首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Apical and basolateral proteins are maintained within distinct membrane subdomains in polarized epithelial cells by biosynthetic and postendocytic sorting processes. Sorting of basolateral proteins in these processes has been well studied; however, the sorting signals and mechanisms that direct proteins to the apical surface are less well understood. We previously demonstrated that an N-glycan-dependent sorting signal directs the sialomucin endolyn to the apical surface in polarized Madin-Darby canine kidney cells. Terminal processing of a subset of endolyn's N-glycans is key for polarized biosynthetic delivery to the apical membrane. Endolyn is subsequently internalized, and via a cytoplasmic tyrosine-based sorting motif is targeted to lysosomes from where it constitutively cycles to the cell surface. Here, we examine the polarized sorting of endolyn along the postendocytic pathway in polarized cells. Our results suggest that similar N-glycan sorting determinants are required for apical delivery of endolyn along both the biosynthetic and the postendocytic pathways.  相似文献   

2.
In cells tested so far endocytosis seems to be dependent on N-ethylmaleimide (NEM)-sensitive proteins, and treatment with NEM results in a complete block of endocytosis. We here demonstrate that treatment of polarized MDCK I cells with NEM strongly increased endocytosis of ricin and horseradish peroxidase at the apical side, and electron microscopy revealed NEM-induced formation of large macropinosomes at the apical pole. The NEM-stimulated apical endocytosis seemed to involve phosphatidylinositol-3 kinase, protein kinase C and phospholipase D and it was dependent on ATP. Moreover, in contrast to endocytosis in nonpolarized cells ricin endocytosis at the basolateral side continued in the presence of NEM whereas endocytosis of transferrin was blocked. Furthermore, recycling of ricin endocytosed in the absence of NEM was not inhibited on either side upon addition of NEM demonstrating the existence of a NEM-resistant fusion machinery. The results suggest that the fusogenic property of both the apical and the basolateral plasma membrane of MDCK cells differs from that typically observed in cells unable to polarize.  相似文献   

3.
MAL is an integral protein component of the machinery for apical transport in epithelial Madin-Darby canine kidney (MDCK) cells. To maintain its distribution, MAL cycles continuously between the plasma membrane and the Golgi complex. The clathrin-mediated route for apical internalization is known to differ from that at the basolateral surface. Herein, we report that MAL depends on the clathrin pathway for apical internalization. Apically internalized polymeric Ig receptor (pIgR), which uses clathrin for endocytosis, colocalized with internalized MAL in the same apical vesicles. Time-lapse confocal microscopic analysis revealed cotransport of pIgR and MAL in the same endocytic structures. Immunoelectron microscopic analysis evidenced colabeling of MAL with apically labeled pIgR in pits and clathrin-coated vesicles. Apical internalization of pIgR was abrogated in cells with reduced levels of MAL, whereas this did not occur either with its basolateral entry or the apical internalization of glycosylphosphatidylinositol-anchored proteins, which does not involve clathrin. Therefore, MAL is critical for efficient clathrin-mediated endocytosis at the apical surface in MDCK cells.  相似文献   

4.
Matrix metalloproteinase-7 (MMP-7) is primarily expressed in glandular epithelium. Therefore, its mechanism of action may be influenced by its regulated vectorial release to either the apical and/or basolateral compartments, where it would act on its various substrates. To gain a better understanding of where MMP-7 is released in polarized epithelium, we have analyzed its pattern of secretion in polarized MDCK cells expressing stably transfected human MMP-7 (MDCK-MMP-7), and HCA-7 and Caco2 human colon cancer cell lines. In all cell lines, latent MMP-7 was secreted to both cellular compartments, but was 1.5- to 3-fold more abundant in the basolateral compartment as compared to the apical. However, studies in the MDCK system demonstrated that MMP-7 activity was 2-fold greater in the apical compartment of MDCK-MMP-7(HIGH)-polarized monolayers, which suggests the apical co-release of an MMP-7 activator. In functional assays, MMP-7 over-expression increased cell saturation density as a result of increased cell proliferation with no effect on apoptosis. Apical MMP-7 activity was shown to be responsible for the proliferative effect, which occurred, as demonstrated by media transfer experiments, through cleavage of an apical substrate and not through the generation of a soluble factor. Taken together, our findings demonstrate the importance of MMP-7 secretion in relation to its mechanism of action when expressed in a polarized epithelium.  相似文献   

5.
Epithelial cells display distinct apical and basolateral membrane domains, and maintenance of this asymmetry is essential to the function of epithelial tissues. Polarized delivery of apical and basolateral membrane proteins from the trans Golgi network (TGN) and/or endosomes to the correct domain requires specific cytoplasmic machinery to control the sorting, budding and fission of vesicles. However, the molecular machinery that regulates polarized delivery of apical proteins remains poorly understood. In this study, we show that the small guanosine triphosphatase Rab14 is involved in the apical targeting pathway. Using yeast two-hybrid analysis and glutathione S-transferase pull down, we show that Rab14 interacts with apical membrane proteins and localizes to the TGN and apical endosomes. Overexpression of the GDP mutant form of Rab14 (S25N) induces an enlargement of the TGN and vesicle accumulation around Golgi membranes. Moreover, expression of Rab14-S25N results in mislocalization of the apical raft-associated protein vasoactive intestinal peptide/MAL to the basolateral domain but does not disrupt basolateral targeting or recycling. These data suggest that Rab14 specifically regulates delivery of cargo from the TGN to the apical domain.  相似文献   

6.
T-cadherin is a 95kDa glycoprotein member of the cadherin family of adhesion molecules attached to the extracellular surface of the cell membrane through a glycosyl-phosphatidylinositol (GPI)-anchor. Whether a T-cadherin ectodomain apical targeting signal or the GPI-anchor itself targets this protein to the apical membrane is not known. Chimeras of the reporter EGFP and T-cadherin have demonstrated that a minimal construct consisting of the C-terminal 25 amino acids including the N690 (omega-site) of T-cadherin was sufficient to GPI-anchor the EGFP protein. However, efficient GPI-anchor with minimal secretion of the protein required an additional 5 residues (omega-1 to omega-5). The GPI-anchored chimeras fractionated to the Triton X-100 detergent insoluble fraction and were released to the cell culture supernatant by phosphoinositide-specific phospho-lipase C digestion. When expressed in MDCK cells, all GPI-anchored chimeras targeted to the basolateral membrane, while the T/N-chimera and the wild-type T-cadherin targeted to the apical membrane. Therefore, T-cadherin is an example of another rare GPI-anchored protein where the anchor itself is not sufficient for apical targeting in MDCK cells.  相似文献   

7.
This paper studies the endocytosis of ricin at the apical pole of polarized MDCK II cells after permeabilization of the cells basolaterally with streptolysin O. Ricin endocytosis after the addition of cytosol with an ATP-regenerating system was 2-3-fold higher than after the addition of a transport medium. A similar increase in ricin endocytosis was obtained by reconstitution of dialyzed cytosol with the nonhydrolyzable GTP analog, GTP gamma S, in the presence of an ATP-regenerating system. The nonhydrolyzable GDP analog, GDP beta S, did not increase ricin uptake. In contrast to the data obtained with ricin, GTP gamma S was found to inhibit apical transferrin uptake in MDCK II cells transfected with the human transferrin receptor, and the data thus imply that GTP gamma S supports clathrin-independent endocytosis. Electron microscopy (EM) demonstrated that free endocytic vesicles were formed from the apical pole of permeabilized MDCK II cells in the presence of GTP gamma S and that both a ricin-HRP conjugate, HRP, and cationized gold were endocytosed. Ricin endocytosis in the presence of intact cytosol, as well as GTP gamma S-stimulated ricin uptake, was inhibited by Clostridium botulinum C3 transferase, an enzyme found to inactivate Rho proteins. The data demonstrate that apical clathrin-independent endocytosis functions in the presence of GTP gamma S, and suggest that one or more of the small GTP binding proteins of the Rho family is involved in regulation of the apical clathrin-independent endocytosis in MDCK II cells.  相似文献   

8.
Membrane water channel aquaporin-2 (AQP2) and glucose transporter 4 (GLUT4) exhibit a common feature in that they are stored in intracellular storage compartments and undergo translocation to the plasma membrane upon hormonal stimulation. We compared the intracellular localization and trafficking of AQP2 and GLUT4 in polarized Madin-Darby canine kidney cells stably transfected with human AQP2 (MDCK-hAQP2) by immunofluorescence microscopy. When expressed in MDCK-hAQP2 cells, GLUT4 and GLUT4—EGFP were predominantly localized in the perinuclear region close to and within the Golgi apparatus, similar to endogenous GLUT4 in adipocytes and myocytes. In addition, GLUT4 was occasionally seen in EEA1-positive early endosomes. AQP2, on the other hand, was sequestered in subapical Rab11-positive vesicles. In the basal state, the intracellular storage site of GLUT4 was distinct from that of AQP2. Forskolin induced translocation of AQP2 from the subapical storage vesicles to the apical plasma membrane, which did not affect GLUT4 localization. When forskolin was washed out, AQP2 was first retrieved to early endosomes from the apical plasma membrane, where it was partly colocalized with GLUT4. AQP2 was then transferred to Rab11-positive storage vesicles. These results show that AQP2 and GLUT4 share a common compartment after retrieval from the plasma membrane, but their storage compartments are distinct from each other in polarized MDCK-hAQP2 cells.  相似文献   

9.
The effect of monensin on endocytosis, transcytosis, recycling and transport to the Golgi apparatus in filter-grown Madin-Darby canine kidney (MDCK) cells was investigated using 125I-labeled ricin as a marker for membrane transport, and horseradish peroxidase (HRP) as a marker for fluid phase transport. Monensin (10 microM) stimulated transcytosis of both markers about 3-fold in the basolateral to apical direction. Transcytosis of HRP in the opposite direction, apical to basolateral, was reduced to approximately 50% of the control by monensin, whereas that of ricin was slightly increased. Recycling of markers endocytosed from the apical surface was reduced in the presence of monensin and there was an increased accumulation of both ricin and HRP in the cells. Transport of ricin to the Golgi apparatus increased to the same extent as the increase in intracellular accumulation. No change in recycling or accumulation was observed with monensin when the markers were added basolaterally, but transport of ricin to the Golgi apparatus increased almost 3-fold. Our results indicate that basolateral to apical transcytosis is increased in the absence of low endosomal pH, and they suggest that apical to basolateral transcytosis of a membrane-bound marker (ricin) is affected by monensin differently from that of a fluid phase marker (HRP).  相似文献   

10.
Previously it was shown that fusion proteins containing the amino terminus of an apical targeted member of the serpin family fused to the corresponding carboxyl terminus of the non-polarized secreted serpin, antithrombin, are secreted mainly to the apical side of MDCK cells. The present study shows that this is neither due to the transfer of an apical sorting signal from the apically expressed proteins, since a sequence of random amino acids acts the same, nor is it due to the deletion of a conserved signal for correct targeting from the non-polarized secreted protein. Our results suggest that the polarity of secretion is determined by conformational sensitive sorting signals.  相似文献   

11.
We have measured the transport of de novo synthesized fluorescent analogs of sphingomyelin and glucosylceramide from the trans-Golgi network (TGN) to the apical membrane in basolaterally permeabilized Madin-Darby canine kidney (MDCK) cells. Sphingolipid transport was temperature, ATP and cytosol dependent. Introduction of bovine serum albumin (BSA), which binds fluorescent sphingolipid monomer, into the permeabilized cells, did not affect lipid transport to the apical membrane. Both fluorescent sphingomyelin and glucosylceramide analogs were localized to the lumenal bilayer leaflet of isolated TGN-derived vesicles. These results strongly suggest that both sphingolipids are transported from the TGN to the apical membrane via vesicular traffic.  相似文献   

12.
The small-GTPase family of ADP ribosylation factors (ARFs) recruit coat proteins to promote vesicle budding. ARFs are activated by an association with sec7-containing exchange factors which load them with GTP. In epithelial cells, the small GTPase ARF6 operates within the endocytic system and has been shown to associate with ARNO to promote apical endocytosis and early to late endosomal trafficking. EFA6 has been shown to stimulate tight-junction formation and maintenance. Here, we show that in polarized epithelial MDCK cells, EFA6 is localized to early endosomes, causes their dramatic enlargement, and promotes basolateral targeting of IgA, which is normally targeted to the apical PM. These results suggest that the physiological function of ARF6 within the endocytic system is regulated by the exchange factor it associates with.  相似文献   

13.
Previous studies of fibroblasts have demonstrated that recycling of endocytic receptors occurs through a default mechanism of membrane-volume sorting. Epithelial cells require an additional level of polar membrane sorting, but there are conflicting models of polar sorting, some suggesting that it occurs in early endosomes, others suggesting it occurs in a specialized apical recycling endosome (ARE). The relationship between endocytic sorting to the lysosomal, recycling and transcytotic pathways in polarized cells was addressed by characterizing the endocytic itineraries of LDL, transferrin (Tf) and IgA, respectively, in polarized Madin-Darby canine kidney (MDCK) cells. Quantitative analyses of 3-dimensional images of living and fixed polarized cells demonstrate that endocytic sorting occurs sequentially. Initially internalized into lateral sorting endosomes, Tf and IgA are jointly sorted from LDL into apical and medical recycling endosomes, in a manner consistent with default sorting of membrane from volume. While Tf is recycled to the basolateral membrane from recycling endosomes, IgA is sorted to the ARE prior to apical delivery. Quantifications of the efficiency of sorting of IgA from Tf between the recycling endosomes and the ARE match biochemical measurements of transepithelial protein transport, indicating that all polar sorting occurs in this step. Unlike fibroblasts, rab11 is not associated with Tf recycling compartments in either polarized or glass-grown MDCK cells, rather it is associated with the compartments to which IgA is directed after sorting from Tf. These results complicate a suggested homology between the ARE and the fibroblast perinuclear recycling compartment and provide a framework that justifies previous conflicting models of polarized sorting.  相似文献   

14.
The polarity of epithelial cells is dependent on their ability to target proteins and lipids in a directional fashion. The trans-Golgi network, the endosomal compartment, and the plasma membrane act as sorting stations for proteins and lipids. The site of intracellular sorting and pathways used for the apical delivery of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are largely unclear. Using biochemical assays and confocal and video microscopy in living cells, we show that newly synthesized GPI-APs are directly delivered to the apical surface of fully polarized Madin-Darby canine kidney cells. Impairment of basolateral membrane fusion by treatment with tannic acid does not affect the direct apical delivery of GPI-APs, but it does affect the organization of tight junctions and the integrity of the monolayer. Our data clearly demonstrate that GPI-APs are directly sorted to the apical surface without passing through the basolateral membrane. They also reinforce the hypothesis that apical sorting of GPI-APs occurs intracellularly before arrival at the plasma membrane.  相似文献   

15.
Quantitative confocal microscopic analyses of living, polarized MDCK cells demonstrate different pH profiles for apical and basolateral endocytic pathways, despite a rapid and extensive intersection between the two. Three-dimensional characterizations of ligand trafficking demonstrate that the apical and basolateral endocytic pathways share early, acidic compartments distributed throughout the medial regions of the cell. Polar sorting for both pathways occurs in these common endosomes as IgA is sorted from transferrin to alkaline transcytotic vesicles. While transferrin is directly recycled from the common endosomes, IgA is transported to a downstream apical compartment that is nearly neutral in pH. By several criteria this compartment appears to be equivalent to the previously described apical recycling endosome. The functional significance of the abrupt increase in lumenal pH that accompanies IgA sorting is not clear, as disrupting endosome acidification has no effect on polar sorting. These studies provide the first detailed characterizations of endosome acidification in intact polarized cells and clarify the relationship between the apical and basolateral endocytic itineraries of polarized MDCK cells. The extensive mixing of apical and basolateral pathways underscores the importance of endocytic sorting in maintaining the polarity of the plasma membrane of MDCK cells.  相似文献   

16.
The canine 3'-phosphoadenosine 5'-phosphosulfate (PAPS) transporter1 fused to GFP was stably expressed with a typical Golgi localizationin MDCK II cells (MDCK II-PAPST1). The capacity for PAPS uptakeinto Golgi vesicles was enhanced to almost three times thatof Golgi vesicles isolated from untransfected cells. We havepreviously shown that chondroitin sulfate proteoglycans (CSPGs)are several times more intensely sulfated in the basolateralthan the apical secretory pathway in MDCK II cells (Tveit H,Dick G, Skibeli V, Prydz K. 2005. A proteoglycan undergoes differentmodifications en route to the apical and basolateral surfacesof Madin-Darby canine kidney cells. J Biol Chem. 280:29596–29603).Here we demonstrate that increased availability of PAPS in theGolgi lumen enhances the sulfation of CSPG in the apical pathwayseveral times, while sulfation of CSPGs in the basolateral pathwayshows minor changes. Sulfation of heparan sulfate proteoglycansis essentially unchanged. Our data indicate that CSPG sulfationin the apical pathway of MDCK II cells occurs at suboptimalconditions, either because the sulfotransferases involved havehigh Km values, or there is a lower PAPS concentration in thelumen of the apical secretory route than in the basolateralcounterpart.  相似文献   

17.
MDCK and Vero cell lines have been used as substrates for influenza virus replication. However, Vero cells produced lower influenza virus titer yield compared to MDCK. Influenza virus needs molecules for internalisation of the virus into the host cell, such as influenza virus receptor and clathrin. Human influenza receptor is usually a membrane protein containing Sia(α2,6) Gal, which is added into the protein in the golgi apparatus by α2,6 sialyltransferase (SIAT1). Light clathrin A (LCA), light clathrin B (LCB) and heavy clathrin (HC) are the main components needed for virus endocytosis. Therefore, it is necessary to compare the expression of SIAT1 and clathrin in Vero and MDCK cells. This study is reporting the expression of SIAT1 and clathrin observed in both cells with respect to the levels of (1) RNA by using RT-PCR, (2) protein by using dot blot analysis and confocal microscope. The results showed that Vero and MDCK cells expressed both SIAT1 and clathrin proteins, and the expression of SIAT1 in MDCK was higher compared to Vero cells. On the other hand, the expressions of LCA, LCB and HC protein in MDCK cells were not significantly different to Vero cells. This result showed that the inability of Vero cells to internalize H1N1 influenza virus was possibly due to the lack of transmembrane protein receptor which contained Sia(α2,6) Gal.  相似文献   

18.
The cytoskeleton is required for multiple cellular events including endocytosis and the transfer of cargo within the endocytic system. Polarized epithelial cells are capable of endocytosis at either of their distinct apical or basolateral plasma membrane domains. Actin plays a role in internalization at both cell surfaces. Microtubules and actin are required for efficient transcytosis and delivery of proteins to late endosomes and lysosomes. Microtubules are also important in apical recycling pathways and, in some polarized cell types, basolateral recycling requires actin. The microtubule motor proteins dynein and kinesin and the class I unconventional myosin motors play a role in many of these trafficking steps. This review examines the endocytic pathways of polarized epithelial cells and focuses on the emerging roles of the actin cytoskeleton in these processes.  相似文献   

19.
The Rho family of GTPases is implicated in the control of endocytic and biosynthetic traffic of many cell types; however, the cellular distribution of RhoB remains controversial and its function is not well understood. Using confocal microscopy, we found that endogenous RhoB and green fluorescent protein-tagged wild-type RhoB were localized to early endosomes, and to a much lesser extent to recycling endosomes, late endosomes or Golgi complex of fixed or live polarized Madin-Darby canine kidney cells. Consistent with RhoB localization to early endosomes, we observed that expression of dominant-negative RhoBN19 or dominant-active RhoBV14 altered postendocytic traffic of ligand-receptor complexes that undergo recycling, degradation or transcytosis. In vitro assays established that RhoB modulated the basolateral-to-apical transcytotic pathway by regulating cargo exit from basolateral early endosomes. Our results indicate that RhoB is localized, in part, to early endosomes where it regulates receptor egress through the early endocytic system.  相似文献   

20.
Epithelial cell polarity depends on mechanisms for targeting proteins to different plasma membrane domains. Here, we dissect the pathway for apical delivery of several raft-associated, glycosyl phosphatidylinositol (GPI)-anchored proteins in polarized MDCK cells using live-cell imaging and selective inhibition of apical or basolateral exocytosis. Rather than trafficking directly from the trans-Golgi network (TGN) to the apical plasma membrane as previously thought, the GPI-anchored proteins followed an indirect, transcytotic route. They first exited the TGN in membrane-bound carriers that also contained basolateral cargo, although the two cargoes were laterally segregated. The carriers were then targeted to and fused with a zone of lateral plasma membrane adjacent to tight junctions that is known to contain the exocyst. Thereafter, the GPI-anchored proteins, but not basolateral cargo, were rapidly internalized, together with endocytic tracer, into clathrin-free transport intermediates that transcytosed to the apical plasma membrane. Thus, apical sorting of these GPI-anchored proteins occurs at the plasma membrane, rather than at the TGN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号