ± 4.0 (p = 0.04). NMES performed over a two-month period led to improvements in the electrical activity of the masticatory muscles at rest, mouth opening, isometric contraction and sleep variables, including the elimination of obstructive sleep apnea events in patients with CP.

Trial Registration

ReBEC RBR994XFS http://www.ensaiosclinicos.gov.br  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号